Espacios con producto interno
|
|
|
- José Soler Blanco
- hace 7 años
- Vistas:
Transcripción
1 Espacios con producto interno. En el espacio vectorial R con el producto interno euclideano, calcule: a) < (,, ), (,, )> b) (7,, ) (7,, ) c) <(,, ), (x, x, x )> d) î ĵ e) (v, v, v ) (w, w, w ) f) ( î ĵ) ( ĵ kˆ ). Determine cuál o cuáles de las siguientes funciones f definen un producto interior en R. Si x = ( x, x ) e y = ( y, y ), f x, y = x + y x y a) ( ) f x, y = x y b) ( ) f x, y = x + y x y x y 5x y c) ( ). Muestre que cada una de las funciones siguientes es un producto interno en el espacio que se indica: t a) < X, Y > = X Y, en el espacio M n ( R) t b) < A, B > = tr(a B), en el espacio M ( R ) = c) < p( x), q( x) > p(x) q(x) dx, en el espacio [ x] P n. Calcule la norma de cada vector v, de acuerdo al producto interno que se indica: a) v = (, -5), en b) v = (, -5), en c) v = i + j k, en R con el p.i. canónico. R con el p.i. definido en ejercicio.c. R con el p.i. canónico. d) v = ( - 5) t, en M 5 ( R) con el p.i. dado en ejercicio.a. e) v = I en M ( R ) con el p.i. dado en ejercicio.b. f) v = x x + en [ x] P con el p.i. dado en ejercicio.c. 5. Calcule la distancia y el ángulo entre los vectores u y v, de acuerdo al producto interior que se indica:
2 a) u = i j + k, v = -i + j + 5 k en b) u = + x, v = x en [ x] P con p.i. dado en ejercicio.c. 0 5 c) u =, v = en M ( R ) con p.i. dado en ejercicio.b.. Considere el espacio R con el producto interior usual y los vectores u = (,, -), v = (0, -, ). Decida si las siguientes afirmaciones son verdaderas: a) La norma de u + v es. b) El vector v es unitario. 5 c) La distancia entre u y v es 90. d) El ángulo θ entre u y v es tal que 0 < θ < 5. e) El vector w = (-,, 0) es ortogonal a u + v. 7. Determine, en cada caso, para qué valor o valores de k R el vector u es ortogonal a v si: a) u = (k, k, -), v = (k, -, 7) en b) u = (k, -5,, k ), v = ( k, -, -k, -5) en k 0 c) u =, v = en M ( R ) con p.i. dado en ejercicio.b Sean u, v vectores de Calcule < u, v >. n R tales que u =, v = y el ángulo entre u y v es π. 9. Sean u, v vectores ortonormales de un espacio con producto interno V. Demuestre que u v =. 0. Sea V un espacio con p.i. <, > y sean u, v V. Demuestre que: a) < u, v > = 0 u + v = u + v. b) < u, v > = u + v u v.
3 c) u + v = u + v + u v. d) < u, v > = 0, u V v = 0. Considere el espacio R con el p.i. canónico. Determine dos vectores unitarios y ortogonales a u = (, 0, -, ) y v = (0,,, -).. En R con el producto interior usual considere los vectores v = (,, ), v = (-, 0, ) y v = (0,, ). Encuentre un vector u R tal que < u, v > = 0, < u, v > = y < u, v > =. El vector u es único?. En R con el producto interior canónico considere los subespacios {(, 0, ), (,, ) } > y W = < {( 0,, )} > = < W Encuentre bases para, W, ( W W ), W W, ( W + ) + W W. W W y. Sea V espacio con producto interno <, > y sean U, W subespacios de V. Demuestre: a) U W W U b) ( U + W) = U W 5. Sea V un espacio con producto interno. Demuestre que todo conjunto ortogonal de vectores no nulos de V es linealmente independiente.. Considere R con el producto interior canónico. Muestre que toda base ortonormal de R tiene una de las dos formas siguientes: B = { (a, b), (b, -a) } o bien B = { (a, b), (-b, a) } 7. Considere R con el producto interno usual. Use el proceso de ortogonalización de Gram-Schmidt para obtener, a partir de la base B dada, una base ortonormal de R. a) B = { (,, ), (0,, -), (-, 0, ) } b) B = { (,, ), (-,, 0), (,, ) }
4 8. Encuentre una base ortonormal para cada uno de los subespacios W. a) W = { (x, y, z) R : x y + z = 0 } b) W = < { (, -,, 0), (, 0, -, ), (-,, -, -) }> c) W = { (x, y, z, w) d) R : x y + z = 0 w = 0 } a b W = M ( R) : a d = 0 c + b = 0 M ( R ) con el p.i. del c d ejercicio.b). 9. Sea B la base de R formada por los vectores v = (,, ), v = (,, -) y v = (, -, ). Verifique que B es ortogonal y determine los coeficientes de Fourier < v, v i > α i =, i =,,, del vector v = (5,, ) con respecto a la base B. v i 0. Considere la base de R, B = { (-, 0, ), (0,, 0), (, 0, ) }. a) A partir de B construya C, C base ortonormal de R v coordenadas del vector v = (,, -) con respecto a la base C. b) Determine [ ] C c) Calcule las longitudes de v y de [ v ] C.. Construya una base B o ortogonal y una base B ortonormal para el subespacio U de R generado por { (, 0, -, ), (,,, ), (-,,, -) }. Determine las coordenadas del vector v = (,, 0, ) con respecto a la base B o.. Sea U = < { (, 0,, 0), (, 0,, 0), (,,, ) } > subespacio de R. Encuentre la proyección ortogonal del vector v = (,,, -) en U, si se considera R con el producto interior usual.. Considere el espacio R con el producto interior usual y el subespacio W generado por S = { (-,, 0), (,, ) }. a) Encuentre la proyección ortogonal del vector u = (,, ) en el subespacio W. b) Encuentre la proyección ortogonal del mismo vector u en el subespacio c) Determine el ángulo que existe entre u y cada una de estas proyecciones. d) Exprese el vector u en la forma u = w + w con w W y W. w W.
5 Respuestas a algunos ejercicios. a) b) 5 c) x x + x d) 0 e) v w + vw + vw f) -. a) No b) Sí c) Sí. a) b) 9 c) 5. a) d =, o ϑ 97, c) d =. a) V b) V c) F d) V e) V 7. a) k = 7 k = - b) k = k = - c) k = 9. u v = < u v, u v > = < u, u > + < v, v > =. (, -,, 0) y (-,, 0, ) 8. W = < {( -, -, )} >, ( W W ) = R, 7. a) B = { (,, ), b) B = { (,, ), 9. α = α =, α =. o 5, W = < {(, 0, 0), (0,, ) } > ( W + W ) = { 0 } y ( W + W ) = R (-,, -7), (-,, ) } 7 (-,, -7), B = { (, 0, -, ), (, -,, ), (,,, ) } B = { (, 0, -, ), [ v ] B = (, 5, ) (, -,, ), 7. a) pr W (u) = (,, ) b) pr (u) = (-, -, ) W c) 0,05 y 79,975 d) u = (,, 8) + (-, -, ) (-,, ) } (,,, ) } 8 ϑ 08,9 o 5
ÁLGEBRA LINEAL II Práctica
ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el
ESPACIO VECTORIAL EUCLÍDEO
ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4
Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación
Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.
Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque
Matrices. Operaciones con matrices.
Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =
Espacios vectoriales con producto interno
Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3
Universidad Nacional de Colombia Departamento de Matemáticas 2015555- Álgebra Lineal Básica - Grupo Taller (1) Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio
ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =
ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada
Relación 1. Espacios vectoriales
MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR
Matemáticas para la Empresa
Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)
Clase de Álgebra Lineal
Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial
Ortogonalización de Gram Schmidt
Ortogonalización de Gram Schmidt Objetivos. Estudiar el proceso de ortogonalización de Gram Schmidt que permite construir de una lista arbitraria de vectores a,..., a m una lista ortogonal b,..., b m que
Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal
Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26
Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia
1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO
. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t) R 4 : x y =, z + t = } Hallar: W = L{(,,, ), (,,, )} a) Las ecuaciones
TEMA 11.- VECTORES EN EL ESPACIO
TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos
Ortogonalización. Ricardo Santander Baeza. Enero Departamento de Matemática y Ciencia de la Computación Universidad de Santiago de Chile
Ortogonalización Ricardo Santander Baeza Departamento de Matemática y Ciencia de la Computación Universidad de Santiago de Chile Enero 29 Idea inicial de producto interno Planteamiento de la idea en bruto
Práctica 2. Producto interno
Práctica 2. Producto interno 1. (a) Encontrar las condiciones que deben cumplir los coeficientes a 11, a 12, a 21 y a 22 para que la expresión defina un producto interno en R 2. (u, v) = a 11 u 1 v 1 +
Producto escalar. Bases ortonormales. Producto vectorial y producto mixto.
Capítulo Producto escalar. Bases ortonormales. Producto vectorial y producto mixto. DEFINICIÓN DE PRODUCTO ESCALAR Dados dos vectores x = (x 1 x 2...x n ) e y = (y 1 y 2...y n ) de R n definimos su producto
Espacios vectoriales con producto escalar
147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en
Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (
Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)
1.5.3 Sistemas, Matrices y Determinantes
1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,
Tema 3: Espacios eucĺıdeos
Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: [email protected] Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β
1. ESPACIO EUCLÍDEO. ISOMETRÍAS
1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos
Material para el examen final
Algebra Lineal 2, FAMAT-UG, ene-jun, 2004 Material para el examen final 31 de mayo, 2004 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este
Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores
FASÍCULO: ESPACIOS CON PRODUCTO INTERNO Teorema. Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : i) ii) iii) iv) Ejemplo: Sean el espacio vectorial con el producto interno definido
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
TEMA V. Espacios vectoriales
TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,
Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales.
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Proponga al menos 3 conjuntos y las operaciones adecuadas de modo que sean espacios vectoriales. Ejercicio 2: Determine si los siguientes conjuntos
Geometría del plano y el espacio
Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer
ESPACIOS VECTORIALES Y APLICACIONES LINEALES
Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes
Transformaciones lineales
Transformaciones lineales. Determine si las siguientes aplicaciones son o no lineales. Justifique su respuesta: a) T : R R; T( x) = x b) T : R R ; T(x, y) = (x y, x) c) T : R R ; T(x, y, z) = ( y, z x
Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31
Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular
Tema 4: Aplicaciones lineales
Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =
Examen Extraordinario de Álgebra III, licenciatura
Examen Extraordinario de Álgebra III, licenciatura El Examen a Título de Suficiencia de Álgebra III abarca los siguientes temas: 1. Formas bilineales y cuadráticas. 2. Valores y vectores propios. 3. Forma
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
Ortogonalización. 1. Método de Gram-Schmidt. Semana 3 - Clase 9 21/04/09 Tema 2: Espacios Vectoriales
Semana - Clase 9 /4/9 Tema : Espacios Vectoriales Ortogonalización Método de Gram-Schmidt Hemos visto que un conjunto de vectores ortogonales forman base para un espacio vectorial Ahora bien, siempre es
Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados
Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones
Espacios vectoriales (Curso )
ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2009 2010) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}.
Soluciones a los ejercicios de vectores
Soluciones a los ejercicios de vectores Tomás Rocha Rinza 28 de agosto de 2006 1. De acuerdo con la propiedad de la norma entonces si x 0, se tiene que luego, si x 0 el vector x/ x es unitario. 2. Si x
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
Material para el examen parcial 1
Algebra Lineal 2, FAMAT-UG, aug-dic, 2009 Material para el examen parcial 1 (17 oct, 2009) Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos
Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero
Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4
ÁLGEBRA LINEAL I Práctica 5
ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2
EJERCICIOS VECTORES EN EL ESPACIO 1. Dados los vectores A = 2î - 4 ĵ + 6 kˆ y B = î + 5 ĵ 9 kˆ, encontrar un vector c tal que 3 a + 2b + 4 c
EJERCICIOS VECTORES EN EL ESPACIO 1. Dados los vectores A = î - 4 ĵ + 6 kˆ y B = î + 5 ĵ 9 kˆ, encontrar un vector c tal que 3 a + b + 4 c 1 = 0. RESPUESTA: i+ j. Dados los vectores A = î - ĵ + 3 kˆ y
Espacios con Producto Interno
Espacios con Producto Interno Definición de producto interno y sus propiedades elementales Supóngase que se tiene un espacio vectorial V sobre un campo K. Se puede definir en V una función que a cada par
TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES
TEMA 4 VECTORES VECTOR FIJO. VECTOR LIBRE. Un ector fijo en IR 2 está determinado por dos puntos A y B, llamados respectiamente, origen y extremo del ector. Su representación gráfica es una flecha que
1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO
1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina
Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,
ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio
ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO
Espacios vectoriales (Curso )
ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.
Tema 2: Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +
Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno
Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno Nota: en todos los casos en que no se indique lo contrario, considere el producto interno canónico en K n (K = R o C). 1.
EL ESPACIO VECTORIAL EUCLIDEO
EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por
ESPACIOS VECTORIALES
ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por
4.2 Producto escalar.
Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,
Examen Final - soluciones
Algebra Lineal 2, FAMAT-UG, agsto-dic, 2009 PARTE A (60 puntos). Cierto o Falso. Examen Final - soluciones 9 dic, 2009 1. Para todo operador ortogonal T en R n, det(t ) = 1. Falso. T : (x 1,..., x n )
PAIEP. Complemento Ortogonal
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios
Solución de problemas III 1
Solución de problemas III Álgebra II Curso 25-6. Espacio Afín.. Ejercicios Ejercicio.4.3 Encontrar la expresión analítica de las siguientes aplicaciones afines de R 2 : a Giro de centro (, ángulo π/2 b
Problemas de exámenes de Formas Bilineales y Determinantes
1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base
1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García
Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas
Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas
Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema
Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10
Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1
Métodos Matemáticos de la Física 1 Solución Examen Parcial Espacios Vectoriales y vectores cartesianos Octubre 2004
Nombre Métodos Matemáticos de la Física Solución Examen Parcial Espacios Vectoriales y vectores cartesianos Octubre 4. Los vectores en R en coordenada cartesianas los definimos como a = a x^ı + a y^j +
