El método inductivo y deductivo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El método inductivo y deductivo"

Transcripción

1 Proyecto Alianza de Matemáticas y Ciencias del Turabo (AMCT) El método inductivo y deductivo Por: Dr. Marlio Paredes Diciembre 3 de 011 Este Proyecto es sufragado con fondos del Programa Título II-B, No Child Left Behind, Math and Science Partnership del Departamento de Educación

2 Objetivos Entender los diferentes métodos de demostración. Aprender a usar los diferentes métodos de demostración. Determinar que método de demostración se debe usar en casos concretos. Identificar cuando un teorema puede ser demostrado por diferentes métodos de demostración.

3 Estándares 10.0 Identifica, justifica y aplica las relaciones entre los ángulos al describir figuras geométricas. G.FG Desarrolla y sostiene argumentos convincentes G.FG Desarrolla y sostiene argumentos convincentes relacionados con relaciones entre ángulos usando modelos y dibujos con y sin ayuda de la tecnología.

4 Estándares 10.0 Desarrolla, prueba y provee justificaciones basadas en el método inductivo y deductivo para establecer conjeturas que involucran líneas, ángulos y figuras. G.FG Describe la estructura y relaciones dentro de un sistema axiomático (términos sin definir, términos definidos, axiomas, postulados, razonamiento y teoremas). G.FG Examina argumentos deductivos e inductivos concernientes a conceptos y relaciones geométricas como la congruencia, semejanza y la relación pitagórica. G.FG Reconoce defectos o discrepancias en el razonamiento que sostienen un argumento.

5 Estándares 4.0 Aplica métodos matemáticos de prueba para desarrollar justificaciones para los teoremas básicos de la geometría euclideana. G.FG.9.4. Prueba, directa o indirectamente, que un enunciado matemático válido es cierto. Desarrolla un contraejemplo para refutar un enunciado inválido. G.FG Formula e investiga la validez del inverso de un condicional. G.FG Organiza y presenta pruebas directas y pruebas indirectas utilizando dos columnas, párrafos y diagramas de flujo.

6 Ejemplo: Ella dice que los triángulos ABC, ABD y ABE son semejantes

7 Cuál de las siguientes es una razón que demuestra que no son semejantes? D Los triángulos ABC, ABD y ABE no tienen dos ángulos que sean congruentes.

8 Pruebas Puertorriqueñas (PPAA): Además de estar constituidas por ítems en los cuales el estudiante construye su propia respuesta e ítems de selección múltiple, las PPAA consideran los niveles de profundidad del conocimiento (NPC) requerido para las expectativas que se evalúan. Los ítems están escritos de acuerdo con tres de los niveles de profundidad del conocimiento según fueron desarrollados por Norman Webb (Web Alignment Tool (WAT) Training Manual, Washington, DC: Council of Chief State School Officers, 005) y adoptados por el Departamento de Educación de la siguiente manera: NPC 1 Recordar y reproducir NPC Destrezas y conceptos/razonamientos básicos NPC 3 Pensamiento estratégico/razonamiento complejo

9 Pruebas Puertorriqueñas (PPAA): La distribución de ítems entre los primeros tres niveles funge como método de alineación para examinar el equilibrio entre la demanda cognoscitiva de los estándares y la demanda cognoscitiva de la evaluación. Las nuevas PPAA cumplen con los requisitos de la Ley NCLB (No Child Left Behind) del 001. Estas pruebas permitirán entregar a los maestros y administradores valiosa información sobre el desempeño de los estudiantes. En las manos de maestros y planificadores escolares, esta información será una herramienta útil para impulsar a cada estudiante a alcanzar su máximo potencial.

10 Pruebas Puertorriqueñas (PPAA): Las Pruebas Puertorriqueñas se basan en la versión revisada de los estándares y expectativas de aprendizaje. Estos parámetros representan un componente esencial para promover el cambio en nuestro sistema educativo. Además, contribuyen a conectar los cambios curriculares con el desarrollo profesional de los maestros, los métodos de enseñanza y la evaluación del aprendizaje del estudiante.

11 Pruebas Puertorriqueñas (PPAA): Específicamente, estos estándares requieren que los maestros de matemáticas den especial énfasis e importancia a: la solución de problemas la comunicación en la matemática el razonamiento matemático la representación la integración de la matemática con otros contenidos la integración de los temas transversales del currículo (Tomado de los Folletos Informativos del Departamento de Educación)

12 Por todas estas razones es que consideramos importante hacer énfasis en: Las demostraciones Los métodos de demostración El razonamiento matemático La lógica matemática

13 Ejemplo:

14 DEC BAC y BAC DCE DEC DCE Transitividad

15 Ejemplo:

16

17 El error está en la razón del paso 7. Los segmentos mencionados son la hipotenusa, no los catetos de triángulos rectángulos. No hay base para afirmar que todos los catetos de triángulos rectángulos son congruentes. Para corregir el error hay que decir que la suma de dos segmentos iguales ( EC AE ) es igual a la suma de los otros segmentos iguales a ellos ( DE EB ) o que estos dos segmentos son congruentes debido a la propiedad transitiva. DE EC AE EB AE + EC = DE + EB AC = DB

18 Qué es una demostración matemática? La idea de demostración rigurosa ha variado a lo largo del tiempo; depende del contexto y del entorno cultural. En los escritos matemáticos ordinarios (incluso los de hoy en día), sólo se detallan los pasos no puramente mecánicos; aquellos que suponen una idea nueva, una construcción original o la introducción de algún elemento novedoso. Sin embargo, el consenso sobre lo que es o no un paso obvio o trivial, ha ido cambiando a lo largo de la historia. Incluso en los aparentemente sólidos Elementos de Euclides se pueden encontrar construcciones no claramente justificadas con la sola asunción de los 5 Postulados fijados por el autor. Fernando Bombal Gordón, Catedrático Universidad Complutense de Madrid.

19 Qué es una demostración matemática? Todo el mundo sabe qué es una demostración matemática. Una demostración de un teorema matemático es una sucesión de pasos que conducen a la conclusión deseada. Las reglas que dichas sucesiones de pasos deben seguir fueron hechas explícitas cuando fue formalizada la lógica al principio de este siglo, y no han cambiado desde entonces. Estas reglas pueden ser usadas para refutar una pretendida demostración localizando errores lógicos; sin embargo, no pueden ser usadas para encontrar una demostración que no se tenga de una conjetura matemática. Gian Carlo Rota, La fenomenología de la demostración matemática.

20 Métodos de Demostración: 1. Método Directo. Método indirecto 3. Método de contradicción o reducción al absurdo 4. Método del contraejemplo 5. Método de inducción

21 Método Directo Ejemplo: Demostrar que si n es un número par entonces n también es un número par. n es par n = k, k un entero ( ) k 4k n = = ( ) n = k n es par

22 Lo que tenemos aquí es lo que se conoce como una implicación o condicional: Si n es par entonces n es par Si p entonces q Simbólicamente: p q p es llamada la hipótesis q es llamada la tesis o conclusión

23 Método Directo El Método Directo es el mas comúnmente usado. En este método el resultado que se quiere En este método el resultado que se quiere demostrar se deduce directamente mediante razonamiento lógico a partir de las hipótesis o suposiciones y utilizando resultados ya demostrados y/o definiciones dadas.

24 Método Indirecto Ejemplo: Demostrar que si n es un número impar entonces n también es un número impar. Para demostrar que esta afirmación es verdadera podemos argumentar de la siguiente manera: Qué sucedería si n fuera par? Si n es par entonces n debe ser par (debido al resultado ya probado) Por tanto n no puede ser par y en consecuencia n debe ser impar

25 En el Método Indirecto, expuesto en el ejemplo anterior en realidad estamos usando una equivalencia bien conocida en la lógica matemática: p q ~ q ~ p En el ejemplo: p: n es par y q: n es par ~p: n no es par o equivalentemente ~p: n es impar ~q: n no es par o equivalentemente ~q: n es impar ~p es llamada la negación de p y se lee no p

26 Es decir que las siguientes afirmaciones son equivalentes: p q : n es par n es par ~ q ~ p : n es impar n es impar p q ~ q ~ p ~ q ~ p p q es llamada la contrarrecíproca de q p es llamada la recíproca de p q

27 Ejemplo: Usando el método directo también podemos probar la siguiente afirmación: Si n es un número impar entonces n es impar Ejemplo: Usando el método indirecto también podemos probar la siguiente afirmación: Si n es un número par entonces n es par

28 Es decir que hemos probado los siguientes resultados: n es par si y solo si n es par n es impar si y solo si n es impar

29 Método de Contradicción Ejemplo: Demostrar que es un número irracional Un número irracional es un número que no es racional Los números racionales son todos los números que se pueden escribir en la forma : m n, con m y n números enteros

30 Demostración: Supongamos que es un número racional Es decir supongamos que = m n Además, supongamos que esta fracción está en su forma mas simple, es decir que m y n no tienen factores comunes.

31 Elevando al cuadrado tenemos: ( ) m m = = n n = m n m = n m es par m es par m = k Sustituyendo arriba tenemos: ( k ) = n 4k = n k = n n es par n es par

32 Así, hemos obtenido que m y n tienen un factor común. Lo cual es una contradicción con la suposición inicial de que m y n no tienen factores comunes. Se deduce entonces que la suposición inicial es un número racional es falsa. de que Concluimos entonces que no es un número racional. En otras palabras, es un número irracional.

33 El Método de Contradicción consiste entonces en afirmar o suponer lo contrario de lo que se quiere demostrar para tratar de llegar, mediante un razonamiento deductivo, a una contradicción. Alcanzar una contradicción indica que es falsa la premisa o suposición inicial de trabajo y que, por tanto, tiene que ser válida la afirmación o tesis original.

34 Método del Contraejemplo Ejemplo: Demostrar o refutar la siguiente afirmación Si n 1 y n son números naturales entonces n 1 n es un número natural. Esta afirmación es claramente falsa pues si por ejemplo n 1 = 3 y n = 5 entonces n 1 n = 3 5 = que no es un número natural.

35 El Método del Contraejemplo se utiliza para demostrar que una afirmación es falsa. El método consiste en exhibir o demostrar la El método consiste en exhibir o demostrar la existencia de por lo menos un elemento que no cumple determinada propiedad la cual se esta afirmando que es válida

36 Ejemplo: Demostrar o refutar la siguiente afirmación Si r 1 y r son números irracionales entonces el producto r 1 x r también es un número irracional. La afirmación es falsa porque si r1 = y r = entonces por ejemplo ( ) r1 r = = =

37 El Principio de Inducción Matemática Este es un método de demostración debido a Giuseppe Peano ( ). Este método es usado para demostrar teoremas que se cumplen para todos los números naturales.

38 Ejemplo: Suponga que usted necesita calcular la suma de todos los números enteros entre 1 y 100. Cómo podemos hacer esto rápidamente sin tener que sumar los números uno a uno??

39 Cómo demostrar esta fórmula? Volveremos sobre este problema mas tarde

40 EJERCICIOS

41 Ejercicio 1: Demostrar la siguiente afirmación Si n es un número impar entonces n es un número impar

42 Demostración: ENUNCIADO n = k +1 n n n n = ( k + 1) = 4k + 4k 1 = (k + k) + es impar + 1 RAZON n es número impar Elevamos al cuadrado Desarrollo del binomio Factorizamos Definición de número impar

43 Ejercicio : Demostrar la siguiente afirmación Si n es un número par entonces n es un número par

44 Demostración: Para la demostración de este resultado simplemente podemos recordar que p q ~ q ~ p y usamos el ejercicio anterior. p: n es un número impar q: n es un número impar ~p: n es un número par ~q: n es un número par

45 Es decir que usamos el método indirecto: ENUNCIADO Supongamos que n es impar n es impar Esto no puede ser n debe ser un número par RAZON Negación de la tesis o conclusión Por el ejercicio anterior Hipótesis Consecuencia de lo anterior

46 Ejercicio 3: Demostrar que si PR = QS entonces PQ = RS.

47 Demostración: ENUNCIADO PQ + QR = PR QR + RS = QS PR = QS PQ + QR = QR + RS PQ = RS RAZON Adición de segmentos Adición de segmentos Hipótesis Propiedad de sustitución Sustracción

48 Ejercicio 4: Demostrar o refutar la siguiente afirmación r 1 r Si y son números irracionales entonces también 1 es irracional. r r

49 Demostración: Esta afirmación es falsa porque si por ejemplo y r = entonces r 1 = r r 1 = = 1 que no es un número irracional.

50 Proyecto Alianza de Matemáticas y Ciencias del Turabo (AMCT) Gracias por su atención Este Proyecto es sufragado con fondos del Programa Título II-B, No Child Left Behind, Math and Science Partnership del Departamento de Educación.

CIENCIAS FORMALES CIENCIAS FÁCTICAS

CIENCIAS FORMALES CIENCIAS FÁCTICAS UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO

Más detalles

MÉTODOS DE DEMOSTRACIÓN

MÉTODOS DE DEMOSTRACIÓN 2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es

Más detalles

Demostración Contraejemplo. Métodos Indirectos

Demostración Contraejemplo. Métodos Indirectos DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un

Más detalles

Un poco de lógica. Ramón Espinosa. Departamento de Matemáticas, ITAM

Un poco de lógica. Ramón Espinosa. Departamento de Matemáticas, ITAM Un poco de lógica Ramón Espinosa Departamento de Matemáticas, ITAM La lógica, como el whisky, pierde sus efectos benéficos cuando se consume en grandes cantidades. Lord Dunsany Uno de los principales propósitos

Más detalles

2-1 Cómo usar el razonamiento inductivo para hacer conjeturas (págs )

2-1 Cómo usar el razonamiento inductivo para hacer conjeturas (págs ) Vocabulario conclusión.................... 81 conjetura..................... 74 contraejemplo................. 75 contrarrecíproco............... 83 cuadrilátero................... 98 definición.....................

Más detalles

Tema 1: El cuerpo de los números reales

Tema 1: El cuerpo de los números reales Una definición axiomática debe ser: tal que: Tema 1: El cuerpo de los números reales - Ningún axioma se debe deducir o demostrar de otro anterior - Han de ser los mínimos para demostrar una teoría Axiomas

Más detalles

Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación

Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Primer Simposio Latinoamericano para la Integración de la Tecnología en el Aula de Matemáticas y Ciencias Guadalajara, México Jueves,

Más detalles

Capítulo II. Pruebas en Matemáticas

Capítulo II. Pruebas en Matemáticas Capítulo II Pruebas en Matemáticas Ahora nos concentramos en afirmaciones matemáticas y sus pruebas. Se encuentra que tratar de escribir pruebas justificando cada paso se vuelve rápidamente inmanejable,

Más detalles

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. Guía de estudio Métodos de demostración Unidad A: Clase 3 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.. Inferencias y métodos de

Más detalles

Introducción. Ejemplos de expresiones que no son proposiciones

Introducción. Ejemplos de expresiones que no son proposiciones Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática

Más detalles

Ejemplos de expresiones que no son proposiciones. Teorema 1. Existe una innidad de números primos.

Ejemplos de expresiones que no son proposiciones. Teorema 1. Existe una innidad de números primos. Proposición Es una oración o una expresión matemática que arma o niega algo. s de proposiciones verdaderas 5 es un número impar 2 es un número par s de proposiciones falsas 14 es un número impar 2=5 s

Más detalles

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO.

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO. Página 1 de 19 GUÍA N 1 ÁREA: Docente: Matemáticas Geometría MARIA TERESA OSPINO - LAURA PACHECO C EJE TEMÁTICO DESEMPEÑO GRADO: Noveno PERIODO: Primero IH (en horas): 4 NÚMEROS REALES Reconoce y contrasta

Más detalles

Elementos básicos del cálculo proposicional y cuantificacional. Nociones preliminares sobre una teoría deductiva. Métodos de demostración.

Elementos básicos del cálculo proposicional y cuantificacional. Nociones preliminares sobre una teoría deductiva. Métodos de demostración. 1.5 EJERCICIOS PROPUESTOS Temas: Elementos básicos del cálculo proposicional y cuantificacional. Nociones preliminares sobre una teoría deductiva. Métodos de demostración. Sean P, Q, R, S proposiciones.

Más detalles

Geometría como sistema matemático

Geometría como sistema matemático AP Í TULO 13 Geometría como sistema matemático Resumen del contenido Habiendo experimentado todos los conceptos de un curso estándar de geometría, los estudiantes están listos para examinar el marco de

Más detalles

Sin importar el valor de verdad de sus partes constituyentes.

Sin importar el valor de verdad de sus partes constituyentes. Consideremos las siguientes proposiciones. Ejemplo 1 Dos rectas diferentes en un plano son paralelas o se cortan sólo en un punto. Ejemplo 1=0. Ejemplo 3 3x = 5 y y = 1 Ejemplo 4 x no es > 0. Ejemplo 5

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar 1.4 MÉTODOS DE DEMOSTRACIÓN Designamos en esta forma las estrategias o esquemas más generales que identificamos en los procesos deductivos. Estos modelos están fundamentados lógicamente en teoremas o reglas

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 6 Triángulos semejantes. Parte A. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 6 Triángulos semejantes. Parte A. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 6 Triángulos semejantes. Parte A. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros,

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

EXPECTATIVAS A EVALUARSE EN LAS PPAA (2010) BOSQUEJO DE CONTENIDO DEL CURSO: MATEMÁTICA 8

EXPECTATIVAS A EVALUARSE EN LAS PPAA (2010) BOSQUEJO DE CONTENIDO DEL CURSO: MATEMÁTICA 8 EXPECTATIVAS A EVALUARSE EN LAS PPAA (2010) BOSQUEJO DE CONTENIDO DEL CURSO: MATEMÁTICA 8 Unidad I: Sistema de los Números Reales A. Conjunto de los Números Reales a. Desarrollo de los Números Reales i.

Más detalles

Prueba de control Soluciones

Prueba de control Soluciones FACULTAD DE MATEMÁTICAS Lenguaje y método matemáticos 30 de septiembre de 011 Prueba de control Soluciones Nombre: 1 Experimente con casos concretos y proponga respuestas para las siguientes preguntas.

Más detalles

CAPÍTULO I LÓGICA Y GEOMETRÍ A

CAPÍTULO I LÓGICA Y GEOMETRÍ A Introducción CAPÍTULO I LÓGICA Y GEOMETRÍ A La geometría estudia las propiedades de los cuerpos extensos en el espacio, haciendo abstracción de todo lo que no sea extensión. No se ocupa, por lo tanto,

Más detalles

Números irracionales famosos

Números irracionales famosos INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: Conceptual - ejercitación PARA COMPENSAR EL CESE DE ACTIVIDADES DEL

Más detalles

Trigonometría. Resumen del contenido Si dos triángulos son semejantes, entonces sus lados correspondientes tienen la

Trigonometría. Resumen del contenido Si dos triángulos son semejantes, entonces sus lados correspondientes tienen la CAP Í TULO 12 Trigonometría Resumen del contenido Si dos triángulos son semejantes, entonces sus lados correspondientes tienen la a b misma razón de longitudes. Digamos a b. Pero las razones de las longitudes

Más detalles

Departamento de Educación de Puerto Rico

Departamento de Educación de Puerto Rico Departamento de Educación de Puerto Rico NOTIFICACIÓN DE POLÍTICA PÚBLICA El Departamento de Educación no discrimina por razón de raza, color, género, nacimiento, origen nacional, condición social, ideas

Más detalles

Material educativo. Uso no comercial 2.4 EJERCICIOS PROPUESTOS

Material educativo. Uso no comercial 2.4 EJERCICIOS PROPUESTOS 2.4 EJERCICIOS PROPUESTOS Temas: La geometría Euclidiana como una teoría deductiva. Axiomas de Incidencia. Axiomas de Orden. 1. En la geometría Euclidiana como una teoría deductiva, indique para cada uno

Más detalles

7-1 Razón y proporción (págs )

7-1 Razón y proporción (págs ) Vocabulario dibujo a escala.................489 dilatación......................495 escala..........................489 factor de escala.................495 medición indirecta..............488 polígonos

Más detalles

Departamento de Educación de Puerto Rico

Departamento de Educación de Puerto Rico Departamento de Educación de Puerto Rico NOTIFICACIÓN DE POLÍTICA PÚBLICA El Departamento de Educación no discrimina por razón de raza, color, género, nacimiento, origen nacional, condición social, ideas

Más detalles

N.SN.9.1.1: Utiliza las matrices para analizar datos. Reconoce las matrices como sistemas que tienen algunas propiedades de los números reales.

N.SN.9.1.1: Utiliza las matrices para analizar datos. Reconoce las matrices como sistemas que tienen algunas propiedades de los números reales. Correlación de los cursos Álgebra 1, Álgebra 2 y Geometría para la Escuela Secundaria de ALEKS a los Estándares de Contenido y Expectativas de 9no Grado en Puerto Rico ESTÁNDAR 1 : NUMERACIÓN Y OPERACIÓN

Más detalles

Objetivo: Temática: Recomendaciones: BIMESTRAL 2do PERIODO DE GEOMETRÍA GRADO 6

Objetivo: Temática: Recomendaciones: BIMESTRAL 2do PERIODO DE GEOMETRÍA GRADO 6 Objetivo: Identificar por medio de una evaluación escrita el nivel de aprendizaje conceptual alcanzado en los estudiantes en cuanto a las temáticas dadas durante el periodo. Temática: Polígonos. Recomendaciones:

Más detalles

Demostraciones. Demostraciones básicas. José de Jesús Angel Angel

Demostraciones.  Demostraciones básicas. José de Jesús Angel Angel Demostraciones Demostraciones básicas www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2017 Contenido 0.1. Demostraciones..................................... 2 0.1.1. Negación

Más detalles

CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA?

CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA? CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA? Comenzó siendo un conjunto de reglas y conocimientos obtenidos por la experiencia, usados por los constructores y medidores de terrenos. Luego se organiza en forma

Más detalles

CENTROS DE EXCELENCIA EN CIENCIAS Y MATEMÁTICAS

CENTROS DE EXCELENCIA EN CIENCIAS Y MATEMÁTICAS Unidad de Geometría Verano 2013 CLAVE Preprueba CENTRO: FECHA: Posprueba CAPACITADOR: CODIGO: Escoja la mejor contestación. Escoja la mejor contestación. (1 punto cada escoge) 1. Cuál de las siguientes

Más detalles

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas LAS MATEMÁTICAS Y SU LENGUAJE Entender, demostrar y resolver matemáticas El trabajo matemático Utilización de un lenguaje peculiar de significados precisos. Cuidado! A veces similar al cotidiano pero con

Más detalles

Reporte de Actividades 15

Reporte de Actividades 15 Reporte de Actividades 15 Profesores: Arturo Ramírez, Alejandro Díaz. Tutores: Paulina Salcedo, Filomeno Alcántara. 1. Sesión del 8 de junio de 2011. 1.1 Resumen de la clase con Alejandro Díaz Barriga.

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 EL LENGUAJE MATEMÁTICO Actividad 1 Cuando hablamos o escribimos en Matemáticas lo hacemos en nuestra lengua habitual, el español, pero utilizamos frases con palabras que designan objetos y símbolos que

Más detalles

RESPUESTAS REPARTIDO 3 PARA ESCRITO TEORICO Diego Danieli 2IA UTU BUCEO AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA?

RESPUESTAS REPARTIDO 3 PARA ESCRITO TEORICO Diego Danieli 2IA UTU BUCEO AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA? AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA? FUNDAMENTOS 1 Comenzó siendo un conjunto de reglas y conocimientos obtenidos por la experiencia, usados por los constructores y medidores de terrenos.

Más detalles

Nivel I: Pensamiento Memorístico (demuestra conocimiento en forma igual o casi igual a como lo aprendido).

Nivel I: Pensamiento Memorístico (demuestra conocimiento en forma igual o casi igual a como lo aprendido). Niveles de Pensamiento de Norman Webb El Dr. Norman Webb, especialista en el área de evaluación, junto con otros profesionales describió cuatro niveles de profundidad de conocimiento (DOK, por sus siglas

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 4.1.1. El teorema de Thales y consecuencias. 4.1.1. El teorema

Más detalles

PREGUNTAS y RESPUESTAS

PREGUNTAS y RESPUESTAS INTEGRAL MODELO LAPSO 2010-2 754-1/3 Universidad Nacional Abierta GEOMETRIA 754 Vicerrectorado Académico Fecha:12-2-11 Área de Matemática Carreras: 508-126 PREGUNTAS y RESPUESTAS Obj 1 Pta 1 Indique, explicando

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Teorema de Euclides. Clase # 17. Universidad Andrés Bello. Octubre 2014

Teorema de Euclides. Clase # 17. Universidad Andrés Bello. Octubre 2014 PreUnAB Clase # 17 Octubre 2014 Teorema de Pitágoras Teorema general de Pitágoras para el triángulo rectángulo Si ABC es triángulo rectángulo en C, con a y b, catetos, y c hipotenusa, entonces: a 2 + b

Más detalles

CENTROS DE EXCELENCIA EN CIENCIAS Y MATEMÁTICAS (AlACiMa 2 - FASE 4)

CENTROS DE EXCELENCIA EN CIENCIAS Y MATEMÁTICAS (AlACiMa 2 - FASE 4) Unidad de Geometría Verano 2013 Preprueba CENTRO: FECHA: Posprueba CAPACITADOR: CODIGO: Escoja la mejor contestación. 1. Cuál de las siguientes conjeturas es cierta? a. Dado: WX XY ; Conjetura: W, X y

Más detalles

Ilustración N 1 En cada una de las dos figuras siguientes determinar el valor de X, en función de los términos dados:

Ilustración N 1 En cada una de las dos figuras siguientes determinar el valor de X, en función de los términos dados: 6.12 EJERCICIOS RESUELTOS Ilustración N 1 En cada una de las dos figuras siguientes determinar el valor de X, en función de los términos dados: a) Uno de los procedimientos a seguir es: 1. Determinemos

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

ESTALMAT-Andalucía Actividades 16/17

ESTALMAT-Andalucía Actividades 16/17 Segundo Curso. Sesión: 6 Fecha: 1/11/016 Título: Demostraciones. HENRI POINCARÉ (Nancy, Francia, 9 de abril de 1854 París, 17 de julio de 191) QUE ES LA CREACIÓN MATEMÁTICA? (Primera parte de la conferencia

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES LÓGICA DE PROPOSICIONES

LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES LÓGICA DE PROPOSICIONES Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público

Más detalles

La Lógica de los Teoremas

La Lógica de los Teoremas La Lógica de los Teoremas. Las fórmulas que son tautologías Una fórmula lógica de F ( p,..., p k ) de k variables, p,..., pk se dice que es una tautología si es siempre cierta para cualesquiera valores

Más detalles

Como pensar como matemático... o algo así. (Sugerencias para estudiantes de matemáticas) H. Flores

Como pensar como matemático... o algo así. (Sugerencias para estudiantes de matemáticas) H. Flores Facultad de Ciencias Físico-Matemáticas 56 Aniversario 1953 2009 II Congreso de Ciencias Como pensar como matemático... o algo así. (Sugerencias para estudiantes de matemáticas) H. Flores San Nicolás de

Más detalles

Examen A del capítulo

Examen A del capítulo Examen A del capítulo Usar después del capítulo 1. Dibuja la cuarta figura del patrón de abajo. 1... Escribe los tres siguientes números del patrón.,, 8, 16,... Halla un contraejemplo para refutar la conjetura.

Más detalles

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción Matemática Discreta Números, inducción y recursión: principio de inducción Números, inducción y recursión 1. Sistemas numéricos 2. Principio de inducción 3. Definiciones recursivas 4. División entera y

Más detalles

Las ternas pitagóricas, la factorización de números enteros y su relación con el último teorema de Fermat.

Las ternas pitagóricas, la factorización de números enteros y su relación con el último teorema de Fermat. Las ternas pitagóricas, la factorización de números enteros y su relación con el último teorema de Fermat. I) Definiciones Un triángulo rectángulo pitagórico también es una forma de expresar la factorización

Más detalles

ESTALMAT-Andalucía Actividades 14/15

ESTALMAT-Andalucía Actividades 14/15 HENRI POINCARÉ (Nancy, Francia, 9 de abril de 1854 París, 17 de julio de 191) QUE ES LA CREACIÓN MATEMÁTICA? (Primera parte de la conferencia dictada en 1903, en la Sociedad Psicológica de París, y cuyas

Más detalles

CAPÍTULO 1: LÓGICA Y GEOMETRÍA (II)

CAPÍTULO 1: LÓGICA Y GEOMETRÍA (II) CAPÍTULO 1: LÓGICA Y GEOMETRÍA (II) Dante Guerrero-Chanduví Piura, 2015 FACULTAD DE INGENIERÍA Área Departamental de Ingeniería Industrial y de Sistemas CAPÍTULO 1: LÓGICA Y GEOMETRÍA (II) Esta obra está

Más detalles

DESIGUALDADES GEOMETRICAS

DESIGUALDADES GEOMETRICAS Desigualdades geométricas 1 DESIGUALDADES GEOMETRICAS Al hablar de desigualdades de segmentos y ángulos se está hablando de sus medidas. PROPIEDADES DE LAS DESIGUALDADES TRICOTOMIA x, y Re se cumple uno

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

GUIA TEMATICA PRUEBA ESPECÍFICA DE MATEMATICA AGRONOMIA

GUIA TEMATICA PRUEBA ESPECÍFICA DE MATEMATICA AGRONOMIA GUIA TEMATICA PRUEBA ESPECÍFICA DE MATEMATICA AGRONOMIA No. INDICADOR TEMATICO 1 Conjuntos, sistemas numéricos y operaciones CONTENIDOS DECLARATIVOS Conjunto de números Naturales: definición y operaciones,

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

Eje 2. Razonamiento lógico matemático

Eje 2. Razonamiento lógico matemático Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron

Más detalles

Estimados Padres de Familia y Personas Encargadas del Cuidado de los Niños,

Estimados Padres de Familia y Personas Encargadas del Cuidado de los Niños, Estimados Padres de Familia y Personas Encargadas del Cuidado de los Niños, Esta es otra carta sobre las expectativas de los nuevos Estándares Estatales Esenciales Comunes para Matemáticas. Seguimos trabajando

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia

Más detalles

Geometría. Parte I. Geometría intuitiva. Medición en educación básica. Nociones geométricas básicas. Isometrías y construcciones.

Geometría. Parte I. Geometría intuitiva. Medición en educación básica. Nociones geométricas básicas. Isometrías y construcciones. Geometría Parte I Geometría intuitiva 1 Medición en educación básica 2 Nociones geométricas básicas 3 Isometrías y construcciones 4 Área y perímetro 5 Cuerpos geométricos ÍNDICE PARTE I: GEOMETRÍA INTUITIVA

Más detalles

Introducción. Ejemplos de expresiones que no son proposiciones

Introducción. Ejemplos de expresiones que no son proposiciones Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática

Más detalles

TEMA I INTRODUCCIÓN A LA LÓGICA

TEMA I INTRODUCCIÓN A LA LÓGICA TEMA I INTRODUCCIÓN A LA LÓGICA Policarpo Abascal Fuentes TEMA I Introducción a la lógica p. 1/6 TEMA 1 1. INTRODUCCIÓN A LA LÓGICA 1.1 INTRODUCCIÓN 1.2 LÓGICA PROPOSICIONAL 1.2.1 Conexiones lógicas 1.2.2

Más detalles

CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 11 LA DEMOSTRACIÓN

CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 11 LA DEMOSTRACIÓN ALGUNAS REGLAS DE INFERENCIA LÓGICA PERÍODO I FECHA 18 de enero de 2018 NIVEL MEDIA TÉCNICA CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 11 LA DEMOSTRACIÓN Podemos

Más detalles

COLEGIO LAS AMERICAS IED - SEDE PRINCIPAL

COLEGIO LAS AMERICAS IED - SEDE PRINCIPAL COLEGIO LAS AMERICAS IED - SEDE PRINCIPAL 12779 12779 12779 44% 37% 45% El 44% de los estudiantes NO contestó correctamente los ítems correspondientes a la competencia Escritora en la prueba de Lenguaje.

Más detalles

INST EDUC JAVIERA LONDOÑO

INST EDUC JAVIERA LONDOÑO INST EDUC JAVIERA LONDOÑO 1177 1177 1177 27% 43% 45% El 27% de los estudiantes NO contestó correctamente los ítems correspondientes a la competencia Escritora en la prueba de Lenguaje. De los aprendizajes

Más detalles

Notas en lógica básica

Notas en lógica básica Notas basadas en el prontuarios de MATE 3325 Notas escritas por Dr. M Notas en lógica básica En estas notas trabajaremos con lógica básica. Empezamos con argumentos. Todos hemos utilizados argumentos en

Más detalles

PLAN DE UNIDAD 9.2. Materia: Matemática Grado/Curso: Geometría Tema de Unidad: Semejanza y Congruencia Maestro: Estrategia Reformadora:

PLAN DE UNIDAD 9.2. Materia: Matemática Grado/Curso: Geometría Tema de Unidad: Semejanza y Congruencia Maestro: Estrategia Reformadora: Fecha: del de al de de 201. Duración: 5 semanas Materia: Matemática Grado/Curso: Geometría Tema de Unidad: Semejanza y Congruencia Maestro: Estrategia Reformadora: Objetivo general: El estudiante a través

Más detalles

CUADERNILLO DE ÍTEMS ÍTEMS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA

CUADERNILLO DE ÍTEMS ÍTEMS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA CUADERNILLO DE ÍTEMS ÍTEMS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA A continuación, usted encontrará preguntas que se desarrollan en torno a un enunciado, problema o contexto, frente al cual, usted debe

Más detalles

Conceptos fundamentales de Algebra

Conceptos fundamentales de Algebra CAPÍTULO Conceptos fundamentales de Algebra.. Conjuntos. Notaciones Se supone que el lector tiene conocimientos básicos de la Teoría de conjuntos. La notación que se usará será la usual, así, por ejemplo,

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS :GEOMETRIA : 1 CREDITO : 1 AŇO

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS :GEOMETRIA : 1 CREDITO : 1 AŇO CURSO VALOR DURACIÓN MAESTRA ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS :GEOMETRIA : 1 CREDITO : 1 AŇO : Everis Aixa Sanchez Introducción El Programa de Matemáticas del Departamento de Educación

Más detalles

Resumen de aritmética de Peano

Resumen de aritmética de Peano Resumen de aritmética de Peano UDELAR/FING/IMERL 16 de febrero de 2017 1. Fundamentos de la Aritmética de Peano. Axioma 1.1. Existe un conjunto al que denotamos N, un elemento 0 N y una función s : N N

Más detalles

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación.

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación. Estructuras Discretas Teoremas Técnicas de demostración Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 15 Definición: teorema

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temático: Geometría 1. TEOREMA DE EUCLIDES Tal como se hizo con los contenidos vinculados a este tema, se sugiere demostrar en clases este teorema y así evitar que se presente como

Más detalles

03. Introducción a los circuitos lógicos

03. Introducción a los circuitos lógicos 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS

Más detalles

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala. Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Métodos de Demostración Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Métodos de Demostración Matemáticas Discretas - p. 1/13 Introducción En esta sección

Más detalles

Resumen: Geometría Básica

Resumen: Geometría Básica Resumen: Geometría Básica Postulados de Euclides Los postulados se basan en elementos primitivos que en esencia son elementos que no podemos definir, sino que los asumimos de forma intuitiva, en el caso

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Eudoxo, Arquímedes y el límite de una

Eudoxo, Arquímedes y el límite de una Miscelnea Matemtica 35 (2002) 41 48 SMM Eudoxo, Arquímedes y el límite de una sucesión Roberto Torres Hernández Licenciatura en Matemáticas Aplicadas Universidad Autónoma de Querétaro robert@sunserver.uaq.mx

Más detalles

CAPÍTULO 7. DESIGUALDADES EN EL TRIÁNGULO

CAPÍTULO 7. DESIGUALDADES EN EL TRIÁNGULO CAPÍTULO 7 DESIGUALDADES EN EL TRIÁNGULO Introducción Avanzando sobre las propiedades que rodean al triángulo, se han destacado hasta el momento las que se derivan fundamentalmente de la congruencia Ahora

Más detalles

Modulo de aprendizaje de matemática. Semejanza de figuras planas.

Modulo de aprendizaje de matemática. Semejanza de figuras planas. Modulo de aprendizaje de matemática. Semejanza de figuras planas. Concepto de semejanza. EJEMPLO. Dos polígonos convexos son semejantes si tienen la misma forma con diferentes dimensiones. Diremos que

Más detalles

Unidad Trig.4: Identidades Trigonométricas Matemáticas 5 semanas de instrucción

Unidad Trig.4: Identidades Trigonométricas Matemáticas 5 semanas de instrucción Resumen de la Unidad: ETAPA 1 (Resultados esperados) En esta unidad, el estudiante explorará las funciones y comprobará la relación que existe desde un ángulo de un triángulo rectángulo. El estudiante

Más detalles

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c)

Más detalles

Números reales. por. Ramón Espinosa

Números reales. por. Ramón Espinosa Números reales por Ramón Espinosa Existe un conjunto R, cuyos elementos son llamados números reales. Los números reales satisfacen ciertas propiedades algebraicas y de orden que describimos a continuación.

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales 1. Identifica la simbología propia de la geometría y la trigonometría. 2. Identifica las unidades para medir ángulos. 3. Clasifica adecuadamente las identidades

Más detalles

Definición 1.3. La disyunción de dos oraciones p y q es la oración p o q. La

Definición 1.3. La disyunción de dos oraciones p y q es la oración p o q. La Capítulo 1 Lógica 1.1. Oraciones Definición 1.1. Una oración es un enunciado que podemos clasificar como cierta o falsa, pero no de ambas. Toda oración tiene un bien definido valor de veracidad: es cierta

Más detalles

GEOMETRÍA EUCLIDIANA EJERCICIO RESUELTO

GEOMETRÍA EUCLIDIANA EJERCICIO RESUELTO GEOMETRÍA EUCLIDIANA EJERCICIO RESUELTO Sobre los lados iguales AB y AC de un triángulo isósceles ABC se toman longitudes iguales AE = AF. Luego se unen los puntos E y F con el pie H de la altura. Demostrar

Más detalles

INSTITUCIÓN EDUCATIVA DIEGO ECHAVARRIA MISAS

INSTITUCIÓN EDUCATIVA DIEGO ECHAVARRIA MISAS 8217-27180716 8217-27180716 8217-27180716 8217-27180716 8217-27180716 46% 39% 43% El 46% de los estudiantes NO contestó correctamente las preguntas correspondientes a la competencia Escritora en la prueba

Más detalles

Partes del informe. Ejemplo para la lectura del reporte Significado del semáforo. Cómo entender los resultados de los aprendizajes?

Partes del informe. Ejemplo para la lectura del reporte Significado del semáforo. Cómo entender los resultados de los aprendizajes? Colombia . OBJETIVO Este reporte busca visibilizar el estado de las competencias y aprendizajes en matemáticas y lenguaje en su establecimiento educativo de acuerdo con los resultados en las pruebas SABER

Más detalles