1 La Caminata Aleatoria.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 La Caminata Aleatoria."

Transcripción

1 1 La Caminata Aleatoria. La caminata aleatoria es un modelo probabilístico clásico que tiene aplicaciones en biología, nanzas, teoría de colas, control, etc [7]. Suponer que una partícula se mueve a lo largo de la recta real. Si al tiempo n, esta partícula ocupa una posición, digamos n, entonces su posición al tiempo n + 1 es n+1 = n + n ;en dónde n es el n esimo incremento de la caminata, el cuál puede ser negativo, positivo, o incluso cero en general. : Dada una sucesión de variables aleartorias independientes e idénticamente distribuidas (v.a.i.i.d.) ( i ) i1 que toma valores en ( 1; 1), la sucesión 0 = 0; n = n ; n 1 (1) es llamada caminata aleatoria. Se introducen ahora algunas características importantes de las caminatas aleatorias.

2 1. La primera época de ascenso estricto L = inf fk : k > 0; k 1g (2) 2. La primera altura de ascenso estricto ~X = L (3) 3. El máximo total de la caminata aleatoria M = sup k (4) 0k<1 La siguiente gura ilustra las de niciones anteriores. Tanto L como ~X pueden ser variables aleatorias. Así que, si E [] < 0, entonces

3 q = P (L = 1) > 0 (5) El máximo total de la caminata es una característica muy importante y tiene numerosas aplicaciones [16]. Como 0 = 0 tenemos que M 0: Sea T 0 = 0 y se de ne de manera recursiva T n+1 = inf n k : k > Tn ; k > T n o ; n 1 (6) y ~X n = Tn ::: + Tn = Tn Tn 1 ; n 1 (7) La gura siguiente ilustra la primera de estas de niciones:

4 Puede probarse que T n T n 1 ; ~X n ; n 1 son v.a.i.i.d. y además L; ~X d = Tn T n 1 ; ~X n ; n 1 (8) Por tanto la probabilidad condicional de T n+1 = 1 dado que T n < 1 es igual a la probabilidad q de nida en (5). Sea 0 = min fn : T n = 1; n 1g (9) Se sigue de los argumentos anteriores que P 0 = k = q(1 q) k 1 ; k 1 (10)

5 es decir, 0 tiene una distribución geométrica truncada en cero con parámetro q. Además, el máximo total de la caminata aleatoria puede escribirse como (M = 0 para 0 = 1) M = T 0 1 = ~X 1 + ::: + ~X 0 1 (11) Se está ahora en presencia de una di cultad, a saber: la variable aleatoria depende de la sucesión ~X n n1. Ésta aprece de manera común cuando se reduce una suma de variables aleatorias a una suma geométrica, este problema se soluciona al introducir la siguiente distribución condicional: H(x) = P ~X xjl < 1 (12)

6 y la sucesión de v.a.i.i.d. (X n ) n1 que tienen la distribución común H(x) que no depende de 0 : Como consecuencia de la fórmula de probabilidad total se tiene que M = ~X 1 + ::: + ~X 0 1 d = X 1 + ::: + X 0 1 (13) Debido a la Proposición??, = 0 1 tiene una distribución geométrica con parámetro q: Se sigue de (??) que: P (M x) = P X 1 + ::: + X 0 1 x = 1X k=1 q(1 q) k 1 F = q + (1 q) 1X k=1 (k 1) X (x) q(1 q) k 1 F k X (x) = q + (1 q)p (X 1 + ::: + X 0 x) = P (X 1 + ::: + X x) (14).

7 2 El Proceso de Riesgo Suponer que una compañía de seguros con un cierto capital inicial u debe pagar ciertas cantidades aleatorias de dinero a sus asegurados en caso de sufrir algún percance, los cuales ocurren también de manera aleatoria. Así mismo, la compañía recibe el pago de primas por parte de sus clientes a una taza c > 0 por unidad de tie mpo determinísticamente. Suponer además que los montos de reclamaciones (Z i ) i1 ; forman una sucesión de v.a.i.i.d. y que los tiempos en que éstas ocurren (T i ) i1 ; forman un proceso de renovación que es independiente de (Z i ) i1. Por tanto, tenemos que los tiempos de inter-arribo ( i = T i T i 1 ) i1 ; con T 0 = 0; son v.a.i.i.d. Suponer también que las sucesiones (Z i ) i1 y ( i ) i1 son independientes. Se de ne el proceso de riesgo R(t);

8 t 0 de la compañía al tiempo t por: R(t) = u + ct Q(t) X i=1 Z i (15) En dónde Q(t) = max fk : T k t; k 0g es el número de reclamaciones ocurridas en el intervalo [0; t]. Se considerarán sólo sumas de riesgo positivas en el sentido de que P (Z 1 > 0) = 1. Debido al carácter aleatorio de las reclamaciones, existe una probabilidad positiva (u) de que el proceso de riesgo sea negativo eventualmente. La cantidad (u) es llamada probabilidad de ruina y su estimación es una parte importante de los estudios en actuaría. : Notar que, si se inicia con un capital inicial u, la probabilidad de que el proceso de riesgo se encuentre por debajo de este nivel inicial es (0); ya que el proceso de riesgo

9 tiene incrementos estacionarios e independientes. Así, la probabilidad de que el proceso de riesgo se encuentre por debajo de su nivel inicial es la misma para cualquier u, pero se sabe que cuando u = 0; dicha probabilidad es (0): Se reducirá ahora el modelo de Riesgo a una caminata aleatoria para aplicar los resultados de la Sección anterior y así expresar la probabilidad de ruina en términos de la distribución de una suma geométrica. Sea R n el nivel del proceso de riesgo justo después de la n-ésima reclamación, con R 0 = u el capital inicial de la compañía, como se muestra en la siguiente la gura Entonces, la sucesión (R n ) n1 puede expresarse como una caminata aleatoria R n+1 = R n + (c n+1 Z n+1 ) ; n 0 (16)

10 De acuerdo a las suposiciones hechas, la ruina sólo puede alcanzarse en los instantes T n, por tanto, la probabilidad de ruina (u) puede de nirse en términos de la caminata aleatoria (R n ) n1 como sigue: (u) = P min n1 R n < 0jR 0 = u! (17) Se introducen ahora nuevas variables: n = u R n ; n 0 (18) Entonces 0 = 0 y de las ecuaciones (16) y (18) se tiene que n+1 = n + Z n+1 c n+1 ; n 0 (19)

11 La notación n = Z n c n (20) reduce la ecuación (19) que determina la caminata aleatoria asociada con el proceso de riesgo a la forma estándar de la De nición 1. Puede ahora reescribirse la probabilidad de ruina (u) como (u) = P max n1 n > u! (21) Por lo tanto, (u) coincide con la probabilidad de que el máximo total de la caminata aleatoria de nida en (19) excede el nivel u (el capital inicial). Como consecuencia de los resultados de la Sección anterior, es posible representar la probabilidad de ruina en términos de una suma geométrica

12 (u) = P 0 k=1 1 X k > ua (22) en dónde X k son v.a.i.i.d. con la distribución de nida en (12) de la caminata asociada al proceso de riesgo (19). Como consecuencia de la Nota 2, el parámetro de la variable aleatoria geométrica es!! q = P max n 0 n1 = P max n1 R n u = 1 (0) (23) Debido a la igualdad (14), la expresión (22) puede escribirse en la forma: (u) = 1 P 0 k=1 1 X k ua (24)

13 Hemos conseguido; como lo muestra la ecuación (24), expresar la probabilidad de ruina en términos de la distribución de una suma geométrica.

Lección 4.2. Sucesiones Infinitas y Notación de Suma. Prof. José G. Rodríguez Ahumada 1 de 18

Lección 4.2. Sucesiones Infinitas y Notación de Suma. Prof. José G. Rodríguez Ahumada 1 de 18 Lección 4.2 Sucesiones Infinitas y Notación de Suma Prof. José G. Rodríguez Ahumada 1 de 18 Referencia del Texto: Actividades Sección 10.1 Sucesiones infinitas y notación de suma; ejercicios de práctica:

Más detalles

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi U3: Procesos Poisson Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi Analizar el siguiente proceso estocástico: Una fuente radioactiva emite partículas y sea X t : número de partículas

Más detalles

Instituto de Matemática Aplicada del Litoral

Instituto de Matemática Aplicada del Litoral PROBLEMAS DE BARRERA EN PROCESOS ESTOCÁSTICOS Ernesto Mordecki http://www.cmat.edu.uy/ mordecki mordecki@cmat.edu.uy Facultad de Ciencias Montevideo, Uruguay. Instituto de Matemática Aplicada del Litoral

Más detalles

Una invitación al estudio de las cadenas de Markov

Una invitación al estudio de las cadenas de Markov Una invitación al estudio de las cadenas de Markov Víctor RIVERO Centro de Investigación en Matemáticas A. C. Taller de solución de problemas de probabilidad, 21-25 de Enero de 2008. 1/ 1 Potencias de

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

PROCESO DE BERNOULLI Rosario Romera Febrero 2009

PROCESO DE BERNOULLI Rosario Romera Febrero 2009 PROCESO DE BERNOULLI Rosario Romera Febrero 2009 1. Sumas de Variables Aleatorias Independientes De nición Se considera el experimento aleatorio consistente en la repetición de juegos binarios independientes.

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Aplicación de la simulación regenerativa y la técnica bootstrap, para mejorar la calidad del estimador.

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Aplicación de la simulación regenerativa y la técnica bootstrap, para mejorar la calidad del estimador. UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMATICAS E.A.P. DE..INVESTIGACIÓN OPERATIVA Aplicación de la simulación regenerativa y la técnica bootstrap, para mejorar la calidad del

Más detalles

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces Parte III Series Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces a n = a a a : : : a n : : : es una serie. Los números a ;

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson

Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 25 de abril, 2013 Método polar Con este método se generan dos variables normales independientes.

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz.

Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz. 1. Preliminar Cuando se realizan mediciones siempre estamos sujetos a los errores, puesto que ninguna medida es perfecta. Es por ello, que nunca se podrá saber con certeza cual es la medida real de ningún

Más detalles

PROCESOS ESTOCÁSTICOS II Ejercicios - Semestre 2009-I

PROCESOS ESTOCÁSTICOS II Ejercicios - Semestre 2009-I PROCESOS ESTOCÁSTICOS II Ejercicios - Semestre 29-I Proceso de Poisson y Procesos de Renovación 1. Los clientes de una tienda entran al establecimiento de acuerdo a un proceso de Poisson de parámetro λ

Más detalles

Procesos de ramificación y árboles. aleatorios. Juan Carlos Pardo Millán. CIMAT, Guanajuato 1/ 26

Procesos de ramificación y árboles. aleatorios. Juan Carlos Pardo Millán. CIMAT, Guanajuato 1/ 26 Procesos de ramificación y árboles aleatorios. Juan Carlos Pardo Millán CIMAT, Guanajuato 1/ 26 Progama: Preliminares de probabilidad. Cadenas de Markov. Caminatas aleatorias. Procesos de Bienaymé-Galton-Watson.

Más detalles

Procesos de Poisson. 21 de marzo, FaMAF 1 / 25

Procesos de Poisson. 21 de marzo, FaMAF 1 / 25 Procesos de Poisson FaMAF 21 de marzo, 2013 1 / 25 Distribución exponencial Definición Una v.a. X con función de densidad dada por f λ (x) = λ e λx, x > 0, para cierto λ > 0 se dice una v.a. exponencial

Más detalles

Práctico 2 - parte 1

Práctico 2 - parte 1 1. ([2], p.8) Práctico 2 - parte 1 Cadenas de Markov en tiempo discreto: propiedad de Markov, matriz de transición. Fecha de entrega: viernes 2 de septiembre Sea {X n } n 0 una cadena de Markov homogénea

Más detalles

Cuáles son las características aleatorias de la nueva variable?

Cuáles son las características aleatorias de la nueva variable? Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que

Más detalles

La Función de Disponibilidad en Procesos de Renovación y aproximaciones útiles de ella.

La Función de Disponibilidad en Procesos de Renovación y aproximaciones útiles de ella. SEMINARIO INSTITUCIONAL DE ESTADÍSTICA Escuela de Estadística Universidad Nacional de Colombia - Sede Medellín La en Procesos de Renovación y aproximaciones útiles de ella. Álvaro Calvache Archila Universidad

Más detalles

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio y razones de cambio y razones de cambio Tangentes Notas de clase Resumen Cálculo I - A1234 1/5 y razones de cambio y razones de cambio Tangentes Si una curva C tiene la ecuación y = f (x) y quiere hallar

Más detalles

Validación de hipótesis de un proceso de Poisson no homogéneo

Validación de hipótesis de un proceso de Poisson no homogéneo Validación de hipótesis de un proceso de Poisson no homogéneo Georgina Flesia FaMAF 9 de junio, 2011 Proceso de Poisson no homogéneo H 0 ) Las llegadas diarias a un sistema ocurren de acuerdo a un Proceso

Más detalles

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición

Más detalles

Notas sobre el teorema minimax

Notas sobre el teorema minimax Notas sobre el teorema mini Antonio Martinón Abril de 2012 1 Teoremas mini Sean X e Y dos conjuntos no vacíos y consideremos una función Se verifica sup inf efectivamente, dado x X resulta claro que f

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

Ejemplo: Un Sistema de Almacenamiento

Ejemplo: Un Sistema de Almacenamiento Capítulo 4 Ejemplo: Un Sistema de Almacenamiento En este capítulo presentamos un ejemplo de un sistema de almacenamiento para ilustrar la teoría desarrollada. En particular, mostraremos que se satisfacen

Más detalles

PROCESOS DE MARKOV DE TIEMPO CONTINUO

PROCESOS DE MARKOV DE TIEMPO CONTINUO CHAPTER 3 PROCESOS DE MARKOV DE TIEMPO CONTINUO 3.1 Introducción En este capítulo consideramos el análogo en tiempo continuo de las Cadenas de Markov de tiempo discreto. Como en el caso de tiempo discreto,

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Carlos A. Rivera-Morales. Precálculo 2

Carlos A. Rivera-Morales. Precálculo 2 y Carlos A. Rivera-Morales Precálculo 2 Introducción a y Notación d Tabla de Contenido 1 Definición Sumas Parciales Introducción a y Notación d Tabla de Contenido 1 Definición Sumas Parciales 2 Introducción

Más detalles

1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta. 0 en otro caso.

1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta. 0 en otro caso. 18 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta { k (x f XY (x, y) = 2 + y 2 ) 20 x 30, 20 y 30 0 en otro caso. a) Cuál es el valor de

Más detalles

Valoración del riesgo de demanda. Expositor: Ec. Marcelo Pérez

Valoración del riesgo de demanda. Expositor: Ec. Marcelo Pérez Valoración del riesgo de demanda Expositor: Ec. Marcelo Pérez México DF, Abril 2014 CONTENIDO Procesos estocásticos Valoración del riesgo de demanda Análisis de demanda 2 PROCESOS ESTOCÁSTICOS 5 0 Ruido

Más detalles

Distribución Gaussiana o normal

Distribución Gaussiana o normal FLUCTUACIONES ESTADÍSTICAS Los postulados fundamentales de la teoría estadística de errores establecen que, dado un conjunto de medidas, todas efectuadas en idénticas condiciones, suficientemente grande

Más detalles

SESION TASA DE INTERES

SESION TASA DE INTERES SESION 02 1. TASA DE INTERES Desde la perspectiva de un prestatario, el que obtiene un préstamo, la tasa de interés que tiene que pagar se define como: 2. TASA DE RENDIMIENTO Desde la perspectiva de un

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Técnicas de Inferencia Estadística II. Tema 5. Estadísticos de orden

Técnicas de Inferencia Estadística II. Tema 5. Estadísticos de orden Técnicas de Inferencia Estadística II Tema 5. Estadísticos de orden M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 5. Estadísticos de orden Contenidos

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

Números primos y compuestos

Números primos y compuestos Números primos y compuestos Jorge Tipe Villanueva Sabemos que cualquier entero positivo n tiene como divisores a 1 y n. Si asumimos que n > 1 entonces n tendrá al menos dos divisores pues 1 y n son diferentes.

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

TEMA 3: Sucesiones y Series

TEMA 3: Sucesiones y Series TEMA 3: Sucesiones y Series Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 De niciones Sucesión Una sucesión de números reales es una aplicación a : N! R. Si para cada n 2 N, a(n)

Más detalles

Estimación del modelo lineal con dos variables

Estimación del modelo lineal con dos variables Estimación del modelo lineal con dos variables el método de mínimos cuadrados ordinarios (MCO) Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni Estimación del modelo lineal por MCO 1

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL Cálculo Diferencial FUNCIONES DE VARIABLE REAL LOGRO DE LA SESIÓN Al finalizar la sesión de aprendizaje el estudiante conoce, interpreta y aplica la función de una variable real para modelar problemas

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales 1 Parte IV Ecuaciones Diferenciales Esta sección tiene como propósito dar algunos de los conceptos básicos relacionados con las ecuaciones diferenciales e ilustrar su importancia en la resolución de problemas

Más detalles

Índice general. Introducción Cuestionario del módulo cero Soluciones del cuestionario

Índice general. Introducción Cuestionario del módulo cero Soluciones del cuestionario Colección de problemas. Curso cero del grado en matemáticas Castellano. Curso 2017-2018 Índice general Introducción... 3 0.1. Cuestionario del módulo cero... 4 0.2. Soluciones del cuestionario 0... 6

Más detalles

ENRIC RUIZ MORILLAS ESTADÍSTICA APLICADA A EXPERIMENTOS Y MEDICIONES

ENRIC RUIZ MORILLAS ESTADÍSTICA APLICADA A EXPERIMENTOS Y MEDICIONES ENRIC RUIZ MORILLAS ESTADÍSTICA APLICADA A EXPERIMENTOS Y MEDICIONES Índice 1. Experimento y medición...1 2. Frecuencia y probabilidad...3 3. Características teóricas de las variables aleatorias...25 4.

Más detalles

Una ecuación lineal de n-incógnitas es una igualdad de la forma:

Una ecuación lineal de n-incógnitas es una igualdad de la forma: página 1/39 Teoría Tema 6 Ecuación lineal Una ecuación lineal de n-incógnitas es una igualdad de la forma: a 1 x 1 +a 2 x 2 +a 3 x 3 +...+a n x n =c Donde a 1,a 2, a 3,..., a n,c son números reales. En

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

ECUACIÓN GENERAL DE UNA ELIPSE

ECUACIÓN GENERAL DE UNA ELIPSE ECUACIÓN GENERAL DE UNA ELIPSE Hasta aquí hemos presentado las ecuaciones de elipses en la forma que llamamos ordinaria, donde los cuadrados de los binomios se quedan indicados. Esta forma nos fue muy

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Estadística. Soluciones ejercicios: Modelos de probabilidad. Versión 8. Emilio Letón

Estadística. Soluciones ejercicios: Modelos de probabilidad. Versión 8. Emilio Letón Estadística Soluciones ejercicios: Modelos de probabilidad Versión 8 Emilio Letón. Nivel. Durante los nes de semana, un servidor web recibe una media de accesos cada minutos, considerándose estos un proceso

Más detalles

Introducción a los Procesos Estocásticos

Introducción a los Procesos Estocásticos Introducción a los Procesos Estocásticos La teoría de los procesos estocásticos se centra en el estudio y modelización de sistemas que evolucionan a lo largo del tiempo, o del espacio, de acuerdo a unas

Más detalles

Inducción y recursividad

Inducción y recursividad Capítulo Inducción y recursividad.. Proposiciones Definición (Proposición) Una proposición es una colección de símbolos sintácticos a la cual se le puede asignar uno y solo un valor de verdad: verdadero

Más detalles

Procesos de Control Semi-Markovianos con Costos Descontados

Procesos de Control Semi-Markovianos con Costos Descontados Capítulo 1 Procesos de Control Semi-Markovianos con Costos Descontados 1.1. Introducción En este capítulo se introduce el problema de control óptimo semi-markoviano (PCO) con respecto al índice en costo

Más detalles

PROCESOS ESTOCÁSTICOS. Primera Prueba. 1

PROCESOS ESTOCÁSTICOS. Primera Prueba. 1 08513. PROCESOS ESTOCÁSTICOS. Primera Prueba. 1 Problema 1. Sea {Y n } una sucesión de variables aleatorias independientes e idénticamente distribuidas con distribución P {Y n = k} = 1 N + 1 Sea X 1 =

Más detalles

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes. 1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.

Más detalles

Series. Denición y Ejemplos de Series. a n o bien a n

Series. Denición y Ejemplos de Series. a n o bien a n 7. Denición y ejemplos de sucesiones y series convergentes y no convergentes. Series Denición y Ejemplos de Series Denición. Al sumar los términos de una sucesión innita {a n } forma a + a + a + + a n

Más detalles

ESTIMACION INFERENCIA ESTADISTICA

ESTIMACION INFERENCIA ESTADISTICA P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información

Más detalles

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información PRIMER GRADO bloque i Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones

Más detalles

F X > F Y F X < F Y F X 6= F Y

F X > F Y F X < F Y F X 6= F Y Alternativas No paramétricas En el caso de comparación de medias, como se comentó, es fundamental que se cumplan los supuestos de normalidad y varianzas iguales pero, qué hay que hacer si alguno de ellos

Más detalles

Generalmente, el objetivo de cualquier estudio de econometría es la. búsqueda de relaciones matemáticas que permitan explicar el comportamiento

Generalmente, el objetivo de cualquier estudio de econometría es la. búsqueda de relaciones matemáticas que permitan explicar el comportamiento 5. METODOLOGÍA ECONOMÉTRICA. Generalmente, el objetivo de cualquier estudio de econometría es la búsqueda de relaciones matemáticas que permitan explicar el comportamiento de una variable económica a partir

Más detalles

CÁLCULO DIFERENCIAL LISTA DE EJERCICIOS

CÁLCULO DIFERENCIAL LISTA DE EJERCICIOS CÁLCULO DIFERENCIAL LISTA DE EJERCICIOS Estudiante: Grupo: Bloque 1: Precálculo Actividad 1: Números reales 1. Indicar cuál es el conjunto al que pertenece el número. Si pertenece a más de uno, indicar

Más detalles

Estructura Multifractal de Funciones

Estructura Multifractal de Funciones 7 de diciembre de 2011 Contenidos 1 Regularidad Local: Exponente Hölder Puntual 2 3 Exponente Hölder Puntual Definición Sean α 0, f : Dom(f ) R d R una función localmente acotada y x 0 Dom(f ). Decimos

Más detalles

Procesos estocásticos Cadenas de Márkov

Procesos estocásticos Cadenas de Márkov Procesos estocásticos Cadenas de Márkov Curso: Investigación de Operaciones Ing. Javier Villatoro PROCESOS ESTOCASTICOS Procesos estocásticos Es un proceso o sucesión de eventos que se desarrolla en el

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 208 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #7: jueves, 2 de julio de 208. 3 Polinomios y funciones racionales Aplicaciones

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #19: viernes, 24 de junio de 2016. 3 Polinomios y funciones racionales

Más detalles

Distribucion conjunta de variables continuas

Distribucion conjunta de variables continuas Distribucion conjunta de variables continuas Matías Carrasco 22 de mayo de 218 1. Introducción La distribución conjunta de un par de variables aleatorias X e Y es la distribución de probabilidad definida

Más detalles

Departamento de Matemáticas Recomendaciones para prueba extraordinaria 2018

Departamento de Matemáticas Recomendaciones para prueba extraordinaria 2018 MATEMÁTICAS 1º ESO 1ª U.D.- Números naturales Orden de los números naturales. Operaciones básicas con los números naturales. Aplicación a la resolución de problemas. Potencias de exponente natural. - Concepto

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Estadística I Tema 5: Introducción a la inferencia estadística

Estadística I Tema 5: Introducción a la inferencia estadística Estadística I Tema 5: Introducción a la inferencia estadística Tema 5. Introducción a la inferencia estadística Contenidos Objetivos. Estimación puntual. Bondad de ajuste a una distribución. Distribución

Más detalles

Ejercicios del tema 5

Ejercicios del tema 5 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 5 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. Nota: En algunos de los siguientes ejercicios, se pide probar una serie de propiedades

Más detalles

Folleto de Estadísticas. Teoría del 2do Parcial

Folleto de Estadísticas. Teoría del 2do Parcial Folleto de Estadísticas Teoría del 2do Parcial 2012 Variables aleatorias conjuntas continuas: Sean X y Y dos variables aleatorias continuas con ellas se asocia una función denominada función de densidad

Más detalles

Series. 1. Más sobre las series geométricas. Semana 1 - Clase 2 17/09/08 Tema 1: Series

Series. 1. Más sobre las series geométricas. Semana 1 - Clase 2 17/09/08 Tema 1: Series Semana - Clase 2 7/09/08 Tema : Series Series. Más sobre las series geométricas La serie geométrica: a + az + az 2 + az 3 + + az n +, con z < es uno de los pocos ejemplos donde se puede encontrar el término

Más detalles

Cálculo Diferencial: Enero 2016

Cálculo Diferencial: Enero 2016 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos

Más detalles

Tema 4 Probabilidad. Fenómeno aleatorio: es aquel cuyos resultados son impredecibles.

Tema 4 Probabilidad. Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Tema 4 robabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un alumno entre los 30 de

Más detalles

Módulo 1. (Primera Parte) INTRODUCCIÓN AL LENGUAJE LÓGICO- MATEMÁTICO

Módulo 1. (Primera Parte) INTRODUCCIÓN AL LENGUAJE LÓGICO- MATEMÁTICO Módulo 1 (Primera Parte) INTRODUCCIÓN AL LENGUAJE LÓGICO- MATEMÁTICO Qué es un símbolo? El concepto de símbolo (una palabra que deriva del latín simbŏlum) sirve para representar, de alguna manera, una

Más detalles

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles

10.2 Sucesiones aritméticas

10.2 Sucesiones aritméticas f1 0.1 0 f 0.9 0 a n a n a n 10. Sucesiones aritméticas En esta sección y la siguiente consideramos dos tipos especiales de sucesiones: aritméticas y geométricas. El primer tipo se puede definir como sigue.

Más detalles

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

INTRODUCCION A LAS ECUACIONES DIFERENCIALES TEMA N o INTRODUCCION A LAS ECUACIONES DIFERENCIALES De nición. Una ecuación diferencial, es una ecuación que establece una relación de una o más varibales dependientes y sus derivadas con respecto a una

Más detalles

Carlos A. Rivera-Morales. Precálculo 2

Carlos A. Rivera-Morales. Precálculo 2 y Carlos A. Rivera-Morales Precálculo 2 Introducción a y Tabla de Contenido Introducción a y Definición 1: Una sucesión infinita es un listado ilimitado de números, en nuestro caso números reales, considerados

Más detalles

Una ecuación lineal de n-incógnitas es una igualdad de la forma:

Una ecuación lineal de n-incógnitas es una igualdad de la forma: página 1/13 Teoría Tema 6 Ecuación lineal Una ecuación lineal de n-incógnitas es una igualdad de la forma: a 1 x 1 +a 2 x 2 +a 3 x 3 +...+a n x n =c página 2/13 Sistema de ecuaciones lineales Un sistema

Más detalles

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2 CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o

Más detalles

TEMA 5 COMUNICACIONES DIGITALES

TEMA 5 COMUNICACIONES DIGITALES TEMA 5 COMUNICACIONES DIGITALES Espacio de señales Convertir las complicadas relaciones y operaciones entre señales, en sencillas operaciones geométricas. Nos centraremos exclusivamente en el conjunto

Más detalles

Teorema del punto fijo para funciones contractivas

Teorema del punto fijo para funciones contractivas Teorema del punto fijo para funciones contractivas 1. Definición (función contractiva). Sea (X, d) un espacio métrico. Una función f : X X se llama contractiva (función contractante, contracción) si existe

Más detalles

1+x. 1-x. π 1 = 1. 1+x

1+x. 1-x. π 1 = 1. 1+x Matematicas Aplicadas a Teoria de Finanzas I Solucion Examen I. Otoño Prof Gabriel Gomez 1. Este es un mercado a un solo periodo del tipo Arrow-Debrew con un solo activo tal que: 1 1-x t T a. La matriz

Más detalles

Más sobre las series geométricas. 1. Derivación de series geométricas elementales

Más sobre las series geométricas. 1. Derivación de series geométricas elementales Semana - Clase 2 4/0/0 Tema : Series Más sobre las series geométricas Las series infinitas se encuentran entre las más poderosas herramientas que se introducen en un curso de cálculo elemental. Son un

Más detalles

UNIVERSIDAD COOPERATIVA DE COLOMBIA PROGRAMA DE INGENIERIA INDUSTRIAL GUIA DE APRENDIZAJE LA INTEGRAL DEFINIDA Y SUMA DE REIMAN INTRODUCCION

UNIVERSIDAD COOPERATIVA DE COLOMBIA PROGRAMA DE INGENIERIA INDUSTRIAL GUIA DE APRENDIZAJE LA INTEGRAL DEFINIDA Y SUMA DE REIMAN INTRODUCCION UNIVERSIDAD COOPERATIVA DE COLOMBIA PROGRAMA DE INGENIERIA INDUSTRIAL GUIA DE APRENDIZAJE LA INTEGRAL DEFINIDA Y SUMA DE REIMAN INTRODUCCION Desde su origen, la noción de integral ha respondido a la necesidad

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

Medidas y cifras significativas

Medidas y cifras significativas Física Experimental 1 Medidas y cifras significativas 1. Mediciones En lo que sigue se definirán conceptos referentes a la realización y presentación de medidas conforme a los estándares internacionales

Más detalles

Sistemas de comunicación

Sistemas de comunicación Sistemas de comunicación Práctico Repaso de procesos estocásticos Cada ejercicio comienza con un símbolo el cuál indica su dificultad de acuerdo a la siguiente escala: básica, media, avanzada, y difícil.

Más detalles

Cursos de Nivelación

Cursos de Nivelación Cursos de Nivelación Subsecretaría de Acceso a la Educación Superior 2017 Tema 1: Resolución de problemas estructurados DESARROLLO DEL CURSO MODALIDAD: CARGA HORARIA: PRESENCIAL 55 HORAS 2 Tema 1: Resolución

Más detalles

Ministerio de Educación Nacional Subdirección de Referentes y Evaluación de la Calidad Educativa Supérate con el Saber Reporte primera eliminatoria

Ministerio de Educación Nacional Subdirección de Referentes y Evaluación de la Calidad Educativa Supérate con el Saber Reporte primera eliminatoria Libertad y Ord en Ministerio de Educación Nacional Subdirección de Referentes y Evaluación de la Calidad Educativa Supérate con el Saber Reporte primera eliminatoria REPORTE DE RESULTADOS PRUEBAS SUPÉRATE

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Hoja 4 Variables aleatorias multidimensionales

Hoja 4 Variables aleatorias multidimensionales Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )

Más detalles