Introducción a los Procesos Estocásticos
|
|
|
- Alicia Cárdenas Crespo
- hace 9 años
- Vistas:
Transcripción
1 Introducción a los Procesos Estocásticos La teoría de los procesos estocásticos se centra en el estudio y modelización de sistemas que evolucionan a lo largo del tiempo, o del espacio, de acuerdo a unas leyes no determinísticas, esto es, de carácter aleatorio. La forma habitual de describir la evolución del sistema es mediante sucesiones o colecciones de variables aleatorias. De esta manera, se puede estudiar cómo evoluciona una v.a. a lo largo del tiempo. Por ejemplo, el número de personas que espera ante una ventanilla de un banco en un instante t de tiempo; el precio de las acciones de una empresa a lo largo de un año; el número de parados en el sector de Hostelería a lo largo de un año. Laprimeraideabásicaesidentificar un proceso estocástico con una sucesión de v.a. {X n,n N} donde el subíndice indica el instante de tiempo (o espacio) correspondiente. Esta idea inicial se puede generalizar fácilmente, permitiendo que los instantes de tiempo en los que se definen las v.a. sean continuos. Así, se podrá hablar de una colección o familia de v.a. {X t,t R}, que da una idea más exacta de lo que es un proceso estocástico. Se tenía que una v.a. X(s) es una función que va desde un espacio muestral S ala recta real, de manera que a cada punto s S del espacio muestral se le puede asociar un número de la recta real. De este modo, la probabilidad de cada suceso de S se puede trasladar a la probabilidad de que un valor de X (v.a.) caiga en un cierto intervalo o conjunto de números reales. Si a todo esto se le añade una dimensión temporal, se obtiene un proceso estocástico. La definición formal es la siguiente:
2 Definición (Proceso Estocástico) Dado el espacio de probabilidad (Ω,a,P) de modo que para todo t T R fijo X t :(Ω,a,P) (R, B) w X t (w) R esto es, X t es una variable aleatoria y w Ω fijo, X (w) es una función del tiempo. Ejemplos: X t : número de personas que esperan un autobús en un instante t donde t [9, 0] X t : precio de una acción de una empresa en un día t del mes (t =, 2,...,30). X t : número de parados en el mes t (t =, 2,...,2). Para que un proceso estocástico esté completamente definido hay que determinar completamente las v.a., esdecir,determinareidentificar la distribución de probabilidad asociada a cada una de ellas y, es más, la distribución conjunta de todas ellas. Definición Al conjunto T R de subíndices se le denomina conjunto paramétrico ypuedeser continuo o numerable. De este modo aparece una primera clasificación en procesos estocásticos de parámetro continuo o de parámetro discreto. Definición Se denomina conjunto de estados E, al conjunto de los posibles valores que pueden tomar las v.a. {X t } t R Nota: En general, se piensa en el subíndice t como el indicativo del tiempo y en X t como el estado o posición del proceso estocástico en el instante t. Ejemplo: Se lanza una moneda varias veces. Supóngase que cada vez que sale cara, un jugador gana unidad y si sale cruz pierde unidad. Se puede definir un proceso 2
3 estocástico que modeliza la evolución del juego. Así, si se denomina X n al número de unidades monetarias que quedan después de n lanzamientos, el espacio muestral de X n es Ω = {n-uplas de c y +} de modo que el cardinal (el número de elementos) del conjunto es #Ω =2 n yelálgebraquesedefine es a = P(Ω), esto es, las partes de Ω (todos los posibles subconjuntosquesepuedenformarenω). Consideramos a todas las posibles n-uplas equiprobables: P (w) =/2 n. Es un proceso discreto, porque el conjunto paramétrico es T = {, 2, 3,...} yelposible conjunto de estados es E = {..., 3, 2,, 0,, 2, 3...} Podemos estudiar la trayectoria de X(w): Sea n =6y fijo, por ejemplo, w =(c, c, +, +, +, +), esto es, X (w) = X 2 (w) = 2 X 3 (w) = X 4 (w) = 0 X 5 (w) = X 6 (w) = 2 3
4 Ahora, si fijamos t, por ejemplo en t =3, se puede calcular la distribución de X 3. El conjunto de posibles estados de X 3 es:
5 de modo que E = { 3,,, 3} y P {X 3 = 3} = 2 3 = 8 P {X 3 = } = = 3 8 P {X 3 =} = = 3 8 P {X 3 =3} = 2 3 = 8 Se puede definir una nueva variable aleatoria: Y número de caras obtenidas (éxitos). Se observa, entonces, que µ Y Bin 3,p= 2 yasí P {Y =0} = P {X 3 = 3} = 2 3 = 8 P {Y =} = P {X 3 = } =3 2 3 = 3 8 P {Y =2} = P {X 3 =} =3 2 3 = 3 8 P {Y =3} = P {X 3 =3} = 2 3 = 8 luego X 3 se distribuye como una Bin 3,p= 2 aunque tomando otros valores que los estrictamente igual a 0,, 2, 3. Se identifica así el proceso estocástico, y se puede preguntar uno cuál es la probabilidad de que a las 0 tiradas se tengan unidades monetarias negativas, esto es, se arruine el jugador. 5
6 Clasificación de Procesos Estocásticos Se pueden clasificar según La estructura del conjunto paramétrico T y del conjunto de estados E. Las características probabilísticas de las v.a. Clasificación según la estructura de T y E. Losprocesosestocásticossepuedenclasificar en cuatro tipos, dependiendo de si T es un conjunto numerable o continuo, y de si E es otro conjunto numerable o continuo. Así: E \ T Discreto Continuo Discreto Cadena Proc. Puntual Continuo Suc. de v.a. Proc. Continuo Ejemplos: (i) Cadena. Supongamos un sistema hidraúlico con una válvula de seguridad que se revisa diariamente. Esta válvula presenta tres posibles estados: correcto, incorrecto y deteriorado. De este modo se puede definir el proceso como X n Estado en el que se encuentra la válvula en el día n. (ii) Proceso Puntual. Un autobús escolar tiene capacidad para k personas. Sienuna parada hay k o menos personas esperando, entonces todas subirán al autobús. Si no es así, subirán las k primeras quedando el resto de personas en espera. Se define, entonces, X t número de personas esperando en la parada en un instante de tiempo t. Se pueden plantear asuntos como minimizar el tiempo medio de espera, o reducir el número de personas esperando. (iii) Sucesión de v.a. Una empresa petrolífera debe decidir cuánto petróleo extrae al mes para maximizar los beneficios. Se define, entonces, X n Cantidad de petróleo a extraer en el mes n. 6
7 Esto es un ejemplo particular de la llamada Teoría de Inventarios, donde se estudia la distribución de la demanda, por ejemplo. (iv) Proceso Continuo. En la ventanilla de un banco se contabiliza el tiempo de espera de un cliente que llega en un instante t. Se puede definir X t Tiempo de espera de un cliente que llega en el instante t. Esto está relacionado con la Teoría de Colas. Interesa, por ejemplo, minimizar el tiempo de espera o estudiar la distribución de X t. Clasificación según las características probabilísticas de las v.a. En la vida real se producen distintas relaciones entre las variables aleatorias que constituyen un proceso estocástico. Por ejemplo, la ganancia monetaria obtenida en la tirada n-ésimadependeráobviamentedelagananciaobtenidaenlatirada(n )-ésima. Las propiedades probabilísticas las v.a. sonimportantesalahoradeidentificar y clasificar un proceso estocástico. Se pueden clasificar los procesos en Procesos estacionarios. Procesos Markovianos. Procesos de incrementos independientes.. Procesos Estacionarios. Primero es necesario establecer una definición: Definición. (Función de autocovarianzas de un proceso estocástico) Dado {X t tal que t T } se llama función de autocovarianzas a la función γ(r, s) =Cov (X r,x s )=E [(X r E (X r )) (X s E (X s ))] donde r, s T. Existen dos clases de procesos estacionarios: estacionario débil y estacionario estricto. 7
8 Definición. (Proceso estacionario débil). Un proceso {X t tal que t T }, tal que E (X 2 t ) < t T, es un proceso estacionario débil si. E (X t )=m, para todo t T. 2. γ(r, s) =γ(r + t, s + t), para todo r, s, t T. Esto implica, también, que Var(X t ) es constante para todo t T. Observaciones: Debeexistirelmomentodeordendosdelasv.a. Seobservaque todaslasv.a. tienen la misma media. El hecho de que γ(r, s) =Cov (X r,x s )=Cov (X r+t,x s+t ) significa que la función de autocovarianzas toma el mismo valor para dos v.a. que estén separadas por un retardo t en el proceso, independientemente de dónde se encuentren situadas estas v.a. en el tiempo. Siseconsiderat = s, entonces γ(r, s) =γ(r s, 0), es decir, es una función de (r s). Esta cantidad es la distancia de separación entre las dos variables X r y X s. Así, la función de autocovarianzas de un proceso estacionario débil sólo es función de una variable que es la separación (r s) entre las variables en consideración. Sisetomar = s, entonces γ(r, r) =Cov (X r,x r )=Var(X r ) ( ) = Var(X r+h ), r, h T (*) ya que γ(r + h, r + h) =Cov (X r+h,x r+h )=γ(r, r) por (2). 8
9 Definición (Proceso estacionario estricto). Un proceso {X t tal que t T }, tal que E (Xt 2 ) < t T, es un proceso estacionario estricto si n N, h T yparatodo{t,t 2,...,t n } T las v.a (X t,x t2,...x tn ) tienen la misma distribución conjunta que (X t +h,x t2 +h,...x tn+h). P. E. estricto P. E. débil, pero no al contrario, en general: P. E. débil ; P. E. estricto. Observación: Si{X t tal que t T } es un proceso estacionario estricto, tomando n =, se obtiene que todas las v.a. tienen la misma distribución y, si se supone la existencia de momentos de orden dos, tienen la misma media, con lo que se cumple la condición (). Por otro lado, tomando n =2, entonces (X r,x s ) se distribuye igual que (X r+h,x s+h ), h T. De este modo, γ(r, s) =γ (X r+h,x s+h ) ysólodependedecuálsealadiferencia(r s), quedando, así, demostrado (2). Observación: En el caso de la distribución normal, la estacionaridad débil implica estacionaridad estricta dado que, en este caso, la distribución conjunta n-dimensional queda determinada por las marginales y condicionadas. Se define un proceso gaussiano como aquel que cumple la propiedad de que t,...t n T la distribución de (X t,x t2,...x tn ) es normal n-dimensional. 2. Procesos markovianos. La característica principal de los procesos estocásticos markovianos es que la distribución de X n+ sólo depende de la distribución de X n y no de las anteriores (X n,x n 2,...). Se puede resumir diciendo que el estado futuro del proceso, sólo depende del estado presente, y no del resto de estados pasados. Formalmenteseexpresacomo: 9
10 n N y t <...<t n P X tn x n X t x,...,x tn x n = P Xtn x n X tn x n. Cuando el espacio de estados E es discreto, entonces se puede escribir P X tn = x n X t = x,...,x tn = x n = P Xtn = x n X tn = x n. 3. Procesos de incrementos independientes (ortogonales). Se dice que un proceso {X t tal que t T } es de incrementos independientes si n N, t,...t n T, con t <...<t n las v.a. y = X t2 X t y = X t3 X t2 son independientes. y = X tn X tn Proposición Todo proceso de incrementos ortogonales es un proceso markoviano Justificación. Suponemos un proceso {X,X 2,X 3 } y hay que demostrar que para ver que es markoviano. P (X 3 = x 3 X 2 = x 2,X = x )=P (X 3 = x 3 X 2 = x 2 ). Así (dado que se conocen X 2 = x 2 y X = x ) P (X 3 = x 3 X 2 = x 2,X = x )= = P (X 3 X 2 = x 3 x 2 X 2 = x 2,X 2 X = x 2 x ) ( ) = = P (X 3 X 2 = x 3 x 2 X 2 = x 2 )=P (X 3 = x 3 X 2 = x 2 ). (*) por hipótesis, los incrementos son independientes. Quedando así probado. 0
CONFERENCIA TEMA: CADENAS DE MARKOV
Prof.: MSc. Julio Rito Vargas Avilés CONFERENCIA TEMA: CADENAS DE MARKOV Agenda: Proceso estocástico Concepto de Cadena de Markov Clasificación de estados de una CM y ejemplos Distribución estacionaria
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
Tema 2: Modelos probabilísticos de series
Tema 2: Modelos probabilísticos de Tema 2: Modelos probabilísticos de 1 2 3 4 5 6 Definición Un proceso estocástico con conjunto de índices T es una colección de variables aleatorias {X t } t T sobre (Ω,
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD
CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
PROCESOS ALEATORIOS. Capítulo AXIOMAS DE PROBABILIDAD
Capítulo 2 PROCESOS ALEATORIOS Los procesos aleatorios son importantes porque en casi todos los aspectos de la vida se presentan este tipo de situaciones en donde el comportamiento de un fenómeno o evento
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio
ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza
Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2
Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2 2015 Contenido Procesos estacionarios y débilmente estacionarios Algunos procesos estocásticos útiles: Procesos puramente aleatorios (ruido
Procesos estocásticos. Definición
Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero
Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
2 CADENAS DE MARKOV HOMOGÉNEAS DE PARÁMETRO DISCRETO
2 CADENAS DE MARKOV HOMOGÉNEAS DE PARÁMETRO DISCRETO Cadenas de Markov 10 En la primera parte del capítulo se estudian las probabilidades condicionales de transición -definidas en (l5) y (16) - e incondicionales
PROCESO DE BERNOULLI Rosario Romera Febrero 2009
PROCESO DE BERNOULLI Rosario Romera Febrero 2009 1. Sumas de Variables Aleatorias Independientes De nición Se considera el experimento aleatorio consistente en la repetición de juegos binarios independientes.
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST. Tema
4.1. Definición de variable aleatoria. Clasificación.
Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos
PROCESOS ESTOCÁSTICOS
Capítulo 10 Cadenas de Markov PROCESOS ESTOCÁSTICOS Una sucesión de observaciones X 1,X 2,... se denomina proceso estocástico Si los valores de estas observaciones no se pueden predecir exactamente Pero
TEMA 1 VARIABLES ALEATORIAS MULTIDIMENSIONALES
TEMA 1 VARIABLES ALEATORIAS MULTIDIMENSIONALES Recordemos que el concepto de variable aleatoria surge de la necesidad de transformar el espacio muestral asociado a un experimento aleatorio en un espacio
U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD
PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
Muestreo de variables aleatorias
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como
Tema 5. Variables Aleatorias
Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Estadística Descriptiva y Probabilidad FORMULARIO
Estadística Descriptiva y Probabilidad FORMULARIO Departament d Estadística i Investigació Operativa Universitat de València Angel Corberán Francisco Montes 2 3 Capítulo 1 Estadística Descriptiva 1.1.
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo
Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. Cadenas
Apuntes de Probabilidad
Apuntes de Probabilidad Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si una moneda cae al suelo, no es posible conocer
Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:
Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es una variable aleatoria.
Tema 6: Introducción a la inferencia estadística
Tema 6: Introducción a la inferencia estadística Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 6: Introducción a la inferencia estadística
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Tema 4. Axiomática del Cálculo de Probabilidades
Tema 4. Axiomática del Cálculo de Probabilidades [email protected] Curso 2007/2008 Espacio muestral finito equiprobable El espacio muestral contiene un número finito de sucesos elementales todos ellos con
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES
Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión
Tratamiento de Señales Laboratorio 1 (2h) Cadenas de Markov
Tratamiento de Señales Laboratorio 1 (2h) Cadenas de Markov Curso 2011/2012 Materiales: (a) Ordenadores equipados con Matlab Objetivos: (a) Estudiar las cadenas de Markov como una familia de secuencias
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 10 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización En estadística existen dos métodos para la
Maestría en Bioinformática Probabilidad y Estadística: Clase 4
Maestría en Bioinformática Probabilidad y Estadística: Clase 4 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Procesos aleatorios
TEMA 6: CÁLCULO DE PROBABILIDADES. 6.1 Concepto de suceso aleatorio. Terminología y definiciones.
I.E.S. Salvador Serrano Dto. de Matemáticas (Daniel García) 2º CCSS 202 / TEMA : CÁLCULO DE PROBABILIDADES.. Concepto de suceso aleatorio. Terminología y definiciones. La probabilidad se centra en los
Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones
Cadenas de Markov Tiempo Discreto Modelado y Análisis de Redes de Telecomunicaciones Motivación Ejemplo 1 Sea un enrutador al que arriban paquetes de otros (varios) routers Cuando más de un paquete llega
Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada.
5. PROBABILIDAD Objetivo Aprender el concepto de la probabilidad y las reglas básicas de probabilidades para sucesos. Entender la probabilidad condicionada. Bibliografia recomendada Peña y Romo (1997),
Probabilidad 2º curso de Bachillerato Ciencias Sociales
PROBABILIDAD Índice: 1. Experimentos aleatorios. Espacio muestral----------------------------------------------------- 2 2. Suceso aleatorio ------------------------------------------------------------------------------------
Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:
Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Variables aleatorias Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es
Tema 3. Probabilidad y variables aleatorias
1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad
Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.
Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos
Funciones generadoras de probabilidad
Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados
Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}
1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,
Distribución conjunta de variables aleatorias
Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:
ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9
Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
Cálculo de probabilidad. Tema 1: Combinatoria y probabilidad
Cálculo de probabilidad Tema 1: Combinatoria y probabilidad Guión Guión 1.1. Análisis combinatorio Regla de multiplicación Este es el método de conteo más sencillo que existe. Supongamos que realizamos
DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0
1. DERIVACIÓN COMPLEJA Límites Sea f definida en todos los puntos z de algún entorno z 0 f(z) ω 0 es decir, el punto ω f(z) puede quedar próximo a ω 0 si elegimos z suficientemente próximo a z 0, pero
La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas.
La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas. Dado un experimento y cualquier evento A: La expresion
VARIABLES ALEATORIAS
VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento
1.1. Distribución exponencial. Definición y propiedades
CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
Objetivo del Cálculo de Probabilidades:
Objetivo del Cálculo de Probabilidades: Establecer y desarrollar modelos matemáticos adaptados al estudio de situaciones que presentan cierto grado de incertidumbre Definición de Estadística (Barnett,
Variables aleatorias discretas
Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,
Tema 6. Variables Aleatorias Discretas
Presentación y Objetivos. Tema 6. Variables Aleatorias Discretas En esta unidad se presentan algunos ejemplos estándar de variables aleatorias discretas relacionadas de diversas formas dependiendo de su
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira
METODOS ESTADÍSTICOS
METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.
Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona
Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Redes de Petri Estocásticas
Redes de Petri Estocásticas Carlos Aguirre Universidad Autonoma de Madrid, Dpto Ingenieria Informatica Redes Estocásticas Definición: Una red de Petri Estocástica es una red de Petri con transiciones con
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Modelo discreto Binomial.
Modelo discreto Binomial. Uniperíodo (con derecho a eercer en un sólo paso Consideremos una Call europea (con opción a eercer finalizado el período C, con strike K, se tienen dos posibles estados a tiempo
Distribución Binomial
Profesor Alberto Alvaradejo Ojeda 1 de octubre de 15 1. Distribución Binomial La distribución binomial es unas de las distribuciones de probabilidad discreta más importantes. Recordemos que en una distribución
Metodología de Simulación por Computadora
SIMULACIÓN Metodología de Simulación por Computadora Clasificación del sistema 1. Sistemas de eventos discretos. Los estados del sistema cambian sólo en ciertos puntos del tiempo. Por ejemplo, si se observa
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017
TEMA 1.- PROBABILIDAD.-CURSO 2016/2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:
1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
Material introductorio
Material introductorio Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Vanessa Gómez Verdejo Índice general. Variables aleatorias unidimensionales..................................
Algunosprocesosestocásticos destacables
Algunosprocesosestocásticos destacables En este tema se van a considerar tres tipos destacables de procesos:. Procesos de Bernoulli 2. Camino aleatorio 3. Proceso de Poisson Los procesos de Bernoulli y
Introducción. 1. Algebra de sucesos. PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Primeras deniciones. M. Iniesta Universidad de Murcia
PROBABILIDAD Tema 2.1: Fundamentos de Probabilidad Introducción Jacob Berooulli (1654-1705), Abraham de Moivre (1667-1754), el reverendo Thomas Bayes (1702-1761) y Joseph Lagrange (1736-1813) desarrollaron
Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos
Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.
PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos
PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque
SEÑALES ALEATORIAS Y RUIDO. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.
SEÑALES ALEATORIAS Y RUIDO. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. PROBABILIDAD. 1 2. VARIABLES ALEATORIAS.
Esperanza condicionada Apuntes de clase Probabilidad II (grupos 31 y 40) Curso
Esperanza condicionada Apuntes de clase Probabilidad II (grupos 31 y 40) Curso 2010-11 Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad y esperanza condicionada: recordatorio
CONTRASTE DE HIPÓTESIS TEMA 4.1 CONTRASTES BILATERALES
CONTRASTE DE HIPÓTESIS TEMA 4.1 CONTRASTES BILATERALES INTRODUCCIÓN Un fabricante de pilas afirma que la duración media de sus pilas, funcionando ininterrumpidamente, es de 53 horas como mínimo y su desviación
1. Muestreo e Inferencia Estadística
Tema 6: Introducción a la Inferencia Estadística Objetivos Introducir los conceptos elementales en esta parte de la asignatura. Tratar con muestras aleatorias y su distribución muestral en ejemplos de
CADENAS DE MARKOV. Una sucesión de observaciones X1, X2, Se denomina proceso estocástico
PROCESOS ESTOCÁSTICOS CADENAS DE MARKOV Una sucesión de observaciones X1, X2, Se denomina proceso estocástico Si los valores de estas observaciones no se pueden predecir exactamente Pero se pueden especificar
