CINEMÁTICA DE LA PARTÍCULA



Documentos relacionados
1. En un gráfico velocidad / tiempo, la pendiente y el área entre la recta y el eje horizontal nos permiten conocer, respectivamente,

M. A. S. Y MOV. ONDULATORIO FCA 04 ANDALUCÍA

ELEMENTOS DEL MOVIMIENTO.

MOVIMIENTO PARABÓLICO = =

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

Tema 8 : La descripción de los movimientos: Cinemática 1

SISTEMA DE PARTÍCULAS

ELEMENTOS DEL MOVIMIENTO

MOVIMIENTO UNIFORMEMENTE ACELERADO

Ejercicios de Cinemática

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO

TEMA 4: El movimiento circular uniforme

Un automóvil recorre 300 m en 20 segundos, sometido a una aceleración constante de 0,8 m.s -

ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACION DE ACELERACIÓN CONSTANTE

Movimiento Ondulatorio Ejercicios resueltos

9 Uno de los métodos para saber a qué distancia. 10 La distancia media entre la Tierra y la Luna es. 11 La Luna se puede considerar una esfera

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

Descripción del movimiento

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

1. Movimiento. Solucionario. BLOQUE I. Las fuerzas y los movimientos. Preparación de la unidad (pág. 11) Actividades (pág. 12) Actividades (pág.

Nombre y apellidos. Centro. Ciudad

TEMA 2: El movimiento. Tema 2: El movimiento 1

Física 2º Bto. - Bruño

TRABAJO Y ENERGÍA. Cuestiones. Trabajo y potencia.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

Cantidad de movimiento Angular:

MECÁNICA. Movimiento en una dimensión Movimiento en dos y tres dimensiones

COLEGIO LA PROVIDENCIA

TEST. Cinemática Una partícula tiene un M.C.U. Cuál sería la posible gráfica θ en función del tiempo?

FÍSICA 2 - MECÁNICA Y ONDAS 1ª EVALUACIÓN - 9 de Diciembre de 2006

FUERZAS DE ROZAMIENTO (deslizamiento) FUERZA DE ROZAMIENTO CINÉTICA

Capítulo 11. Suma de momentos angulares Valores propios Funciones propias Ejemplo. Momento angular total de un átomo hidrogenoide

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO MATUTINO PROF. FÍS. CARLOS FLORES ARVIZO

Figure 0-1 Con el plano es horizontal, y si la fricción es despreciable, el carrito viaja con velocidad constante

TIRO OBLICUO Advertencia.

3. TRABAJO Y ENERGÍA E IMPULSO Y CANTIDAD DE MOVIMIENTO PARA LA PARTÍCULA

EJERCICIOS DE REFUERZO DE FÍSICA DE 1º BACHILLERATO VECTORES Y CINEMÁTICA

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 2. OSCILACIONES Y ONDAS

CURSO CERO DE FÍSICA DINÁMICA

ACELERACIÓN DE LA GRAVEDAD (g)

FR = N. FUERZAS DE ROZAMIENTO (deslizamiento) F roz

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

En un ciclo completo el cuerpo se mueve de x=a a x= A y regresa en x= A El movimiento armónico simple esta caracterizado por: PERIODO (T): es el

OPCION A OPCION B CURSO

Guía de Ejercicios Resueltos Física General Hidrodinámica

Fotografía 1. Fotografía 2

CANTIDAD DE MOVIMIENTO LINEAL

REGULACIÓN AUTOMATICA (8)

1. Cómo sabemos que un cuerpo se está moviendo?

UNA FUERZA es un empujón o jalón que actúa sobre un objeto.es una cantidad vectorial que tiene magnitud y dirección.

MÓDULO DE FÍSICA. 5. En el fenómeno de la refracción, en ambos medios, la onda mantiene constante su

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

Energía mecánica.conservación de la energía.

27.21 El deuterón (el núcleo de un isótopo de hidrógeno) tiene una masa de kg y una carga de C. Un deuterón recorre una

DINÁMICA FCA 04 ANDALUCÍA

3 Aplicaciones de primer orden

Problemas Primera Sesión

Física 2º Bto. - Bruño

Cinemática de la Partícula

Rios Esparza Gabriel Armando

MRUV MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales

Soluciones del examen departamental de Física I. Tipo A

TRABAJO Y ENERGÍA. Ejercicios de la unidad 15

MECÁNICA DE FLUIDOS HIDROESTÁTICA

Avisos para el cálculo y la selección del amortiguador apropiado

1. arranque de motores de inducción Métodos: b) Arranque estrella-delta (tensión reducida)

PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida

Programa. Intensivo. Pregunta PSU Tip

Cinemática en 2D: Movimiento Circular.

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

[ ] [] s [ ] Velocidad media. v m. m m. 2 s. Cinemática ΔX = X2 X1

F TS. m x. m x 81 = T 2. = 3,413x10 8 m = km

Energía mecánica.conservación de la energía.

Física y Química 4º ESO. Cinemática 18/10/11. Tipo A Tipo B Tipo C Tipo D

Guía de Movimiento Circular Uniforme (M.C.U) b) Tiempo aproximado que emplea uno de los cuerpos en realizar una vuelta completa (periodo).

Procesamiento Digital de Señales Octubre 2012

Derivación de las ecuaciones de acoplo de modos en guíaondas dieléctricas mediante teoría perturbativa.

IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti OPCIÓN A

PROBLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

Instituto Maria Auxiliadora - Bernal. 4 to.. Año Secundaria Física. Movimiento Rectilíneo Uniforme ( MRU )

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

ACTIVIDADES COMPLEMENTARIAS

Informe de laboratorio Determinación del valor de la aceleración de la gravedad g a través del método del plano inclinado

1.- Qué valor ha de tener el parámetro m para que el vector A=3i+mj forme un ángulo de 60 con el eje OX? existe más de un valor?

FUERZAS DE ROZAMIENTO (deslizamiento) FUERZA DE ROZAMIENTO CINÉTICA

M. A. S. Y MOV. ONDULATORIO FCA 05 ANDALUCÍA

Movimiento rectilíneo uniformemente variado (parte 2)

TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA

Universidad de Castilla La Mancha Junio Opción A

EJERCICIOS DE REPASO DE FÍSICA DE 1º BACHILLER CINEMÁTICA CURSO 2010/11

Bárbara Cánovas Conesa

TEMAS SELECTOS DE FÍSICA I GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO

Transcripción:

TEXTO Nº 4 CINEMÁTICA DE LA PARTÍCULA Concepto Báico Ejercicio Reuelto Ejercicio Propueto Edicta Arriagada D. Victor Peralta A Diciebre 8 Sede Maipú, Santiago de Chile Introducción

Ete aterial ha ido contruido penando en el etudiante de niel técnico de la carrera de INACAP. El objetio principal de ete trabajo e que el aluno adquiera y dearrolle la técnica para reoler problea diero de la unidad de Cineática de partícula. En lo particular pretende que el aluno logre el aprendizaje indicado en lo criterio de ealuación (referido al cálculo de ariable) del prograa de la aignatura Fíica Mecánica. El dearrollo de lo contenido ha ido elaborado utilizando un lenguaje iple que perita la coprenión de lo concepto inolucrado en la reolución de problea. Se preenta una íntei inediata de lo concepto fundaentale de Cineática de partícula, eguida de ejeplo y problea reuelto que preentan un procediiento de olución iteático que a dede un niel eleental hata ituacione á copleja, eto, in altar lo pao algebraico que tanto coplican al aluno, e finaliza con problea propueto incluyendo u repectia olucione.

Concepto fundaentale Cineática Raa de la fíica ecánica que etudia el oiiento de lo cuerpo in iportar la caua que lo producen, correponde a un etudio de la geoetría del oiiento donde olo interea el epacio recorrido y el tiepo epleado en recorrer dicho epacio. Sitea de referencia Cuerpo (punto o lugar fíico) fijo o óil neceario para realizar una edición, en ete cao neceario para decribir el oiiento de un cuerpo. Todo itea coordenado contituye un itea de referencia. Sitea unidienional Sitea bidienional Sitea tridienional Partícula 3

Cuerpo en fora de punto que en la realidad no exite, e trata de una idealización ateática para iplificar el etudio de un fenóeno, en ete cao para iplificar el etudio del oiiento de un cuerpo. En general e dice que un cuerpo e coniderado coo partícula cuando u dienione on depreciable con repecto al epacio que ocupa, ete concepto e de carácter relatio ya que depende del itea de referencia del cual e le copare. Poición Punto del epacio referido a un itea de referencia (er figura) y ( x, y, z) z x Moiiento Concepto de carácter relatio que científicaente e define coo el cabio uceio de poición que experienta un cuerpo repecto a otro coniderado coo referencia. Vector poición ( r ) Vector que une el origen del itea coordenado con el punto del epacio donde e encuentra la partícula y r ( x, y, z) z x Trayectoria E la cura decrita durante el oiiento. 4

Ditancia o caino recorrido ( d ) o ( ) Correponde a la longitud de la cura decrita. Deplazaiento ( r ) Diferencia entre do ectore de poición, e independiente del origen del itea coordenado. r r r y ( x y, ), z r r r Trayectori a r ( x, y, ) z r z x E iportante ditinguir entre Deplazaiento lineal y ditancia o caino recorrido a lo largo de una trayectoria no neceariaente recta. El deplazaiento lineal y ditancia recorrida, coinciden únicaente cuando la trayectoria e una línea recta. Velocidad edia ( ) Se define coo el cuociente entre el deplazaiento dicho deplazaiento e decir: r r r t t t r y el tiepo t epleado en Velocidad intantánea ( ) E el alor líite de la elocidad edia cuando el tiepo t tiende a cero, e anota: 5

li r t t La expreión anterior en cálculo ateático, correponde a la definición de deriada, en ete cao, la deriada de la poición con repecto al tiepo, e anota: dr Se lee de r a de t dt La cineática que contepla ete niel no conidera el trabajar con deriada ni con integrale, por razone clara de deconociiento de eta herraienta ateática. La elocidad intantánea queda repreentada gráficaente por la recta tangente a la cura decrita en el intante que e indique. (Velocidad intantánea) Trayectoria Rapidez La expreión rapidez e refiere únicaente a la agnitud de elocidad. Aí, e poible para un punto iajar con rapidez contante a lo largo de una trayectoria cura, ientra que obiaente, u elocidad etá cabiando de dirección contanteente. De aquí en adelante, el io íbolo tiende a uare para abo, rapidez y elocidad, aí que en cualquier intante particular el ignificado del íbolo debe er cuidadoaente tratado. En lo que igue en ez de hablar de elocidad intantánea, e hablará ipleente de elocidad. Unidade de elocidad c ; ; pie ; ; in k i ; ; rp, h h etc Aceleración edia ( a ) 6

Se define coo el cuociente entre la ariación de la elocidad intantánea y el tiepo epleado en dicha ariación, e decir: a t t t Aceleración Intantánea ( a ) Se define coo el alor liite de la aceleración edia cuando el tiepo e ecribe: a li t t t tiende a cero, La expreión anterior correponde a la definición de deriada, en ete cao, la deriada de la elocidad con repecto al tiepo t. Debe dejare en claro que eta expreione de elocidad intantánea, y aceleración intantánea, no erán trabajada dede el punto de ita del cálculo ateático, debido al deconociiento de la ateria. Unidade de aceleración c ; pie ; in k i re. ; ; ;, h h ; etc Claificación de lo oiiento 7

Según trayectoria recto : oiiento de un piton, caida de un cuerpo, etc. circulare : curo parabólico : oiientode un proyectil elíptico : oiiento del diente de un engrane, oiiento del apa oiientode lo electrone en torno al nucleo del átoo de una helice, etc. Según itinerario unifore contante ariado contante A continuación etudiareo lo iguiente tipo de oiiento: - Moiiento Rectilíneo Unifore (M.R.U.) - Moiiento Rectilíneo Unifore Acelerado (M.R.U.A.) - Moiiento de un Proyectil - Moiiento Circular Unifore (M.C.U.) - Moiiento Circular Unifore Acelerado (M.C.U.A.) Moiiento rectilíneo unifore (MRU) E un oiiento de trayectoria rectilínea y el ódulo de la elocidad (rapidez) e antiene contante en el tiepo. En ete oiiento e recorren ditancia iguale en tiepo iguale, e decir, i en una hora e recorren K., entonce en edia hora e recorrerá 6 K. En lo que igue, upondreo que: - El oiiento rectilíneo de un cuerpo e produce obre el eje x - El deplazaiento r repecto al cero correponde a la coordenada x. - Se conidera olo el ódulo de la elocidad y e hablará de rapidez o ipleente de elocidad. La ecuación fundaental del MRU e: 8

x x + t Ec. de poición d x x Ditancia o caino recorrido Donde: x Poición inicial x Poición final Módulo de la elocidad t Tiepo Repreentación gráfica del MRU Gráfica ditancia eru tiepo (línea recta) d Recta acendente Cuerpo parte del origen Cuerpo e aleja del origen d Recta acendente Cuerpo no parte del origen Cuerpo e aleja del origen x x t t d d Recta decendente x Cuerpo e dirige hacia el origen dede x Recta coincidente con el eje del tiepo indica que el cuerpo e encuentra en repoo en el origen 9

x Oberación: La inclinación de la línea recta en un gráfico ditancia tiepo, repreenta el ódulo de la elocidad (rapidez), e decir, a ayor inclinación de la línea recta, ayor e el ódulo de la elocidad d A B t A ayor que B ya que A tiene ayor inclinación que B Grafica rapidez Recta paralela al eje del tiepo debido a que u rapidez e contante eru tiepo t

Ejeplo de MRU Ejeplo Un cuerpo e encuentra en la poición de 4 repecto del origen de un itea de referencia y iaja a razón de 6 /. Deterinar: a) Poición del cuerpo al tiepo de 5 egundo. b) Ditancia recorrida por el cuerpo al tiepo de 5 egundo. Solución: Una fora ordenada de reoler un problea de cineática e acar lo dato y pregunta del problea, eto e: Dato: Poición inicial x 4 Valor de la elocidad Poición final x? Ditancia recorrida d? 6 (a) Cálculo de poición x al tiepo de 5 egundo. Coo e trata de un oiiento unifore, la ecuación correpondiente e: x x + t La poición x e encuentra lita para er ealuada, olo hay que reeplazar lo alore conocido, eto e: x 4 + 6 5 Multiplicando, cancelando la unidad de egundo y uando e obtiene la poición que e pide, e decir: x 4 + 6 5 x 53

Por lo tanto, al tiepo de 5 egundo el cuerpo e encuentra en la poición de 53 etro. 5 egundo á tarde x 4 4 53 x (b) Cálculo de ditancia d recorrida al tiepo de 5 egundo En ete cao, la ditancia correponde al alor aboluto de la diferencia de la poicione final e inicial, e decir: d x x Coo e conoce aba poicione, olo hay que reeplazar lo alore correpondiente, eto e: d 53 4 Retando y recordando que el alor aboluto de un núero iepre e poitio, reulta la ditancia que e pide, e decir: d 39 5 egundo á tarde x 4 4 53 x 39 Ejeplo Deterinar la elocidad de un óil que recorre 473 k en 6 hora Solución: En ete cao e tiene que en 6 hora el cuerpo recorre una ditancia de 473 k, e decir, la poición final e de 473 k repecto del origen de un itea coordenado (eje x).

Claraente el oiiento e unifore, donde e conoce el tiepo (6 hora) en que alcanza la poición de 473 k. La ecuación del M.R.U. e: Depejando elocidad e tiene: x x + t x x t Reeplazando alore reulta: x x t 473k 6h Diidiendo: k 78, 833 h Ejeplo 3 Cuánto tiepo neceita un corredor para un trayecto de,4 k cuando corre con una elocidad de 5 / Solución: La ecuación a utilizar e la ia que en el cao anterior, olo que ahora e debe calcular el tiepo epleado en recorrer,4 k. Depejando tiepo e tiene: x x + t 3

x x t Reeplazando alore reulta: x x t Recordar que,4 k 4 4 t 5 Diidiendo e tiene el tiepo que e buca. 48 8in t 4

Ejeplo 4 Un autoóil antiene una rapidez de 9 k/h qué ditancia recorrerá en 3 hora con 5 inuto? Solución: En ete ejeplo, e debe coniderar la poición inicial x dede que e coienza a edir el tiepo, por lo tanto e tiene: x x + t + t x t Reeplazando alore para elocidad y tiepo en hora, e tiene: 5 3 h5in 3h + h 3, 5h 6 Multiplicando: k x 9 3, 5 h [ h] x 9,5 k E decir, e recorren 9,5 k con una rapidez de 9 k/h durante 3 hora con 5 in. Ejeplo 5 Un óil e encuentra en la poición de 4, k repecto a un itea coordenado y iaja a razón de 3 /, en el io intante, dede el origen le igue en la ia dirección y entido un egundo óil que iaja a razón de 3 k/h. Calcular el tiepo trancurrido en que el egundo óil alcanza al priero y cuanto recorre cada uno al oento del encuentro. 3 k / h 3 / Solución: 4, x (k) 5

El enunciado uetra que e trata de un problea de encuentro y por lo tanto juto en ee intante, la poicione de abo cuerpo on la ia, e decir, e cuple que: Siendo: x Poición para óil x Poición para el óil x x E fácil notar que abo óile tienen un oiiento rectilíneo unifore, por lo tanto e puede ecribir: x + t x + t El tiepo t e el io para abo cuerpo, ya que el etudio del oiiento e realiza a partir de un io intante. Ante de continuar, e realizara la conerión de unidade de 3 / a k/h. [ k] [ ] 3 3 36 [ ] k 8 [ h] h En ete cao e conocen la poicione y la elocidade de lo cuerpo, por lo tanto la ecuación anterior peritirá calcular el tiepo trancurrido en que el egundo cuerpo alcanza al priero. Al reeplazar lo alore correpondiente de poicione y elocidade, e tiene: Al depejar tiepo reulta: 4, 4, k h k h [ k] + 8 t + 3 t k h k h [ k] + 3 t 8 t 4, k h [ k] t [ ] 4, k t k h Diidiendo reulta el tiepo que e pide, e decir: 6

[ h],455[ in] 687, [ ] t,9 3 Cálculo de ditancia recorrida por cada cuerpo, al oento del encuentro. Conocido el tiepo de encuentro, e poible calcular la ditancia recorrida por cada óil al oento en que el egundo alcanza al priero. Móil : La ecuación de poición coincide con la ditancia recorrida ya que el óil parte dede el origen del itea coordenado. d x x + t k d x + 3, 9 h h d x 4, 83 d x 4, 83 [ k] [ k] [ ] Móil : Coo la poición e la ia, ignifica que el óil recorrido: [ k] 4, [ k] d 4,83 [ ] d, 63 k E decir, el óil deoro un tiepo de,9 hora en alcanzar al óil y al oento del encuentro, el óil recorre una ditancia de,63 k ientra que el óil recorre una ditancia de 4,83 k. Moiiento rectilíneo uniforeente acelerado (MRUA) E un oiiento de trayectoria rectilínea y experienta una ariación contante en el ódulo de la elocidad durante el tiepo, en ete cao, e dice que el oiiento e realiza con una aceleración contante. 7

Cuando la ariación en el ódulo de la elocidad a en auento, e dice que el oiiento e acelerado y e habla de aceleración. Cuando la ariación en el ódulo de la elocidad a en diinución, e dice que el oiiento e deacelerado y e habla de retardación o deaceleración, en ete cao la aceleración reulta negatia. La ecuacione fundaentale del MRUA correponden a la regla de oro de la cineática o ecuacione cineática: ( t) x x + t + at Vector de poición o Ec.itinerario ( Ec.que entrega la poición x en el tiepo t) + a t Ecuación de elocidad en el tiepo t ( Ec.que entrega la elocidad en el tiepo t) x x + a Ecuación de poición que no depende del tiepo t d x x Ditancia o caino recorrido Significado de la ibología utilizada x t Poición en el tiepo t ( ) x Poición inicial x Poición final Módulo de la elocidad inicial Módulo de la elocidad final a Módulo de la aceleración t Tiepo trancurrido Si a ignifica que el cuerpo auenta u rapidez en Si a ignifica que el cuerpo diinuye u rapidez en cada egundo cada egundo 8

Repreentación grafica del MRUA Grafica ditancia eru tiepo d Raa de parábola Cuerpo parte del origen Cuerpo e aleja del origen d Raa de parábola Cuerpo no parte del origen Cuerpo e aleja del origen x x t t d x Raa de parábola Cuerpo e dirige hacia el origen dede x t Gráfica rapidez eru tiepo Recta acendente Cuerpo parte del repoo Cuerpo acelerando Recta acendente Cuerpo no parte del repoo Cuerpo acelerando t t 9

Recta decendente Cuerpo tiende a detenere (Frenado), en el intante en que la recta toca el eje del tiepo, ignifica que el cuerpo e encuentra en repoo t Gráfica aceleración eru tiepo a Recta paralela al eje del tiepo debido a que la aceleración e contante t Oberación La inclinación de la línea recta en un gráfico rapidez tiepo, repreenta el ódulo de la aceleración, e decir, a ayor inclinación de la línea recta, ayor e el ódulo de la aceleración. A B a A ayor que a B ya que A tiene ayor inclinación que B t

Oberación El área que queda coprendida bajo la cura en un grafico rapidez tiepo, repreenta el caino recorrido por el cuerpo. Ditancia o caino recorrido Ejeplo Un cuerpo parte dede el repoo y acelera a razón de, /, deterinar: a) El alor de la elocidad al tiepo de 5 egundo. b) La poición alcanzada por el cuerpo al tiepo de 5 egundo. Solución (a) El problea indica claraente que e trata de un MRUA en donde e conoce la elocidad inicial, la aceleración a, / y el tiepo tracurrido t 5. La ecuacione que rigen ete oiiento correponden a la regla de oro de la cineática, e decir: t ) x x + t + a t ) + a t 3) x x + a Eligiendo el origen del itea coordenado en donde parte el cuerpo, e tiene que la poición inicial del cuerpo x y coo e conocen todo lo alore, e puede utilizar la ecuación () para deterinar la poición al tiepo de 5 egundo, eto e: x x + t + a t

x + 5 5, x + + + 5, Multiplicando y cancelando lo egundo al cuadrado, e obtiene la poición que e buca, e decir: x 35 Ejeplo Deterinar la aceleración de un cuerpo que parte del repoo y luego de egundo tiene una elocidad de 8 k/h. Solución: En ete cao e conoce la elocidad inicial, el tiepo trancurrido y la elocidad final, por lo tanto la ecuación nº perite depejar la aceleración, eto e: Depejando: + a t a t k k h 8 8 3 h h k 36 t a Reeplazando alore nuérico: Retando y diidiendo: 3 a,5 a

El reultado anterior ignifica que por cada egundo, el ódulo de la elocidad auenta en,5 /. Ejeplo 3: Una partícula aría u elocidad de 3 / a 6 / en un tiepo de 48. Calcular: a) La aceleración de la partícula b) La ditancia que recorre la partícula en ee tiepo c) Suponiendo deaceleración contante, deterinar el tiepo que tarde la partícula en detenere d) el tiepo que tarda en detenere a) Aceleración de la partícula Solución: + a t Depejando aceleración: a t Reeplazando alore nuérico y realizando la operatoria indicada: 6 / 3 / a 48 4 / a 48 a,9 / El alor negatio ignifica que el cuerpo deacelera a razón de,9 /. b) Ditancia recorrida por la partícula d d d d x x + t + a t x 3 / 48 +,9 x 44 + 335,3 x 4,768 (48 ) 3 c) Tiepo que tarda la partícula en detenere

Ejeplo 4: Un caión e encuentra en la poición de 44 etro repecto al origen de un itea de referencia y tiene elocidad de 93,6 k/h, juto en ee intante el conductor aplica lo freno proocando una deaceleración de,4 /. Deterinar: a) La poición, repecto al origen del itea de referencia, alcanzada por el caión al oento de detenere. b) La ditancia recorrida por el caión al oento de detenere. c) El tiepo trancurrido dede que el conductor aplica lo freno hata el oento en que el caión e detiene: Solución (a): Poición alcanzada por el caión al oento de detenere El enunciado indica claraente que e trata de un problea de oiiento deacelerado (aceleración negatia) y en el e conoce la poición inicial x 44, la elocidad inicial 93,6k / h, la deaceleración a,4 y la elocidad final (el caión e detiene). Según la inforación entregada e poible aplicar la ecuación 3 para obtener la poición en la que e detiene el caión, eto e: Reeplazando alore e tiene: x x + a k k h 93,6 93,6 6 h h k 36 Reoliendo la fracción reulta: 6 x 44 +,4 4

x 44 + 4, 49 Suando e obtiene la poición en la que el caión e detiene, e decir: x 68, 49 Solución (b): ditancia recorrida por el caión hata el oento de detenere Coo e conoce la poición inicial y la poición final, la ditancia recorrida e obtiene ediante el alor aboluto de la diferencia entre eta poicione, e decir: d x Reeplazando lo alore correpondiente, e tiene: d 68,49 44 x Retando e tiene que: d 4, 49 Solución (c): tiepo trancurrido dede el frenado hata que el caión e detiene. Coo e conoce la elocidad inicial, la aceleración y la elocidad final, el tiepo trancurrido al oento en que el caión quede en repoo, e calcula con la ecuación, eto e: Depejando el tiepo: + a t Reeplazando alore reulta: a t 6,4 Diidiendo y cancelando unidade e tiene el tiepo que e buca, e decir: t 5

8,57 t Ejeplo 5: En una carretera rectilínea, un caión iaja a razón de 7 k/h, en ee io intante, 5 k á atrá le igue en la ia dirección y entido, una caioneta que llea la elocidad de / y que acelera a razón de, /, deterinar: a) Tiepo en que la caioneta alcanza al caión. b) Poición de encuentro. c) Ditancia recorrida por cada cuerpo al oento del encuentro. d) Velocidad que alcanzada por la caioneta al oento de alcanzar al caión. Solución (a): Tiepo de encuentro El problea correponde a un encuentro de oiiento, por lo tanto, al oento del encuentro e cuple que: x caión x caioneta En ete cao, el caión tiene un oiiento rectilíneo unifore ientra que la caioneta tiene un oiiento rectilíneo uniforeente acelerado, el tiepo e el io para abo ya que el etudio del oiiento coienza dede un io intante para abo cuerpo, por lo tanto: x caión + t x caioneta + t + at Eligiendo el origen del itea coordenado donde parte la caioneta, e tiene que la poición inicial para ella e cero y la ecuación anterior queda: x (Caión) x (Caioneta) x + t t + a t Ante de reeplazar dato e hoogenizará la unidade de edida, eto e: k 7 7 9,444 y h 3,6 5 k 5 5 Coo ya e ha hoogenizado la unidade de edida, no la ecribireo en el procediiento ateático, eto e: 6

5 + 9,444 t t +, t Expreión que correponde a una ecuación de egundo grado, ordenando eta ecuación, reulta:,5 t + t 9,444 t 5,5 t 9,444 t 5 Reoliendo la ecuación cuadrática e tiene: 9,444 ± t 9,444 4,5 5,5 9,444 ± 33,3 t, t 9,444 + 33,3, 44,47 9,444 33,3 t no xite, por er alor negatio, E decir, el tiepo trancurrido en que la caioneta alcanza al caión e 44,47 egundo repecto de la condición dada. Solución (b): poición de encuentro. Coo ahora e conoce el tiepo, e fácil calcular la poición de encuentro de lo do cuerpo. Coo la poición e coún, da lo io calcularla utilizado cualquiera de lo do cuerpo, caioneta o caión. Poición Caioneta: x caionta x + t + a t x + + caionta 44,47 44, 47 Cancelando la unidad de egundo, ultiplicando y uando e obtiene la poición coún, eto e: xcaionta 353, 439 7

E decir, la poición donde la caioneta alcanza al caión e 353,439 etro repecto del origen del itea coordenado. Solución (c): ditancia recorrida por cada cuerpo al oento del encuentro. Cuando un cuerpo parte del origen, la ditancia recorrida coincide con la poición final, en ete cao, la caioneta parte del origen, por lo tanto u ditancia recorrida coincide con u poición final (poición de encuentro), e decir: d x 353, 439 caioneta caioneta La ditancia recorrida por el caión correponde a la ditancia recorrida por la caioneta eno la poición inicial de 5 etro, e decir: d d 5 353,439 5 853, 439 caión caioneta Solución (d): elocidad de la caioneta al oento de alcanzar al caión. Coo e conoce la elocidad inicial, la aceleración y el tiepo trancurrido en que la caioneta alcanza al caión, e fácil conocer u elocidad en ee intante, olo hay que aplicar la ecuación elocidad dependiente del tiepo, e decir: Reeplazando alore: + a t, 44, 47 + Cancelando la unidad de egundo, ultiplicando y uando, e tiene el alor pedido, e decir: 5, 447 Ejeplo 6 8

Un cuerpo e etá oiendo con una rapidez de [ / ], luego de 6 egundo e le iprie un aceleración de, [ / ] durante 6 egundo a, continúa oiéndoe con oiiento rectilíneo unifore durante otro 4 egundo finalente e le aplican lo freno hata que e detiene con una retardación de,6 [ / ]. Dibujar gráfico rapidez tiepo para el oiiento de ete cuerpo y deterinar el caino total recorrido. a) Repreentación grafica de inforación entregada. / [ ] III? I [ ] a, / II IV [ ] a,6 / Calculo de dato faltante del grafico. 6 6 t? t [ ] Trao II. + at +, 9, 6 [ ] Trao IV + at + at at t a 9, / t,6 t 3 [ ] [ ] / / [ / ] Grafica con todo lo dato correpondiente: 9

(/) III V9, I [ ] a, / II IV [ ] a,6 / 6 6 48 t [ ] t3 () b) Cálculo de la ditancia final recorrida: Para el cálculo de la ditancia final recorrida e debe acar el área que exite debajo de la línea del gráfico (área bajo la cura), para ello ete últio e ubdiide en diferente parte, a odo que queden olaente figura geoétrica conocida para nootro y, por coniguiente, fácil de calcular. Por tal razón, eparando la diferente área e tiene: (/) 9, A A A 3 6 6 48 t [ ] La ditancia total correponde a: 3

d Total A + A + A 3 d Total ( A rectangulo ) + ( A trapecio ) + ( A trapecio ) 3 d Total ( a b) a + b + h a + b + h 3 d d d Total Total Total 9, + 36 + 4 ( 6) + 6 + 9, 7 + 93,6 + 384 549,6 [ ] E decir, dede que e coienza el etudio del oiiento, la ditancia total recorrida por el cuerpo e de 549,6 etro. Cao particular del MRUA (Caída libre y lanzaiento erticale) La caída libre al igual que lo lanzaiento erticale on un cao particular del MRUA ya que en ello la aceleración contante correponde a la aceleración de graedad g que e un ector dirigido erticalente hacia el centro de la tierra y cuyo alor (ódulo) proedio aproxiadaente e 3

c 98 o 9,8 o pie 3, y g z x Coo e trata de un cao particular del MRUA, la ecuacione a utilizar on la ia regla de oro de la cineática ita anteriorente, pero en ete cao e reeplazará la ariable x por la ariable y y la aceleración contante a e reeplazará por la aceleración de graedad g, reultando: y ( t) y + t gt Vector de poición o Ec.itinerario ( Ec.que entrega la poición y en el tiepo t) gt Ecuación de elocidad en el tiepo t ( Ec.que entrega la elocidad en el tiepo t) y y g y + g Ecuación de poición independiente del tiepo t Ejeplo Dede lo alto de un edificio de 3 etro de altura, e uelta un cuerpo, deterinar: a) Tiepo que deora el cuerpo en llegar al uelo b) Velocidad con que el cuerpo llega al uelo 3

y g 9,8 3 x Solución (a): Tiepo que el cuerpo deora en llegar al uelo. Eligiendo el origen del itea de referencia en el uelo, e tiene que y 3, g 9,8 y adeá coo el cuerpo e uelta, ignifica que, de acuerdo a eta inforación e poible utilizar la ecuación de poición dependiente del tiepo, eto e: y y + t gt La poición final e alcanza cuando el cuerpo llega al uelo, por lo tanto y. Reeplazando lo alore nuérico, reulta: Depejando t e tiene: 3 + t 9,8 t 3 4,9 t 4,9 t 3 t 3 4,9 t 6, Aplicando raíz cuadrada reulta: 33

t, 474 E decir, le tiepo que deora el cuerpo en llegar al uelo e de,474 egundo. Solución (b): elocidad con que el cuerpo llega al uelo. En ete cao, para calcular la elocidad con que el cuerpo llega al uelo (elocidad final), e puede utilizar la ecuacione: + at o y y + g Claraente no quedareo con la priera ecuación ya que e directa y á iple, por lo tanto: gt Reeplazando lo alore correpondiente reulta: 9,8, 474 Cancelando por egundo y ultiplicando e obtiene el alor de la elocidad que e buca, e decir: 4, 45 El igno negatio de la elocidad ignifica que el cuerpo e dirige hacia abajo. Ejeplo Un cuerpo deora 3,5 egundo en caer al uelo, dede cierta altura, deterinar: a) altura de donde cae el cuerpo. b) elocidad con que llega al uelo 34

y g 9,8 h? x Solución (a): altura dede donde cae el cuerpo. Eligiendo nueaente el uelo coo el origen del itea de referencia, e tiene que y h, y,, t 3,5 y g 9,8, con eto dato, para calcular la altura de donde cae el cuerpo, e debe utilizar la ecuación de poición dependiente del tiepo, eto e: y y + t gt Reeplazando lo alore ante indicado, e tiene: Depejando reulta: 9,8 3,5 3,5 h + h 9,8 3,5 h 6, 5 h 6, 5 El reultado anterior ignifica que la altura de donde cae el cuerpo e de 6,5 etro. Solución (b): elocidad con que el cuerpo llega al uelo 35

Coo e conoce la elocidad inicial, la aceleración de graedad g 9,8 y el tiepo de caída decir: t 3, 5, e puede utilizar la ecuación elocidad en función del tiepo, e gt Reeplazando lo alore ante indicado e tiene: 9,8 3, 5 34, 3 Por lo tanto el alor de la elocidad del cuerpo, al llegar al uelo e de 34 /, el igno negatio indica que el cuerpo e dirige hacia la uperficie de la tierra. Ejeplo 3 Dede lo alto de una torre de 5 etro e lanza un proyectil, erticalente hacia arriba con una elocidad de 6 /, deterinar: a) Poición del proyectil al tiepo de 4 egundo, repecto al uelo. b) Velocidad del proyectil al tiepo de 4 egundo. 36

c) Altura áxia alcanzada por el proyectil repecto al uelo. d) Tiepo que deora el proyectil en alcanzar la altura áxia. e) Tiepo total de uelo. f) Velocidad con que el proyectil llega al uelo. g 9,8 5 Solución (a): Poición al tiepo de 4 egundo Ecuación poición dependiente del tiepo: y y + t gt Reeplazando alore: y 5 + 6 4 9,8 6 Cancelando unidade de egundo y ultiplicando: Suando y retando: y 5 + 4 78, 4 E decir, la poición del proyectil al tiepo de 4 egundo, repecto al uelo e de,6 etro. Solución (b): elocidad al tiepo de 4 egundo Coo e conoce la elocidad inicial y el tiepo de 4 egundo, e debe aplicar la ecuación de elocidad dependiente del tiepo, e decir: Reeplazando alore correpondiente: y, 6 gt 37

6 9,8 4 Cancelando la unidad de egundo, ultiplicando y retando e obtiene el alor de la elocidad al tiepo de 4 egundo, e decir:, 8 Solución (c): Altura áxia del proyectil repecto al uelo En la altura áxia alcanzada por un cuerpo, la elocidad e cero, por lo tanto utilizando la ecuación de poición independiente del tiepo, e obtiene el alor d la altura áxia, eto e: y y + g Reeplazando alore nuérico e obtiene: 6 y 5 + 9,8 Cancelando unidade de etro, egundo y diidiendo: Suando e tiene el alor pedido: y 5 +83, 673 E decir, la altura áxia alcanzada por el proyectil, que e diparado de una altura de 5etro, e 33, 673etro. Solución (d): Tiepo en que el proyectil alcanza la altura áxia Coo e conoce: elocidad inicial, elocidad final y aceleración de graedad, e utiliza la ecuación de elocidad dependiente del tiepo, eto e: Coo la elocidad final, reulta: y 33, 673 gt Depejando tiepo: gt 38

gt t g Reeplazando alore nuérico e tiene el tiepo epleado en la altura áxia: 6 t 9,8 Cancelando unidade de edida y diidiendo e obtiene: E decir el tiepo que tarda el proyectil en alcanzar la altura áxia e de 6, egundo. Solución (e): Tiepo total de uelo t 6, El tiepo total de uelo e pude obtener de diferente anera y una de ella e aplicando la ecuación de poición dependiente del tiepo debido a que e conoce la poición inicial, la poición final ( y ), la elocidad inicial y la aceleración de graedad. y y + t gt Reeplazando alore nuérico reulta: 5 + 6 t 9,8 t Obiando la unidade de edida debido a que on hoogénea, e tiene: 5 + 6t 4,9t Ordenando la ecuación de egundo grado reulta: 4,9t 6t 5 Aplicando la forula de olución a la ecuación cuadrática e tiene: t 6 ± 6 4 4,9 5 4,9 6 ± 6 + 4 4,9 5 9,8 39

Reoliendo la operatoria al interior de la raíz e tiene: Reoliendo la raíz cuadrada reulta: 6 ± 458 t 9,8 6 ± 67,676 t 9,8 Reultan do alore para el tiepo, pero un de ello e negatio por lo tanto no exite, el alor poitio del tiepo reulta uando en el nuerador, eto e: 6 + 67,676 7,676 t 3,8 9,8 9,8 E decir, le tiepo que deora el proyectil, dede que e diparado hata que llega al uelo e de 3,8 egundo. Solución (f): Velocidad con que el proyectil llega al uelo. Coo ahora e conoce el tiepo que tarda el proyectil en llegar al uelo, la elocidad de llegada e fácil deterinarla aplicando la ecuación de elocidad dependiente del tiepo, eto e: Reeplazando lo alore nuérico reulta: gt 6 9,8 3, 8 Cancelando unidad de egundo, ultiplicando y retando e obtiene la elocidad pedida. 67, 674 El igno negatio ignifica que el proyectil iene hacia abajo con un alor de elocidad de 67,674 /. 4

Lanzaiento de proyectile El lanzaiento de proyectile correponde a una uperpoición de do oiiento rectilíneo en fora iultánea, u trayectoria e una cura parabólica., El cao á iple e aquel en que uno de lo oiiento e realiza horizontalente a lo largo del eje X con elocidad contante, y el otro oiiento e realiza erticalente a lo largo del eje Y con la aceleración de graedad g. Para iplificar el etudio, e debe eparar lo oiiento dede u inicio en do oiiento coponente, uno para el eje X (oiiento unifore) y otro para el eje Y (oiiento rectilíneo uniforeente 4

acelerado). y y x coθ y h Max. Max. y enθ θ x coθ x La ecuacione que rigen ete oiiento correponden a la regla de oro de la cineática. Moiiento para eje X: Moiiento para eje Y: x x + coθ t y y + enθ t g t ( enθ ) y y + g Coo el oiiento tiene do coponente, e debe tener cuidado al oento de calcular le elocidad del proyectil ya que: x + y Y por lo tanto el alor o agnitud de la elocidad del proyectil queda deterinada por Pitágora, e decir: g t ( ) ( ) x + y Y u dirección queda deterinada por: 4

α tan y x Ejeplo: Dede lo alto de una torre de 5 etro, e dipara un proyectil con una elocidad de a un ángulo de 6º por encia de la horizontal, deterinar: a) Altura áxia alcanzada por el proyectil, repecto al uelo b) Tiepo que el proyectil alcanza la altura áxia c) Tiepo total de uelo del proyectil d) Alcance horizontal áxio del proyectil e) Velocidad con que el proyectil llega al uelo 6º g 9,8 5 Solución (a): Altura áxia repecto al uelo: Coo una altura etá aociada al eje Y, e debe trabajar con la ecuacione de dicho eje, ahora coo en la altura áxia, la elocidad del eje Y e hace cero, la ecuación nº 3 atiface la condicione conocida, e decir: y y + ( enθ ) g Eligiendo un itea coordenado a partir del uelo y adeá coo en altura áxia reulta: 43

y y + ( enθ ) g Reeplazando lo alore correpondiente para poición inicial, elocidad de diparo, ángulo de diparo y aceleración de graedad reulta: y y ax. 5 + ( en6º ) 9,8 Realizando operatoria báica e tiene: E decir la altura áxia alcanzada por el proyectil repecto al uelo e de 53, etro. Solución (b): Tiepo en que el proyectil alcanza la altura áxia. Para calcular el tiepo en que el proyectil alcanza la altura áxia e poible utilizar la ecuación de poición dependiente del tiepo coo tabién la ecuación de elocidad dependiente del tiepo ya que aba tienen toda la condicione que e neceita, obiaente e preferible trabajar con la ecuación de poición dependiente del tiepo debido a que e á iple u trataiento. enθ gt Coo e indico anteriorente en la altura áxia la elocidad del eje Y e igual a cero, por lo tanto: Depejando el tiepo reulta: y y 53, ax. enθ gt gt enθ enθ t g Reeplazando alore nuérico reulta: 44

en6º t 9,8 Realizando la operatoria báica reulta el tiepo que e deea: t 9,7 E decir el tiepo en que el proyectil alcanza la altura áxia e de 9,7 egundo. Solución : Tiepo total de uelo del proyectil. Hata el oento ha ido ipoible utilizar la ecuación del eje x debido a que no preenta toda la inforación para trabajar con ella y en eta oportunidad e olerá a trabajar en dicho eje. La ecuación que perite trabajar de inediato el tiepo total de uelo e la ecuación de poición dependiente del tiepo, e decir: y y + enθ t gt Para ete cao la poición final del eje Y e igual a cero, ya que el proyectil llega al uelo y coo toda la unidade de edida on hoogénea, e poible obiar le ecritura de la unidade de edida y ólo trabajar con lo alore nuérico, eto e: 5 + en6 t 9,8t Ordenando para que el térino que acopaña al tiepo al cuadrado reulte poitio e tiene: 4,9t 95,63t 5 Reoliendo la ecuación cuadrática reulta: 95,63 ± t ( 95,63) 4,9 4 4,9 5 Reoliendo la raíz cuadrada e tiene: 95,63 ±,75 t 4,9 Realizando la operatoria reulta: 45

95,63 +,75 78,69 t 9, 953 9,8 9,8 E decir, el tiepo en que el proyectil tarda en llegar al uelo e de 9,953 egundo. El tiepo no exite por er negatio. Solución (d): Alcance horizontal áxio alcanzado por el proyectil. Coo e conoce el tiepo total de uelo, e poible utilizar la ecuación del eje X para obtener el alcance horizontal áxio. x x + coθ t Al reeplazar lo dato e tiene que la poición inicial para el eje X e cero, por lo tanto: Realizando la operatoria e tiene: x + co 6º 9, 953 x 97, 45 E decir el alcance áxio alcanzado por el proyectil repecto al uelo e de 97,45 etro. Solución (d): Velocidad con que el proyectil llega al uelo La elocidad con que el proyectil llega al uelo correponde a: ( ) ( ) x + y Coponente horizontal de la elocidad del proyectil al llegar al uelo: x coθ t Reeplazando alore nuérico reulta: x co6º Multiplicando e tiene la coponente horizontal de la elocidad, e decir: x 55 46

Coponente ertical de la elocidad del proyectil al llegar al uelo: y enθ gt Reeplazando alore nuérico reulta: y en6º 9,8 9, 953 Multiplicando y diidiendo e tiene la coponente ertical de la elocidad, e decir: y,77 Por lo tanto la elocidad del proyectil al oento de llegar al uelo e de: ( ) 55 +,77 4, 37 Moiiento circular Un oiiento e circular cuando u trayectoria e una circunferencia. En eta trayectoria circular el cuerpo decribe al io tiepo arco de circunferencia (arco) y ángulo central (ángulo). ángulo r θ arco b 47

b Longitud de arco de circunferencia arco edido en unidade de longitud. θ Ángulo central edido en radiane r Radio de la circunferencia El arco, ángulo y el radio cuplen con la relación: Ejeplo : b r θ Deterinar el ángulo central θ correpondiente a un arco de circunferencia de 8 c iendo el radio de la circunferencia igual a 8 c. Solución: La relación entre arco, radio y ángulo central e b r θ, coo en ete ejeplo e conoce arco y radio de la circunferencia, e debe depejar el ángulo θ, e decir: Reeplazando alore correpondiente: b r θ b r θ 8c 8c θ Al reoler la diiión e cancelan la unidade de longitud y e dice que el reultado obtenido queda expreado en radiane, e decir: Ejeplo 3,5 rad θ Deterinar el radio de una circunferencia abiendo que un ángulo central de 5, rad interecta a un arco de 4 c de longitud. Solución: En ete cao e conoce el ángulo θ y el arco b, por lo tanto, de la expreión debe depejar el radio, eto e: b θ r, e b r θ Reeplazando lo alore correpondiente reulta: 48

4c r 5,rad Diidiendo: 4,65c r E decir, el radio de la circunferencia e de 4,65 c. A diferencia del oiiento recto en el oiiento circular e preentan do elocidade, eta on: - Velocidad lineal o tangencial que en la indutria etalúrgica e conoce con el nobre de elocidad circunferencial o elocidad periférica o elocidad de corte.(elocidad referida a la línea decrita cuando el cuerpo cabia de poición) - Velocidad angular Velocidad referida al ángulo decrito por el radio ector. Rapidez lineal o circunferencial edia (ódulo de la elocidad lineal edia) Se define coo el cuociente entre en arco decrito y el tiepo epleado en decribirlo, e decir: arco tiepo t b t O ipleente b t b t Ejeplo 3 Un cuerpo recorre un arco de circunferencia de 6c epleando un tiepo de egundo Con qué rapidez lineal e recorrió el arco?, exprear el reultado en c/ y /. Solución: Se pide deterinar la rapidez lineal con que e recorrió un arco, por lo tanto e debe aplicar la definición ante indicada, e decir: b t 49

Reeplazando lo alore de arco, tiepo y diidiendo e obtiene la elocidad lineal que e pide: 6c c 5, 5 Rapidez angular edia (ódulo de la elocidad angular edia) ω angulo θ θ θ tiepo t t t ω O ipleente θ ω t La rapidez angular e ide en: rad rad rad,,, etc. in h θ θ θ θ θ Línea de referencia Ejeplo 4 5

Un deportita, en una pita circular decribe un ángulo de 4º en un tiepo de 5 egundo. Con qué rapidez angular e oió el deportita? Solución: La definición indica que la rapidez angular queda deterinada por: θ ω t El ángulo θ debe expreare en radiane, por lo tanto e tranforará lo 4º en radiane. Para tranforar grado exageiale en radiane, e debe diidir por 57,3 (ya que radian correponde aproxiadaente a 57,3º). 4 4 º,698rad 57,3 Entonce: ω,698rad rad,8 5 Velocidad tangencial y angular La elocidad tangencial queda expreada por un ector tangente a la circunferencia en un punto cualquiera de eta. La elocidad angular ω queda deterinada por un ector perpendicular al plano de la circunferencia, juto en u centro. El entido de ω queda deterinado por la regla del 5

tornillo de roca derecha, que debe penetrar en el plano de la circunferencia al hacerlo girar en el entido del oiiento (o regla de la ano derecha). ω ω De aquí en adelante, e utilizará el concepto de elocidad coo inónio de rapidez a no er que ea etrictaente neceario hacer la diferencia Moiiento circular unifore MCU Un cuerpo tiene oiiento circular unifore cuando decribe arco iguale en tiepo iguale, e decir, cuando el ódulo (rapidez) de la elocidad lineal peranece contate en el tiepo. Lo anterior e equialente a decir que un cuerpo tiene oiiento circular unifore cuando decribe ángulo iguale en tiepo iguale, e decir cuando el ódulo de la elocidad angular ω peranece contante en el tiepo. En ete oiiento, el radio ector, la elocidad lineal y la aceleración lineal cabian de dirección en cada intante. En ete oiiento tabién e iportante definir lo concepto de periodo y frecuencia: Período (T): E el tiepo en que el cuerpo tarda en copletar una uelta o reolución. 5

Frecuencia (f): E el núero de uelta o reolucione que el cuerpo alcanza a dar en una unidad de tiepo (egundo, inuto, hora, etc.), La unidade de edida á coune on: uelta egundo reolucione re rp egundo uelta inuto reolucione re rp in inuto in Frecuencia y periodo on el alor reciproco uno del otro, ateáticaente cuplen con la iguiente relación: T f Ejeplo 5 Deterinar el período y frecuencia de un cuerpo que tiene oiiento circunferencial unifore y da 4 uelta en 6 egundo. Solución El concepto de período ignifica que e el tiepo que el cuerpo deora en dar una uelta, coo e un oiiento circular unifore (cíclico), ignifica que hay una proporcionalidad directa entre nº de uelta y tiepo epleado, por lo tanto e puede anotar: Nº de uelta Tiepo epleado () 4 6 T Coo e trata de una proporción directa, e ultiplica cruzado y e depeja el periodo, eto e: Multiplicando y diidiendo: T 6 4 T,5 E decir, el cuerpo deora,5 egundo en dar una uelta. Coo la frecuencia e el alor reciproco del periodo, ignifica que: 53

f T Por lo tanto: f,5 4 Ete reultado quiere decir que el cuerpo da 4 uelta en cada egundo, e lo io que anotar f 4rp (4 reolucione por egundo), i e quiere er cuanta reolucione por inuto (rp) bata ultiplicar por 6, e decir f 4 rp 4rp Ejeplo 6 Exprear la frecuencia de 54 rp, rp y rad/. Solución: conerión de rp a rp uelta uelta 54 uelta uelta 54 rp 54 54 9 9rp in. 6 6 Conerión de rp a rad/ Recordar que uelta equiale a un ángulo de π radiane. (uar π 3, 4 ) uelta uelta πrad rad 54 rp 54 9 9 8π 56, 556 in. rad Coniderando lo concepto de período y frecuencia, e tiene que para una uelta copleta e cuple que: Arco decrito (b) π r π φ (períetro de la circunferencia), φ diáetro Angulo decrito (θ) π Tiepo epleado (t) T Reeplazando eta inforación en la forula de rapidez tangencial y angular reulta: arco π r π φ π φ tiepo T f f 54

y ángulo π π ω π tiepo T f f Ejeplo 7 La polea de un otor eléctrico de 8 c de radio gira a 3 rp, calcular: a) Período b) Velocidad lineal en / c) Velocidad angular en rad/ Solución (a) Periodo En prier lugar e tranforará de rp a rp. 3 3 rp rp,5 rp,5 6 El alor de 3 rp,5 rp correponde a la frecuencia, y coo el periodo e alor reciproco de la frecuencia, e tiene que: T f,5 Solución (b) Velocidad lineal en / (uar π 3, 4 ) La elocidad lineal queda deterinada por: π φ f El diáetro correponde al doble del radio, e decir: φ r 8 c 6 c,6 Reeplazando alore correpondiente e tiene: π φ f 3,4,6,5 55

Multiplicando e obtiene el alor de la elocidad lineal e decir:,5 Solución (c) Velocidad angular en rad/ (uar π 3,4rad ) La elocidad angular queda deterinada por: Reeplazando alore para π y f reulta: ω π f ω 3,4rad,5 Multiplicando e obtiene el alor de la elocidad angular, e decir: rad ω 3,4 Relación entre y ω Coo π r T T π r y ω π T T π ω Igualando eto do reultado e tiene: Multiplicando cruzado: π r π ω ω π r π Cancelando por π, e tiene: 56

ω r ω Ejeplo 8 Un cuerpo e uee en una trayectoria circular de c de radio y con una elocidad angular de 4 rad/. Cuál e el alor de la elocidad lineal?? r c rad ω 4 Solución: Utilizando la relación entre elocidad lineal y elocidad angular, e tiene: ω r En ete cao olo e debe reeplazar alore ya que e conoce la elocidad angular y el radio de l a circunferencia, por lo tanto: 57

rad 4 c Multiplicando: c 48 4, 8 Recuerde para paar de c a e debe diidir por. Ejeplo 9 Si la elocidad lineal y angular de un cuerpo, en oiiento circular unifore on,8 / y 5 rad/ repectiaente, deterinar el radio de la circunferencia decrita., 8 r rad ω 5 Solución: Coo en ete cao e conocen aba elocidade, e debe depejar el radio a partir de la ecuación que relaciona la elocidad lineal con la elocidad angular, eto e: ω r Depejando el radio r : r ω Reeplazando lo alore de elocidad lineal y elocidad angular, e tiene el radio que e pide: 58

,8 rad 5 r Diidiendo e obtiene el alor del radio, e decir:,46 4,6 c r 9. Con qué elocidad de corte, trabaja una broca epiral de 5 de diáetro, que ejecuta 8? in Solución En prier lugar identificareo la ariable anotando lo dato entregado Dato Velocidad de corte Velocidad circunferencial? Diáetro φ 5,5 Frecuencia (reolucione) f 8 in 8 r.p.. De acuerdo a lo dato entregado la forula a utilizar e: π φ f 59

Reeplazando lo dato y ultiplicando obteneo la elocidad que e pide, e decir: π,5 8 in,5 in Ejeplo Un cuerpo que gira en una circunferencia de 5 c de radio, tiene una elocidad de /, Cuál e el alor de la elocidad angular? Solución: En ete cao e conoce el radio de la circunferencia decrita y la elocidad lineal del cuerpo que la decribe, por lo tanto de la relación entre elocidad lineal y elocidad angular e debe depejar eta últia, eto e: ω r r ω Reeplazando alore correpondiente reulta: ω,5 Al cancelare lo etro debe entendere que la unidad que queda correponde a radian. Diidiendo y cancelando la unidad de etro, e obtiene el alor de la elocidad angular, e decir: rad ω 4 6

Ecuación de traniión del oiiento Cuando e tienen do rueda o polea, de ditinto diáetro, unida por una correa o por una cadena, e produce una traniión de oiiento, la polea en donde e origina el oiiento, e llaa otríz (generadora), ientra que la otra e llaa conducida (arratrada). En eta traniión de oiiento e cuple que la frecuencia e ayor en la polea de enor diáetro (en un io tiepo la polea pequeña da un ayor núero de uelta), lo que quiere decir que la rapidez angular e ayor en la polea de enor diáetro, en cabio la rapidez circunferencial, (tangencial) e la ia para aba polea debido a que en un intante el deplazaiento de la correa e el io en la polea grande coo en la polea pequeña. φ f Motríz i Conducida φ f Coo la rapidez lineal e la ia en aba polea, e puede anotar: Pero: π φ f Entonce π φ f π φ f Diidiendo por π, e obtiene: Expreión denoinada del oiiento φ f φ f Ecuación de traniión Coniderando la ecuación de traniión: Se puede ecribir: φ f φ f 6

f f φ φ Expreión conocida con el nobre de relación de traniión, y deignada por i, e decir: i f f φ φ Expreión que indica que la frecuencia e ineraente proporcional al diáetro de la polea, e decir, a ayor diáetro de la polea, enor e el núero de uelta. Oberacione: - Polea concéntrica o olidaria ignifican que giran en un io eje, con la ia frecuencia - Lo ubíndice ipare repreentan polea o rueda otrice, ientra que lo ubíndice pare, repreentan polea conducida o arratrada. 3- En cao que la traniión ea por engrane, la ecuación de traniión e tranfora en: Donde Z e el núero de diente. Z f Z f 4- La relación de traniión total ( i Total ) e obtiene por la ultiplicación de la relacione de traniione parciale, e decir: i i i...... Total i n Ejeplo La rueda otríz de de D de un otor eléctrico, gira con 4 [/in], qué diáetro tendría que tener la rueda accionada al girar con 3 [/in]? 6

Motríz Conducida Solución Ete problea correponde a una traniión de oiiento, por lo tanto e debe utilizar la ecuación de traniión del oiiento, e decir: φ f φ otriz otriz conducida f conducida Coo e conoce el diáetro y frecuencia de la rueda otriz, adeá de la frecuencia de la rueda conducida, la olución conite ipleente en depejar el diáetro de la rueda conducida: φotriz f otriz φ conducida f conducida Reeplazando alore y realizando la operatoria, reulta: φ conducida 3 4 [ / in] [ / in] φconducoda 55 Aceleración Centrípeta ( a N ) En ete oiiento exite una aceleración lineal, debida a que la elocidad lineal del cuerpo cabia de dirección en cada intante, iendo u agnitud o ódulo contante en el tiepo. 63

A B θ A a N B La aceleración noral queda definida ectorialente coo el producto cruz entre la elocidad angular ω y la elocidad lineal, e decir: a N iˆ ω ω x x ˆj ω y y kˆ ω z z La aceleración noral e un ector dirigido hacia el centro de curatura. Ecalarente la aceleración noral o centrípeta queda definida por: Donde: ω Módulo de la elocidad angular Módulo de la elocidad lineal r Radio de la circunferencia. ω r r a N Ejeplo 3 La polea de un otor eléctrico tiene un radio de,5 c y gira a 3 rp. Calcular la aceleración noral en un punto ituado en la periferia de la polea. Solución: Coo e pide calcular la aceleración noral en un punto de la periferia de la polea, e neceita conocer la elocidad angular o la elocidad lineal. En ete cao e conoce la 64

frecuencia y el radio de la polea por lo tanto e poible calcular aba elocidade, en eta ocaión e calculará la elocidad angular ω. ω π f Ante de reeplazar alore e tranforara lo 3 rp a rp para trabajar en la rad unidade de : 3 3 rp rp,5rp,5 6 Hora e poible deterinar la elocidad angular, eto e: Multiplicando: ω 3,4rad,5 rad ω 3,4 Coo ya e conoce la elocidad angular, entonce e calcula la aceleración centrípeta por edio de la forula: a N ω r Reeplazando lo alore de la elocidad angular y el radio de la polea, e tiene: rad a N 3,4, 5c Eleando al cuadrado y ultiplicando e obtiene el alor de la aceleración centrípeta, e decir: c a N 4,68, 47 Recordar que la ultiplicación entre una unidad angular y una de longitud arroja una unidad de longitud. Ejeplo 4 Para la traniión indicada en la figura, e pide deterinar: elocidad lineal en la polea, aceleración centrípeta en polea 3, elocidad angular en polea 4, y relación total de traniión. 65

[ ] φ 6 c 4 i Solución: φ 4 φ 3 [ c] [ c] i φ 8 f [ c] [ rp] 7 a) Para acar la elocidad lineal en e neceita aber u frecuencia, por lo cuál priero e calculará la frecuencia de eta polea, para eto e aplica la ecuación de traniión del oiiento, eto e: b) Velocidad lineal en polea. f f f f φ f f φ φ,4 φ [ ] 8[ c] 4[ c] [ ] π φ f 3,4 3,4,4[ ],4[ ] [ ] c) Aceleración centrípeta en polea 3. a a a N 3 N 3 N 3 V3 ω3 r3 π r 3 ( f ) ( 6,8,4) [ rad / ],5[ ],358[ / ] 3 r 3 d) Velocidad angular en polea 4. 66

ω4 π f 4 - Para obtener la elocidad angular de la polea 4, e neceita aber la frecuencia, para eto e aplica la ecuación de traniión del oiiento, eto e: φ3 f 3 φ4 f φ3 f 3 f 4 φ4 f f 4 4,5 4 [ c],4[ / ] 6[ c] [ ] - Obteniendo ete reultado e regrea a la ecuación original: ω4 π f ω4 6,8 ω,94 4 4 [ rad],5[ / ] [ rad / ] e) Relación total de traniión. i Total i φ φ 4c 6c φ 8c c 4 i φ 3 8 Moiiento circular uniforeente acelerado MCUA E un oiiento de trayectoria circunferencial y experienta una ariación en el ódulo de la elocidad angular que e antiene contante en el tiepo, e decir e produce una aceleración angular contante. La ecuacione que rigen ete oiiento correponden a la regla de oro de la cineática, pero en ella e debe cabiar la ariable lineale por ariable angulare, e decir: 67

θ ( t) θ + ω t + α t Ecuación de poición angular (Entrega la poición angular en el tiepo t) ω ω + α t Ecuación de elocidad angular en el tiepo t ω ω θ θ + α Ecuación de poición angular independiente del tiepo Adeá exite una aceleración lineal que tiene do coponente, una tangencial y la otra noral y e cuple que: a a c + a t (Aceleración lineal) a c ω r (Aceleración centrípeta) a t α r (Aceleración tangencial) Sibología utilizada 68

θ ( t) θ Poición angular en el tiepo t Poición angular independiente del tiepo θ Poición angular inicial ω Módulo de elocidad angular inicial ω Módulo de elocidad angular final α Módulo de aceleración angular a Módulo de aceleración lineal a c Módulo de aceleración noral o centrípeta a t Módulo de aceleración lineal r Radio de la circunferencia Ejeplo Cuando e arranca un otor eléctrico, ete alcanza u elocidad noinal a 33 rp en 6, y cuando e apaga el otor, ete deora en detenere 8. Suponiendo un oiiento unifore acelerado. Hallar el núero de uelta que da el otor. a) Hata alcanzar u elocidad noinal b) Hata detenere Solución Arranque del otor ω re rad ω 33 rp 55 345,5 t 6[ ] Cálculo de aceleración angular α hata que e alcanza la elocidad noinal. 69

Ecuación elocidad dependiente del tiepo ω ω + α t Depejando α e obtiene: Diidiendo: ω ω α t re 55 α 6 [ ] rad re 57,567 9,67 α Cálculo del nº de reolucione en alcanzar elocidad noinal Ecuación de poición angular dependiente del tiepo θ θ + ω t + α t En el encendido tanto la poición angular inicial coo la elocidad angular inicial on iguale a cero, por lo tanto reulta: θ α t Reeplazando alore correpondiente e tiene: [ ] re θ 9,67 36 / / / / Multiplicando reulta el núero de reolucione que e pide: θ 65[ re] Apagado del otor re rad ω 33 rp 55 345,5 ω 7