1. Caracterización de compacidad en espacios métricos

Documentos relacionados
Espacios completos. 8.1 Sucesiones de Cauchy

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Subconjuntos notables de un Espacio Topológico

Espacios topológicos. 3.1 Espacio topológico

1 Números reales. Funciones y continuidad.

1. Sucesiones y redes.

Continuidad. 5.1 Continuidad en un punto

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Reconocer y utilizar las propiedades sencillas de la topología métrica.

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

6.1 Pruébese que la unión de un número finito de conjuntos acotados es un conjunto acotado.

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Topología

Axiomas de separación

Resumen de Análisis Matemático IV

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Subconjuntos destacados en la

Resumen. Notas del curso dictado por la Dr. Beatriz Abadie en la facultad de ciencias en el semestre impar del año 2003.

Introducción a la topología

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012

(x + y) + z = x + (y + z), x, y, z R N.

Teoremas del punto jo

1. ESPACIOS DE HILBERT Y OPERADORES

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una topología de los números naturales*

Espacios conexos. Capítulo Conexidad

Convergencia de sucesiones

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real

Cálculo vs Análisis. Trabajos

El método de súper y sub soluciones en el espacio de funciones casi periódicas.

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

Conjuntos Medibles. Preliminares

Benemérita Universidad Autónoma de Puebla. Ejemplos de Espacios Pseudocompactos

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Integrales múltiples

Tema IX: TOPOLOGÍA. Tema IX: TOPOLOGÍA

Teoremas de convergencia y derivación bajo el signo integral

Funciones integrables en R n

MMAF: Espacios normados y espacios de Banach

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Introducción a la Teoría Analítica de Números

Topología de la Recta

Límites Laterales. El límite por la derecha se denota. x 2 + x 2 = 1. x 2. x + x 2. x = x + x 2. El límite por la izquierda se denota

Álgebras de Boole. Definición 1 Un álgebra de Boole es un conjunto parcialmente ordenado (B, ) que verifica las siguientes condiciones:

SISTEMAS DINÁMICOS DISCRETOS: UNA INTRODUCCIÓN

Funciones de Clase C 1

Volumen y conjuntos de medida cero

520142: ALGEBRA y ALGEBRA LINEAL

José Luis Navarro Departamento de Matemáticas Universidad de Zaragoza

Tesis que para obtener el título de:

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

4. " $#%&' (#) para todo $#* (desigualdad triangular).

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

1. Convergencia en medida

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

PAIEP. Complemento Ortogonal

Topología de un espacio métrico

TOPOLOGÍA. Hausdorff y cosas raras

5.1. Límite de una Función en un Punto

Teoremas de Convergencia

y tenemos que f(x) > M < 1 M 1 f(x) < 1 M 3x 5 (x 2) 2 = +

Las particiones y el Teorema de Bolzano

Espacios vectoriales

Análisis III. Joaquín M. Ortega Aramburu

Capítulo 1. Espacios de Hilbert Introducción

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

A partir de la definición obtenemos las siguientes propiedades para estas funciones:

Notas de Medida, Integración y Probabilidad

Espacios, Funciones y Multifunciones

Teoría de la Medida e Integración. Carlos Martínez Yáñez

Sucesiones y Suma Finita

Espacios Vectoriales

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

Análisis IV. Joaquín M. Ortega Aramburu

si este límite es finito, y en este caso decimos que f es integrable (impropia)

MÁS REFLEXIONES SOBRE CONJUNTOS ESTRELLADOS: LA FÁBRICA DE CONTRAEJEMPLOS

Análisis Real: Primer Curso. Ricardo A. Sáenz

Notas de Análisis. Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios:

Algunas aplicaciones de los puntos F límites en topología, análisis y álgebra

AMPLIACIÓN DE MATEMÁTICAS

Capítulo 4: Polinomios

Funciones convexas Definición de función convexa. Tema 10

4. Complementos sobre Problemas de Contorno para S.D.O. Lineales. 4. Complementos sobre Problemas de Contorno

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor

Programa de Topología General. Enrique Artal Bartolo. José Ignacio Cogolludo Agustín. Curso 2005/2006

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

LOS AXIOMAS DE PEANO Y EL PRINCIPIO DE INDUCCIÓN MATEMÁTICA

Notas complementarias al curso. Transformada Ondita Teoría y Aplicaciones. Segunda Escuela de Posgrado - Red ProTIC

La Intersección Arbitraria de una Familia de Subconjuntos Abiertos con la Propiedad α-s-localmente Finita es α-semiabierta

Descomposición en forma canónica de Jordan (Segunda versión)

AMPLIACIÓN DE MATEMÁTICAS

Parte I. Iniciación a los Espacios Normados

MOOC UJI: La Probabilidad en las PAU

Sucesiones Introducción

Transcripción:

Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS TEÓRICO-PRÁCTICAS 10: COMPACIDAD II 1. Caracterización de compacidad en espacios métricos 1.1. Espacios totalmente acotados Un espacio métrico compacto es necesariamente acotado ya que todo cubrimiento por bolas de radio 1 tiene un subcubrimiento nito. De lo visto en el práctico anterior (para espacios Haudor) podemos concluir que en un espacio métrico los subconjuntos compactos son cerrados y acotados. Además vimos una descripción completa de los compactos de R n : los compactos son los subconjuntos cerrados y acotados (Heine-Borel). Sin embargo este resultado no es cierto en general. Ejercicio 1. Sea X = {e n : n N} l 2 (N), donde e n es la sucesión que en el lugar n tiene un 1 y el resto son ceros. Probar que X es cerrado, acotado, pero no compacto. En particular la bola unidad cerrada de l 2 (N) no es compacta. Veamos a continuación una propiedad interesante que tienen los compactos. Denición. Decimos que un espacio métrico es totalmente acotado si para todo ε > 0 se tiene que X puede descomponerse en unión nita de conjuntos con diámetro menor que ε. Observación. Observar que un espacio métrico X es totalmente acotado si y sólo para todo ε > 0 el espacio puede escribirse como X = B(x 1, ε) B(x n, ε). En este sentido, un espacio métrico es totalmente acotado si para todo ε > 0 existe un conjunto nito de puntos x 1,..., x n X tal que todo punto x X dista menos de ε de algún x i. Observación. Es claro que un espacio métrico totalmente acotado, es acotado. En R, cualquier subconjunto acotado, es totalmente acotado. Sin embargo, esto no ocurre en general. Observación. En un espacio métrico, si un subconjunto A es acotado entonces diam(a) = diam(a). Por lo tanto, en la descomposición de un espacio totalmente acotado podemos pedir que los subconjuntos sean cerrados. Ejercicio 2. Probar que si X es un espacio métrico totalmente acotado entonces es separable. En particular, un espacio métrico compacto es separable. 1

1.2. Bolzano-Weierstrass y compacidad secuencial Denición. Decimos que un espacio X satisface la propiedad de Bolzano-Weierstrass si todo subconjunto innito de X tiene un punto de acumulación en X. Ejercicio 3. Probar que compacidad implica la propiedad de Bolzano-Weierstrass. Ejemplo. El recíproco del resultado anterior no es cierto. Un ejemplo de esto es (Z, τ), con la topología τ generada por la base B := {( n, n) Z : n N}. Vericar! Denición. Un espacio X se dice secuencialmente compacto si toda sucesión tiene una subsucesión convergente. Ejercicio 4. Probar que si X es secuencialmente compacto entonces cumple la propiedad de Bolzano-Weierstrass. Ejemplo. El recíproco no es cierto. Basta considerar el espacio topológico (Z, τ) dado en el ejemplo anterior. Vericar! Teorema. Sea X un espacio métrico. Entonces son equivalentes: (i) X es compacto; (ii) X es satisface la propiedad de Bolzano-Weierstras; (iii) X es secuencialmente compacto; (iv) X es completo y totalmente acotado. Ejercicio 5. Probar el teorema. Se sugiere hacerlo en el orden establecido. Para probar (iv) implica (i) se sugiere seguir de manera análoga a la siguiente prueba del Teorema de Heine-Borel en R. Supongamos por absurdo que existe un cubrimiento abierto [a, b] α I U α, sin subcubrimiento nito. Partiendo [a, b] en dos intervalos cerrados (por el punto medio), tenemos que alguno de los dos intervalos no puede ser cubierto por una cantidad nita de U α 's. Sea [a 1, b 1 ] dicho intervalo. De manera análoga construimos una sucesión de intervalos cerrados encajados que no tienen un subcubrimiento nito. Dado que [a, b] es completo, por le teorema de encaje de Cantor tenemos que existe un único punto c [a, b] común a todos los intervalos. Pero c pertenece a algún abierto U α lo cual es un absurdo dado que en algún momento los intervalos son interiores a ese abierto, y por lo tanto son cubiertos por un abierto sólo. Observación. Las propiedades (i), (ii) y (iii) son puramente topológicas, por consiguiente su equivalencia sigue siendo válida para espacios topológicos metrizables. Ejercicio 6. Usar la clasicación anterior para dar una prueba del Teorema de Tijonov para el caso de productos numerables usando el proceso diagonal de cantor. 2

1.3. Número de Lebesgue de un cubrimiento Denición. Dado un cubrimiento de un espacio métrico X por conjuntos C α, α I, el número de Lebesgue del cubrimiento es el real ɛ > 0 tal que toda bola B(x, ε) en X está contenida en al menos un C α. Ejercicio 7. Todo cubrimiento abierto de un espacio métrico compacto tiene un número de Lebesgue. (Sug: considera la función distancia d(x, U c i ), denida en el Ejercicio 13, donde U i es un abierto del cubrimiento (nito). ) Ejercicio 8. Sea f : X Y una función continua entre espacios métricos, donde X es compacto. Entonces f es uniformemente continua. 2. Espacios localmente compactos Denición. Decimos que un espacio topológico X es localmente compacto (l.cc.) si todo x X contiene un entorno compacto, i.e., existe K N x tal que x int(k). Ejemplos. Todo espacio compacto es l.cc., R es l.cc. Todo espacio discreto es l.cc. Todo subconjunto abierto o cerrado de un espacio métrico l.cc. es l.cc. Sin embargo Q, l 2 (N) y cualquier bola cerrada de l 2 (N) no son l.cc. Observación. Observar que la denición no es local: en general una espacio cumple una propiedad localmente si para todo x X y todo U N x se tiene que existe V N x que cumple la propiedad P y V U. Ejercicio 9. Probar que si X es un espacio topológico Hausdor, entonces son equivalentes: (i) X es localmente compacto; (ii) Para todo x X y entorno U N x, existe V N x tal que V es compacto y V U. 2.1. Compacticación por un punto Denición. Una compacticación de un espacio X es un espacio X compacto junto con una inmersión (homeomorsmo sobre su imagen) ι : X X que cumple ι(x) = X. Ejemplo. Consideremos el intervalo (0, 1) con la topología heredada de R. El intervalo [0, 1] junto con la inclusión es una compacticación de (0, 1). Otra compacticación de (0, 1) es el par (S 1, ι) donde ι(t) = e 2πit. Este ejemplo nos permite observar que la compacticación de un espacio (de existir) no es única. Tomemos (X, τ) un espacio, Hausdor, y no compacto. Denimos X = X {X}, para simplicar la notación renombremos el punto agregado como = {X}. Un entorno abierto de es V K = X K donde K es un compacto de X. Llamemos N a la familia de entornos abiertos de y consideramos la toplogía τ = τ N. El espacio ( X, τ) es la compacticación por un punto de (X, τ). 3

Ejercicio 10. Probar que ( X, τ) es efectivamente una compacticación de (X, τ), es decir que es compacto y que la inclusión es una inmersión con imagen densa. ¾Que sucede si no pedimos que X sea no compacto? Ejercicio 11. Sea X un espacio y X su compacticación por un punto. Probar que X es de Hausdor si y sólo si X es localmente compacto. Ejercicio 12. Probar que si ( X, τ, ι 1 ) y ( ˆX, ˆτ, ι 2 ) son dos compacticaciones de (X, τ) tal que X X y ˆX X tienen un punto, entonces X y ˆX son homemorfos. Ejercicio 13. Probar que la compacticación por un punto de R 2 es homeomorfa a la esfera S 2. 3. Ejercicios complementarios 3.1. Propiedad de intersección nita La noción de compacidad también puede ser formulada en términos de conjuntos cerrados. Denición. Sean X un conjunto y F P(X) una familia de subconjuntos de X. Decimos que F satisface la propiedad de intersección nita si para toda subfamilia nita {F 1,..., F n } F se tiene n i=1f i. Ejercicio 14. Probar que un espacio topológico X es compacto si y sólo si para toda familia de subconjuntos cerrados de X con la propiedad de intersección nita se tiene F F F. 3.2. Distancias a conjuntos Ejercicio 15. Sea (X, d) un espacio métrico, y A X. 1. Recordar que el diámetro de un conjunto se dene por diam A := sup{d(a, b) : a, b A} (en caso de que exista). Probar que si A es compacto entonces el diam A existe, y existen a, b A tal que diam A = d(a, b ). 2. Si x X se dene d(x, A) := ínf{d(x, a) : a A}. Probar que x X d(x, A) R es continua. Estudiar en qué casos esa distancia es realizada discutiendo según A cerrado, compacto. (Sug: en l 2 (N) considere d((0) n N, F ) donde F = {(1 + 1/n)e n : n N}.) 3.3. Dimensión innita vs dimensión nita. Ejercicio 16. Probar que no existe n N tal que l 2 (N) sea homeomorfo a R n con la distancia usual. Observar, por otro lado, que para todo natural n se tiene un encaje isométrico i : R n l 2 (N), donde la distancia en R n es la euclídea. Ejercicio 17. 1. Probar que [0, 1] [0,1] con la topología producto no es secuencialmetne compacto, aunque si compacto. 4

2. Probar que [0, 1] [0,1] con la topología producto no es homeomorfo a [0, 1] n para ningún n N. 3. Probar que el espacio vectorial F b de las funciones acotadas del [0, 1] a R con la topología producto heredada de R [0,1] no es homeomorfo a R n para ningún n N. Ejercicio 18. Se dene el cubo de Hilbert H l 2 (N) dado por H = {x l 2 (N) : 0 x n 1, for all n N}. Probar que H es compacto. Probar que para todo n N se cumple que n H tiene una copia del cubo n-dimensional [0, 1] n R n, es decir, H contiene un subconjunto homeomorfo al cubo n-dimensional. 5