Límites Laterales. El límite por la derecha se denota. x 2 + x 2 = 1. x 2. x + x 2. x = x + x 2. El límite por la izquierda se denota

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Límites Laterales. El límite por la derecha se denota. x 2 + x 2 = 1. x 2. x + x 2. x = x + x 2. El límite por la izquierda se denota"

Transcripción

1 Límites Laterales Denición. Si f : D R R y x 0 es un punto de D, decimos que l d es ite de f en x 0 por la derecha si ɛ > 0 δ ɛ > 0 f(x) l d < ɛ si 0 < x x 0 < δ ɛ ɛ > 0 δ ɛ > 0 f(x) l d < ɛ si x 0 < x < x 0 + δ El ite por la derecha se denota f(x) = l d + x 2 = Solución Sea ɛ > 0, sea δ > 0 entonces 0 < x 2 < δ 2 < x < 2 + δ x 2 = x 2 x 2 = = 0 < ɛ + x 2 = =, x 0 x 0 + x Solución Sea ɛ > 0, sea ɛ = δ > 0 entonces 0 < x < δ x = x = + x = x < δ = ɛ = x 0 + x Denición 2. Si f : D R R y x 0 es un punto de acumulación de D, decimos que l i es ite de f en x 0 por la izquierda si ɛ > 0 δ ɛ > 0 f(x) l i < ɛ si 0 < x 0 x < δ ɛ ɛ > 0 δ ɛ > 0 f(x) l i < ɛ si x 0 δ < x < x 0 El ite por la izquierda se denota f(x) = l i Facultad de Ciencias UNA Cálculo Diferencial e Integral

2 Solución Sea ɛ > 0, sea δ > 0 entonces 0 < 2 x < δ 2 δ < x < 2 x 2 = x 2 ( ) = (x 2) ( ) x 2 = ( ) = 0 < ɛ x 2 = =, x 0 x 0 x Solución Sea ɛ > 0, sea ɛ = δ > 0 entonces δ < x < 0 ( ) x = x + = x + = x < δ = ɛ = x 0 + x Teorema. Sea f : D R R y x 0 D se tiene entonces f(x) = L f(x) = L = f(x) Demostración. )Como entonces f(x) = L Dada ɛ > 0 δ ɛ > 0 tal que x Dom f, 0 < x x 0 < δ ɛ f(x) L < ɛ entonces x Dom f, 0 < x x 0 < δ x 0 < x < x 0 + δ 0 < x x 0 < δ f(x) L < ɛ y también 0 < x 0 x < δ x 0 < x < δ x 0 x 0 δ < x < x 0 0 < x x 0 < δ f(x) L < ɛ )Supongamos que f(x) = L y f(x) = L f(x) = L y f(x) = L Facultad de Ciencias UNA Cálculo Diferencial e Integral 2

3 Sea ɛ > 0 entonces f(x) = L δ > 0 tal que x Dom f, x 0 δ < x < x 0 f(x) L < ɛ y también f(x) = L δ 2 > 0 tal que x Dom f, x 0 < x < x 0 + δ 2 f(x) L < ɛ Elegimos δ = mín{δ, δ 2 } entonces x Dom f 0 < x x 0 < δ cualquiera de las dos x 0 δ < x < x 0 o x 0 < x < x 0 + δ en cualquiera de los dos casos f(x) L < ɛ, x Dom f, 0 < x x 0 < δ f(x) L < ɛ y f(x) = L Límites Innitos Denición 3. Sea A R, sea f : A R y sea x 0 R un punto de acumulación de A. Se dice que f tiende a cuando x x 0, y se escribe f(x) = si > 0 R δ > 0 x A con 0 < x x 0 < δ f(x) > Ejemplo ostrar que x 0 x 2 = + Solución Demostración. tenemos que si f(x) > entonces x 2 > > x2 > x δ ɛ = con esta δ se tiene que: x 0 < δ x < x 2 < < x 2 Ejemplo ostrar que x 5 (x 5) 2 = + Facultad de Ciencias UNA Cálculo Diferencial e Integral 3

4 Demostración. tenemos que si f(x) > entonces (x 5) 2 > > (x 5)2 > ( x 5 )2 > x 5 δ = con esta δ se tiene que: x 5 < δ x 5 < x 5 2 < (x 5) 2 < (x 5)2 < < (x 5) 2 Denición 4. Sea A R, sea f : A R y sea x 0 R un punto de acumulación de A. Se dice que f tiende a cuando x x 0, y se escribe f(x) = si > 0 R δ > 0 x A con x x 0 < δ f(x) < Ejemplo Pruebe que x (x ) 4 = Solución En este caso se tiene que f(x) < (x ) 4 < < (x ) 4 (x )4 < 4 x < proponemos δ = 4. Tenemos entonces que x < δ x < 4 x 4 < (x )4 < < (x ) 4 (x ) 4 < Ejemplo Pruebe que x (x ) 4 = x = Solución Para esto se tiene que f(x) < x < x > suponemos entonces que δ =, entonces se tiene que 2 0 < < δ 0 < < 2 2 < x 2 < 2 2 < x Facultad de Ciencias UNA Cálculo Diferencial e Integral 4

5 ahora necesitamos que ( x) > k =, por lo que k = 2 2 > 2 2 > (x 2)2 2 > 2 > 2 > 2 Sea > 0 y de esta manera elegimos δ = mín { 2, 2 }, por tanto se tiene 0 < < δ 0 < < 2 y 0 < < 2 2 < x y 2 < = 2 2 < x > x x = Teorema 2. Suponga que f(x) > 0 x (x 0 δ, x 0 + δ) donde x 0 es punto del Dom f, entonces Demostración. ( ) Supongamos que esto quiere decir f(x) = + f(x) = + f(x) = 0 > 0 R δ > 0 x A con 0 < x x 0 < δ f(x) > si > 0 entonces > 0 y hacemos ɛ = y tenemos que x Dom f, 0 < x x 0 < δ f(x) > f(x) > ɛ ɛ > f(x) f(x) 0 < ɛ f(x) = 0 Facultad de Ciencias UNA Cálculo Diferencial e Integral 5

6 ( ) Supongamos que f(x) = 0 Sea > 0 y hacemos ɛ =, por lo que x f(x) = 0 δ > 0 x Dom f 0 < x x 0 < δ f(x) 0 < f(x) < f(x) = + f(x) > f(x) 0 < ɛ Ejemplo Pruebe que 3x 5 = + Solución Tenemos que f(x) = 3x 5 (x 2)2 = f(x) 3x 5 en este caso si x 2 entonces 3x 5 Como entonces 3x 5 = 0 = 0 3x 5 = + Límites Laterales Innitos > 0 para x cercana a dos. f(x) Denición 5. Sea A R, sea f : A R y sea x 0 R un punto de A. Se dice que f tiende a + cuando x x 0, y se escribe f(x) = + si > 0 R δ > 0 x A con x 0 δ < x < x 0 f(x) > Denición 6. Sea A R, sea f : A R y sea x 0 R un punto de A. Se dice que f tiende a cuando x x 0, y se escribe f(x) = si > 0 R δ > 0 x A con x 0 δ < x < x 0 f(x) < Facultad de Ciencias UNA Cálculo Diferencial e Integral 6

7 Denición 7. Sea A R, sea f : A R y sea x 0 R un punto de A. Se dice que f tiende a + cuando x x + 0, y se escribe f(x) = + si > 0 R δ > 0 x A con x 0 < x < x 0 + δ f(x) > Denición 8. Sea A R, sea f : A R y sea x 0 R un punto de A. Se dice que f tiende a cuando x x + 0, y se escribe f(x) = si > 0 R δ > 0 x A con x 0 < x < x 0 + δ f(x) < Facultad de Ciencias UNA Cálculo Diferencial e Integral 7

y tenemos que f(x) > M < 1 M 1 f(x) < 1 M 3x 5 (x 2) 2 = +

y tenemos que f(x) > M < 1 M 1 f(x) < 1 M 3x 5 (x 2) 2 = + Teorema. Suponga que f() > 0 ( 0 δ, 0 + δ) donde 0 es punto de acumulación del Dom f, Demostración. ( ) Supongamos que esto quiere decir f() = + 0 f() = + 0 0 M > 0 R δ > 0 A con 0 < 0 < δ f() > M si M

Más detalles

Funciones de R m R n

Funciones de R m R n Funciones de R n R m Funciones de R m R n Una funcion f : R n R m es una función cuyo dominio es un subconjunto Ω R n. Denotada por f : Ω R m donde a cada x R n f le asigna un vector f(x) R m. Ejemplo.-

Más detalles

Diferenciales en Campos Vectoriales

Diferenciales en Campos Vectoriales Diferenciales en Campos Vectoriales Sea f : R R definida por f(x, y) ( e xy, x + y, x 3 y ) la diferencial de f en (1, 3) tendrá que tener alguna relación con las diferenciales de sus componentes en (1,

Más detalles

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0

DERIVACIÓN COMPLEJA. Sea f definida en todos los puntos z de algún entorno z 0 1. DERIVACIÓN COMPLEJA Límites Sea f definida en todos los puntos z de algún entorno z 0 f(z) ω 0 es decir, el punto ω f(z) puede quedar próximo a ω 0 si elegimos z suficientemente próximo a z 0, pero

Más detalles

El Teorema de la función implicita versión para funciones f : R R

El Teorema de la función implicita versión para funciones f : R R Funciones de R n en R 1 El Teorema de la función implicita versión para funciones f : R R Teorema 1. Considere la función y = f(x). Sea (x 0, y 0 ) R 2 un punto tal que F (x 0, y 0 ) = 0. Suponga que la

Más detalles

2. FUNCIONES CONTINUAS.

2. FUNCIONES CONTINUAS. . FUNCIONES CONTINUAS. En este capítulo nos centraremos en el estudio de las funciones continuas. Para ello, necesitamos estudiar el concepto de ite y algunas de sus propiedades..1. Límites de una función.1.1.

Más detalles

Diferenciación de funciones f : R n R m. f(x, y) = ( e xy, x 2 + y, 2x 3 y 2) r(h) (h 1, h 2 ) e. 2(1 + h 1 ) 3 (3 + h 2 ) h 1 12h 2

Diferenciación de funciones f : R n R m. f(x, y) = ( e xy, x 2 + y, 2x 3 y 2) r(h) (h 1, h 2 ) e. 2(1 + h 1 ) 3 (3 + h 2 ) h 1 12h 2 Funciones de R n en R m Diferenciación de funciones f : R n R m Definición. Considere la función f : A R n R m definida en un conjunto abierto A de R n y sea x 0 A. Se dice que esta función es diferenciable

Más detalles

Operaciones con Funciones Vectoriales. Límites de Funciones Vectoriales

Operaciones con Funciones Vectoriales. Límites de Funciones Vectoriales Operaciones con Funciones Vectoriales Las operaciones usuales del algebra vectorial pueden aplicarse para combinar funciones o una función vectorial con una función real. Si f y g son funciones vectoriales

Más detalles

Tema 6: Límites y continuidad

Tema 6: Límites y continuidad Tema 6: Límites y continuidad March 25, 217 Contents 1 *Conceptos relativos a funciones 2 1.1 Dominio de funciones usuales........................................ 2 1.2 Funciones periódicas.............................................

Más detalles

1. CONTINUIDAD EN VARIAS VARIABLES

1. CONTINUIDAD EN VARIAS VARIABLES 1 1. CONTINUIDAD EN VARIAS VARIABLES 1.1. PRIMERAS DEFINICIONES. LÍMITES Definición 1.1. Sea A R n. Una función real de varias variables es una aplicación f : A R n R m con f(x 1,..., x n ) = (y 1,...,

Más detalles

TEMA 5: LÍMITES Y CONTINUIDAD DE UNA FUNCIÓN.

TEMA 5: LÍMITES Y CONTINUIDAD DE UNA FUNCIÓN. TEMA 5: LÍMITES Y CONTINUIDAD DE UNA FUNCIÓN. 5.0. INTRODUCCIÓN. En este tema introduciremos los conceptos de límite de una función en un punto y de continuidad de una función que serán básicos en toda

Más detalles

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B Relaciones Funcionales Sean A, B dos conjuntos no vacíos, que llamaremos dominio y contradominio respectivamente. Entenderemos por función de A en B toda regla que hace corresponder a cada elemento del

Más detalles

Sucesiones y Series de Funciones

Sucesiones y Series de Funciones Sucesiones y Series de Funciones Consideremos una sucesión {f n }, donde f n : I R R, entonces decimos que {f n } es una sucesión de funciones. Ejemplos: i) {f n }, donde f n : R R está dada por Tenemos

Más detalles

Series. Denición y Ejemplos de Series. a n o bien a n

Series. Denición y Ejemplos de Series. a n o bien a n 7. Denición y ejemplos de sucesiones y series convergentes y no convergentes. Series Denición y Ejemplos de Series Denición. Al sumar los términos de una sucesión innita {a n } forma a + a + a + + a n

Más detalles

Medida Cero y Contenido Cero. U i. v(u i ) < ) I k y v(i k ) = ɛ. y para la suma de los volumenes se tiene

Medida Cero y Contenido Cero. U i. v(u i ) < ) I k y v(i k ) = ɛ. y para la suma de los volumenes se tiene Denición 1. Si f : A R R. Denotamos por D fa al conjunto de discontinuidades de F en A, es decir D fa = {x A f es discontinua en x} Corolario 1. Sea f : A R R integrable sobre R. Entonces D fr tiene interior

Más detalles

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si,

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si, Unidad. Números Reales.1 Números Naturales, Enteros, Racionales, Irracionales y Reales Propiedad de Completez (Parte ) Denición 1. (1) Si A es un subconjunto de un campo ordenado F y u F, se dice que es

Más detalles

ɛ > 0, exists n 0 tal que n > n 0, p > 0 f n+p f n (p) < ɛ, x I

ɛ > 0, exists n 0 tal que n > n 0, p > 0 f n+p f n (p) < ɛ, x I 5. Prueba M de Weierstrass Teorema. Criterio de Cauchy para Convergencia Uniorme de sucesiones de unciones. Una sucesión de unciones { n } denidas en I, converge uniormemente si y solo si ɛ > 0, eists

Más detalles

Funciones. f(x) = 1 x 4. x 4. Denición 3. El conjunto Y es llamado el codominio de f. x 4. x 4 = 1 y. 4y + 1 y. y y < 4

Funciones. f(x) = 1 x 4. x 4. Denición 3. El conjunto Y es llamado el codominio de f. x 4. x 4 = 1 y. 4y + 1 y. y y < 4 Análisis Matemático Funciones Denición. Sean X, Y R dos conjuntos no vacíos. Una función f del conjunto X en el conjunto Y es una regla de correspondencia que asocia a cada elemento x X un único elemento

Más detalles

Cálculo Diferencial Otoño Límites y Continuidad

Cálculo Diferencial Otoño Límites y Continuidad Cálculo Diferencial Otoño 2014 Límites y Continuidad Contenido 2.1 Introducción al concepto de límite de una función. 2.2 Límites unilaterales en funciones algebraicas, compuestas y especiales. 2.3 Técnicas

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Límites de función Polinomial

Límites de función Polinomial UNIVERSIDAD TÉCNICA NACIONAL CARRERA: INGENIERÍA TECNOLOGÍAS DE INFORMACIÓN CURSO: CÁLCULO DIFERENCIAL E INTEGRAL CÓDIGO: ITI-314 OBJETIVO: Límite de una función en un punto. Teorema sobre límites. Cálculo

Más detalles

Cálculo I. Índice Límites Infinitos. Julio C. Carrillo E. * 1. Introducción Límites infinitos Límites en el infinito 9

Cálculo I. Índice Límites Infinitos. Julio C. Carrillo E. * 1. Introducción Límites infinitos Límites en el infinito 9 2.3. Límites Infinitos Julio C. Carrillo E. * Índice. Introducción 2. Límites infinitos 3. Límites en el infinito 9 * Profesor Escuela de Matemáticas, UIS. . Introducción En esta sección se discuten dos

Más detalles

Tema 7: Funciones de una variable. Límites y continuidad.

Tema 7: Funciones de una variable. Límites y continuidad. Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.

Más detalles

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.

Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad. Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

Qué es el CÁLCULO? LÍMITE Y CONTINUIDAD

Qué es el CÁLCULO? LÍMITE Y CONTINUIDAD Qué es el CÁLCULO? El Cálculo es la matemática de los cambios velocidades y aceleraciones. También son objeto del Cálculo las rectas tangentes, pendientes, áreas, volúmenes, longitud de arco, centroide,

Más detalles

PRÁCTICA DE LÍMITES EN UN PUNTO EN LA GRÁFICA Y

PRÁCTICA DE LÍMITES EN UN PUNTO EN LA GRÁFICA Y UNIVERSIDAD AMERICANA Escuela de Matemática. IIC-12. Curso BAN-09: Matemática II Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE LÍMITES EN UN PUNTO EN LA GRÁFICA Y TEOREMAS DE LÍMITES Límites de una función

Más detalles

Coordinación de Matemática I (MAT021) Taller 6

Coordinación de Matemática I (MAT021) Taller 6 Coordinación de Matemática I MAT0 Taller 6 Primer semestre de 0 Semana 7: Lunes 07 viernes de mayo Ejercicios Ejercicio Calcular [ ] 0 + donde [ ] denota la función parte entera. Ejercicio Calcular cos

Más detalles

Imagenes inversas de funciones. x f 1 (A) f(x) A

Imagenes inversas de funciones. x f 1 (A) f(x) A Imagenes inversas de funciones Denición. Sean f : X Y y A una parte del codominio Y. Imagen inversa ó preimagen del subconjunto A Y, es el conjunto de los elementos del dominio cuyas imagenes pertenecen

Más detalles

3. FUNCIONES DERIVABLES.

3. FUNCIONES DERIVABLES. 3. FUNCIONES DERIVABLES. 3.1. Derivada de una función. El concepto de derivada aparece en diversos problemas como un mismo tipo de ite. Veamos dos ejemplos: la denición de la recta tangente a una curva

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

LÍMITE DE FUNCIONES. Análisis Matemático A

LÍMITE DE FUNCIONES. Análisis Matemático A LÍMITE DE FUNCIONES Nos aproximamos intuitivamente al límite ε ε δ = Mín(δ 1, δ 2 ) δ 1 δ 2 lim x 2 f x = 7 f 2 Otro ejemplo Algunas observaciones: ε es cualquier número real positivo, tan pequeño como

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

1. Propiedades de las funciones

1. Propiedades de las funciones . Propiedades de las funciones Una función, f, es una correspondencia entre dos conjuntos numéricos, A y B, que asocia a cada elemento de A, dominio de la función, un único elemento de B. La función f

Más detalles

Límites y Continuidad

Límites y Continuidad Tema 2 Límites y Continuidad Introducción En este tema se trata el concepto de límite de una función real de variable real y sus propiedades, así como algunas de las técnicas fundamentales para el cálculo

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

Ecuaciones Diferenciales II. Tema 3: El entorno de los puntos críticos

Ecuaciones Diferenciales II. Tema 3: El entorno de los puntos críticos Ecuaciones Diferenciales II Tema 3: El entorno de los puntos críticos José C. Sabina de Lis Universidad de La Laguna La Laguna, 24 de febrero de 2013 1.Puntos críticos no degenerados. Se considera la ecuación

Más detalles

Problemas de Series de Fourier

Problemas de Series de Fourier Problemas de Series de Fourier 1. Generalidades MMF II: Grupo I http://euler.us.es/~renato/clases.html Definición 1.1 Se dice que un espacio vectorial E es un espacio euclídeo si dados dos elementos cualesquiera

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

I UNIDAD LÍMITES Y CONTINUIDAD

I UNIDAD LÍMITES Y CONTINUIDAD I UNIDAD LÍMITES Y CONTINUIDAD Límites. Propiedades de los límites de funciones reales. Límites unilaterales. Límites infinitos y límites al infinito. Límites de funciones trascendentes. Continuidad de

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

CÁLCULO DE DERIVADAS.

CÁLCULO DE DERIVADAS. ANÁLISIS MATEMÁTICO BÁSICO. La Función Derivada. CÁLCULO DE DERIVADAS. Definición.. Sea una función f : R R derivable. Se llama función derivada a la función f : R R x f (x). Observación.. Domf { x R :

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

3 LÍMITE - Teoría y Ejemplos

3 LÍMITE - Teoría y Ejemplos 3 LÍMITE - Teoría y Ejemplos Introducción A partir del concepto de ite, podemos analizar el comportamiento de una función tanto en intervalos muy pequeños alrededor de un número real como cuando los valores

Más detalles

3. FUNCIONES DERIVABLES.

3. FUNCIONES DERIVABLES. 3. FUNCIONES DERIVABLES. 3.1. Derivada de una función. El concepto de derivada aparece en diversos problemas como un mismo tipo de ite. Veamos dos ejemplos: la denición de la recta tangente a una curva

Más detalles

lim lim lim LÍMITES DE FUNCIONES

lim lim lim LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan las imágenes de la función cuando x se aproxima al valor de a. Lo veremos con un ejemplo: EJEMPLO 1: Sea

Más detalles

LÍMITES DE FUNCIONES GBG

LÍMITES DE FUNCIONES GBG LÍMITES DE FUNCIONES GBG - 010 1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Sea f una función real de variable real y a un punto de acumulación del dominio de f. de elementos del Decimos que f = L si y sólo si

Más detalles

Límite de una función

Límite de una función 1 CAPÍTULO 3 Límite de una función 1 3.3 Límites laterales Supongamos que f./ está definida en un cierto intervalo.a; 0 /. Si para números del dominio de f suficientemente próimos a 0 menores que 0, los

Más detalles

Continuidad 2º Bachillerato. materiales Editorial SM

Continuidad 2º Bachillerato. materiales Editorial SM Continuidad 2º Bachillerato materiales Editorial SM Continuidad en un punto: primera aproximación Estatura medida cada 5 años: hay grandes saltos entre cada punto y el siguiente. Estatura medida cada año:

Más detalles

Sucesiones parte 1. Denición 1. Para cada n N denimos el conjunto

Sucesiones parte 1. Denición 1. Para cada n N denimos el conjunto parte Denición. Para cada n N denimos el conjunto N n = {,,,,..., n} Estos conjuntos reciben el nombre de segmentos de N. Denición. Un conjunto E es nito si existe n N y una función ϕ : E N n tal que ϕ

Más detalles

Demostraciones a Teoremas de Límites

Demostraciones a Teoremas de Límites Demostraciones a Teoremas de Límites Programa de Bachillerato.Universidad de Chile. Otoño, 009 En esta sección solo daremos los fundamentos teóricos que nos permiten resolver los problemas que se nos plantean,

Más detalles

1 LIMITES Y DERIVADAS

1 LIMITES Y DERIVADAS 1 LIMITES Y DERIVADAS 2.1 LA TANGENTE Y PROBLEMAS DE LA VELOCIDAD Problema de la tangente Se dice que la pendiente de la recta tangente a una curva en el punto P es el ite de las rectas secantes PQ a medida

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

FUNCIONES REALES DE UNA VARIABLE. Límites de funciones

FUNCIONES REALES DE UNA VARIABLE. Límites de funciones Límites de funciones Índice Presentación... 3 Concepto intuitivo de límite... 4 Concepto de límite a través de la gráfica de una función... 5 Límites laterales... 6 Ejemplo práctico... 7 Propiedades de

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

Espacios de Banach. Problemas para examen

Espacios de Banach. Problemas para examen Espacios de Banach Problemas para examen Se marcan con azul algunos ejercicios que no vimos bien en clase. La lista todavía no es completa; se pueden agregar algunos teoremas y ejercicios que vimos bien

Más detalles

GUIA DE MATEMATICAS I, CAPITULO III

GUIA DE MATEMATICAS I, CAPITULO III UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICE-RECTORADO ACADEMICO DEPARTAMENTO DE CIENCIA Y TECNOLOGIA AREA DE MATEMATICAS GUIA DE MATEMATICAS I, CAPITULO III Prof. Orlando Baisdem Pérez Puerto Ordaz,

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 54 CONTENIDO Funciones

Más detalles

En todos estos casos, el dominio de la función y el dominio de la derivada coinciden.

En todos estos casos, el dominio de la función y el dominio de la derivada coinciden. 5. Derivada. Los países ricos lo son porque dedican dinero al desarrollo científico tecnológico. Y los países pobres lo siguen siendo si no lo hacen. La ciencia no es cara, cara es la ignorancia. Bernardo

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Teorema de la Divergencia (o de Gauss) y la Ecuación de

Teorema de la Divergencia (o de Gauss) y la Ecuación de E.E.I. CÁLCULO II Y ECUACIONE IFEENCIALE Curso 2016-17 Lección 13 (Lunes 13 mar 2017) Teorema de la ivergencia (o de Gauss) y la Ecuación de ifusión. 1. Teorema de la ivergencia (o Teorema de Gauss). 2.

Más detalles

Por qué enseñamos a integrar f(x) dx?

Por qué enseñamos a integrar f(x) dx? Por qué enseñamos a integrar f(x)? Eliseo Martínez 1. La integral como solución de una ecuación diferencial En la matemática aplicada a la Ingeniería, a los procesos de la física, con cierta frecuencia

Más detalles

Límites y continuidad

Límites y continuidad Límite funcional 6 6. Límite funcional 79 6.2 Límites infinitos y en el infinito 8 6.3 Cálculo de límites 83 6.4 Continuidad 84 6.5 Teorema del valor intermedio 87 6.6 Monotonía 89 6.7 Ejercicios 9 La

Más detalles

Continuidad de funciones ( )

Continuidad de funciones ( ) Cálculo _Comisión Año 07 Continuidad de funciones ( ) I) Continuidad en un punto En ésta representación gráfica de una función (fig. ), es evidente que la misma presenta una discontinuidad, tanto en x

Más detalles

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A}

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A} Capítulo 6 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim Teóricas de Análisis Matemático (8) Práctica 6 L Hospital Caso cero sobre cero Veamos tres problemas de límites conocidos: Práctica 6 Parte Regla de L Hospital 3 3 3 sen(3) Los límites y se resuelven mediante

Más detalles

Capítulo 3. Limites y continuidad

Capítulo 3. Limites y continuidad Capítulo 3. Limites y continuidad Objetivo: El alumno calculará el límite de una función real de variable real y analizará la continuidad de la misma. Contenido: 3.1 Concepto de límite de una función en

Más detalles

S11: Funciones continuas. Limites con dos variables.

S11: Funciones continuas. Limites con dos variables. S11: Funciones continuas. Limites con dos variables. Una función f() es continua en un punto interior a X si: 1) f = a B 2) f = A A = B = f(a) a + Discontinuidad de 1ª especie: A y B Si A = B f(a) (Discontinuidad

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y 5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y LÍMITES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.1.1. Las magnitudes variables: funciones. 5.1.1. Las magnitudes variables:

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos

Más detalles

Función exponencial compleja

Función exponencial compleja Función exponencial compleja Genaro Luna Carreto * Los números reales y los complejos satisfacen los axiomas de campo, pero los segundos, no satisfacen los axiomas de orden. Sin embargo, a raíz de que

Más detalles

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I Instituto Tecnológico Autónomo de Méico Departamento de Matemáticas Cálculo Diferencial e Integral I MAT400) Lista de Ejercicios Límites Cálculo Diferencial e Integral I. Límites. Límites Antes de hacer

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función

Más detalles

Funciones continuas. Funciones continuas. José Manuel Mira. Grado en Matemáticas

Funciones continuas. Funciones continuas. José Manuel Mira. Grado en Matemáticas Grado en Matemáticas 2009-2010 Índice 1 en un intervalo Objetivos Conocer el significado de continuidad y la continuidad de las funciones elementales y las obtenidas operando con ellas. Objetivos Conocer

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a   El mayor portal de recursos educativos a tu servicio! Este documento es de distribución gratuita y llega gracias a Ciencia Matemática www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! UNIVERSIDAD DIEGO PORTALES CALCULO I Límites

Más detalles

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales.

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales. TEOREMAS BÁSICOS DEL CÁLCULO DIFERENCIAL. Cuando una función es continua en un intervalo cerrado [ a, b ] alcanza su máimo y su mínimo absolutos en puntos c y c, respectivamente, de dico intervalo. Esto

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad Una sucesión en A C es una función que asocia a cada i N un punto a i A, y se le denota como {a i }. La sucesión {a i } es acotada si existe un real r tal que a i r para toda i. La

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Clase Auxiliar N o 2 : Continuidad Profesor: Jorge San Martín Auxiliares: Francisco Jiménez - Ramiro Villagra

Clase Auxiliar N o 2 : Continuidad Profesor: Jorge San Martín Auxiliares: Francisco Jiménez - Ramiro Villagra Resumen Clase Auxiliar N o : Continuidad Profesor: Jorge San Martín Auxiliares: Francisco Jiménez - Ramiro Villagra Teorema de los valores intermedios (TVI) 1. Para f( x) = 0: sea f : [a, b] R continua

Más detalles

Tema 10: Continuidad en varias variables.

Tema 10: Continuidad en varias variables. Tema 10: Continuidad en varias variables. José M. Salazar Noviembre de 2016 Tema 10: Continuidad en varias variables. Lección 13. Continuidad en varias variables. Índice 1 Nociones básicas en R n. Funciones

Más detalles

Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García. UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior

Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García. UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior INGENIERÍAS TÉCNICAS INDUSTRIALES TEORIA DE CÁLCULO I Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites 1. Definición de límite DEF. Sea f : A R R y a A Se dice que l R es el límite de f cuando x tiende a a, si para todo entorno de l, existe un entorno

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Poco a poco comenzaron a surgir en Física, Química y otras ramas del saber funciones discontinuas.

Poco a poco comenzaron a surgir en Física, Química y otras ramas del saber funciones discontinuas. 1. Introducción. 2. Límites de funciones. 2.1. Límite de una función en un punto. 2.2. Límites laterales. 2.3. Límites Infinitos y Límites en el Infinito. 2.4. Definición de Límite mediante Entornos. 2.5.

Más detalles

8. FUNCIONES DE VARIAS VARIABLES.

8. FUNCIONES DE VARIAS VARIABLES. 8. FUNCIONES DE VARIAS VARIABLES. En este tema comenzamos el análisis de funciones de varias variables reales. Comenzaremos estudiando el espacio euclídeo n-dimensional para continuar el estudio (sencillo)

Más detalles

EPO 11 UNIDAD I ESCUELA PREPARATORIA OFICIAL NÚM. 11 GUÍA DE ESTUDIO PARA EL EXAMEN DE CÁLCULO DIFERENCIAL

EPO 11 UNIDAD I ESCUELA PREPARATORIA OFICIAL NÚM. 11 GUÍA DE ESTUDIO PARA EL EXAMEN DE CÁLCULO DIFERENCIAL EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 CUAUTITLAN IZCALLI, MEX. GUÍA DE ESTUDIO PARA EL EXAMEN DE CÁLCULO DIFERENCIAL MATUTINO Y VESPERTINO CICLO ESCOLAR 2017 2018 INSTRUCCIONES: Contesta cada uno

Más detalles

La derivada. 5.2 La derivada de una función

La derivada. 5.2 La derivada de una función Capítulo 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

Límite y Continuidad de funciones de una variable

Límite y Continuidad de funciones de una variable Introducción Límite y de funciones de una variable Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Límite y de funciones

Más detalles

El Teorema del Modulo Máximo

El Teorema del Modulo Máximo Capítulo 5 El Teorema del Modulo Máximo. El Principio del Máximo. Pruebe el siguiente Principio del Mínimo. Si f es una función analítica no constante sobre un conjunto abierto G acotado y es continua

Más detalles

TEMA 6 LÍMITE Y CONTINUIDAD

TEMA 6 LÍMITE Y CONTINUIDAD TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando

Más detalles

2. LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL.

2. LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL. 2. LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL. ESQUEMA LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL Límites. Límite de una función. Tipos de límites. Álgebra de límites.

Más detalles