Documentos relacionados
ESTADÍSTICA II UNIDAD I: ESTIMACIÓN DE PARÁMETROS 3RA PARTE (CLASE 20/09)

UNIVERSIDAD DE MANAGUA Al más alto nivel


Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Juan Carlos Colonia INFERENCIA ESTADÍSTICA

Técnicas de Muestreo Métodos

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina ESTIMACIÓN POR INTERVALO

Anota aquí tus respuestas para esta sección Distribución Z

Intervalos de confianza Muestras grandes. Estadística Cátedra Prof. Tamara Burdisso

Probabilidad y Estadística

Estimaciones puntuales. Estadística II

LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO

Cap 7 Intervalos de Confianza

Distribución Muestral.

Curso de Estadística Aplicada a las Ciencias Sociales

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

UNIVERSIDAD ALONSO DE OJEDA ESTADISTICA II

de Muestreo de Medias, Inferencia Estadística (Naturaleza de las Pruebas ) (Cap. 7 y Sec. 8.3)

1. Considera los datos siguientes: 6, 8, 2, 5, 4, 2, 7, 8, 6, 1, 7, 9 calcula lo que se te pide

Estimación por intervalos de la media poblacional con desviación estándar desconocida

CURSO DE MÉTODOS CUANTITATIVOS I

República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

Notas de clase Estadística R. Urbán R.

DISEÑO Y CÁLCULO DE TAMAÑO DE MUESTRA PARA SU APLICACIÓN A LOS ESTUDIOS DE INVESTIGACIÓN. FACILITADOR: JOSÉ CRISTO NOVA

Estadística Inferencial. Sesión 2. Distribuciones muestrales

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

Estimación de Parámetros

Distribuciones muestrales. Distribución muestral de Medias

Cuál es el campo de estudio de la prueba de hipótesis?

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

Técnicas Cuantitativas para el Management y los Negocios I

Teoría del muestreo. Tipos de muestras


Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

2. Distribuciones de Muestreo

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

12. (SEPTIEMBRE 2004) Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

ANÁLISIS DE FRECUENCIAS

Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos

Determinación del tamaño de muestra (para una sola muestra)

ESTADISTICA INFERENCIAL DR. JORGE ACUÑA A.

Juan José Hernández Ocaña

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

ESTADÍSTICA Y PROBABILIDAD

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Juan Carlos Colonia DISTRIBUCIONES MUESTRALES

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

proporciones y para la Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro

Intervalo para la media si se conoce la varianza

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

Muestreo y. Distribuciones Muestrales

Probabilidad y Estadística

PONTIFICIA UNIVERSIDAD CATÓLICA DE PUERTO RICO DEPARTAMENTO DE FÍSICA MATEMÁTICAS

Cómo se hace la Prueba t a mano?

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

MUESTREO APUNTE. Índice: MUESTREO. Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

Trabajo Práctico: Intérvalos de Confianza

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

Tema 7 Intervalos de confianza Hugo S. Salinas

Teorema Central del Límite (1)

Intervalos de Confianza

Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11

ESTIMACION INFERENCIA ESTADISTICA

Esta proposición recibe el nombre de hipótesis

CAPITULO 8 MUESTRAS ALEATORIAS Y NUMEROS ALEATORIOS

(1 punto) (1.5 puntos)

Ms. C. Marco Vinicio Rodríguez

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

1.2 Medidas de variación: Rango, desviación estándar y coeficiente de variación

a. Elija una muestra aleatoria simple de tamaño n=6 de esta población. Use una tabla de números aleatorios o Excel para la

6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid

Estadística Inferencial

Muestreo y Distribuciones en el Muestreo

INFERENCIA ESTADISTICA

1. Ejercicios. 2 a parte

ESTADÍSTICA INFERENCIAL

1. La Distribución Normal

Tema 4: Estimación por intervalo (Intervalos de Confianza)

INFERENCIA ESTADÍSTICA

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

EJERCICIOS DE INTERVALOS DE CON- FIANZA

INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS DE DOS DISTRIBUCIONES NORMALES, VARIANZAS DESCONOCIDAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

Muestreo e intervalos de confianza

Técnicas de Inferencia Estadística II. Tema 2. Contrastes de hipótesis en poblaciones normales

Transcripción:

Enero 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo (UNEV 2002) y Maestro (Salomé Uneña 1985) rubendarioestrella@hotmail.com / rubendarioestrellas@gmail.com www.atalayadecristo.org

Las dos aplicaciones principales de la estadística inferencial implican el uso de datos de muestra para (1) estimar el valor de un parámetro de población y (2) llegar a una conclusión acerca de una población. Estimador: es una estadística de muestra (como la media de muestra) que se usa para aproximar un parámetro de población. Existen dos tipos de estimadores que se utilizan normalmente: - Estimador puntual - Estimador por intervalo

Estimados y Tamaño de Muestra Estimado puntual: es un valor individual (o punto) que se usa para aproximar un parámetro de población. Estimador Puntual: utiliza un número único o valor para localizar una estimación del parámetro. La media de muestra es el mejor estimado de la media de población. Podemos decir que la media de la muestra es un estimador no predispuesto de la media de la población, lo que quiere decir que la distribución de las medias de muestra tiende a centrarse alrededor del valor de la media de la población. (Es decir, las medias de muestra no tienden a sobreestimar sistemáticamente el valor de, y tampoco tienden a subestimar sistemáticamente dicho valor. En vez de ello, tienden a centrarse en el valor de misma).

Estimados y Tamaño de Muestra Estimación por intervalo: especifica el rango dentro del cual está el parámetro desconocido. Intervalo de Confianza: denota un rango dentro del cual puede encontrarse el parámetro. Es una gama (o un intervalo) de valores que probablemente contiene el valor verdadero del parámetro de población. Un intervalo de confianza se asocia a un grado de confianza, que es una medida de la certeza que tenemos de que nuestro intervalo contiene el parámetro de población. Nivel de confianza (grado o coeficiente de confianza): es la probabilidad 1- (a menudo expresada como el valor porcentual equivalente) de que el intervalo de confianza contiene el verdadero valor del parámetro. Existen tres niveles de confianza relacionados comúnmente con los intervalos de confianza: 99, 95 y 90%, denominados coeficientes de confianza.

Estimados y Tamaño de Muestra Valor Alfa : Es la probabilidad de error o la probabilidad de que un intervalo dado no contenga la media poblacional desconocida. Valor Critico Z: Es el número que está en la frontera que separa las estadísticas de muestra que probablemente ocurrirán, de aquellas que probablemente no ocurrirán. Es un puntaje con la propiedad de que separa un área de /2 de la cola derecha de la distribución normal estándar. Margen de Error E: Es la máxima diferencia probable (con una probabilidad de 1-) entre la media de muestra observada y el verdadero valor de la media de población. El margen de error también se denomina error máximo de la estimación y puede obtenerse multiplicando el valor critico y la desviación estándar de las medias de muestras. E = Z * /n

E = Z * /n Intervalo de confianza para estimar (media poblacional real desconocida) cuando es conocida. I. C. para estimar = X' E Caso I. Para estimar el gasto promedio de los clientes en el McDonald's local, los estudiantes de Métodos Cuantitativos toman una muestra de 200 clientes y encuentran un gasto promedio de US$5.67, con una desviación estándar poblacional de US$1.10. Cuál es el intervalo de confianza del 95% para los gastos promedio de todos los clientes? Interprete sus resultados.

Caso I. Para estimar el gasto promedio de los clientes en el McDonald's local, los estudiantes de Métodos Cuantitativos toman una muestra de 200 clientes y encuentran un gasto promedio de US$5.67, con una desviación estándar poblacional de US$1.10. Cuál es el intervalo de confianza del 95% para los gastos promedio de todos los clientes? Interprete sus resultados. I. C. para estimar = X' E Datos: E = Z * /n = 1.96 * (1.10/200) = 0.15 n=200 I.C. para estimar = US$5.67 0.15 N.C.=95% x'=us$5.67 I.C.=? σ=us$1.10 = US$5.52 US$5.82

MEGASTAT

MEGASTAT Confidence interval - mean 95% confidence level 5.67 mean 1.1 std. dev. 200 n 1.960 z 0.152 half-width 5.822 upper confidence limit 5.518 lower confidence limit

Caso I. Para estimar el gasto promedio de los clientes en el McDonald's local, los estudiantes de Métodos Cuantitativos toman una muestra de 200 clientes y encuentran un gasto promedio de US$5.67, con una desviación estándar poblacional de US$1.10. Cuál es el intervalo de confianza del 95% para los gastos promedio de todos los clientes? Interprete sus resultados. I. C. para estimar = X' E E = Z * /n = 1.96 * (1.10/200) = 0.15 I. C. = US$5.52 US$5.82 Los estudiantes poseen un 95% de confianza de que la media poblacional desconocida del gasto de los clientes del McDonal's evaluados se encuentra entre el intervalo US$5.52 US$5.82. Si se construyen todos los NCn intervalos de confianza, el 95% de ellos contendrá la media poblacional desconocida. Esto por supuesto significa que el 5% de todos los intervalos estaría errado - no contendrían la media poblacional, el Valor alfa.

Si n > 30, podemos sustituir de la formula del E por la desviación estándar de la muestra s. E = Z * s/n Procedimiento para construir un intervalo de confianza para (basado en una muestra grande: n > 30). 1. Encuentre el valor critico Z que corresponda al grado de confianza deseado. 2. Evalúe el margen de error E = Z * /n. Si se desconoce la desviación estándar de la población, use el valor de la desviación estándar de la muestra s, siempre que n > 30. 3. Con el valor del margen de error calculado y el valor de la media de muestra X', obtenga los valores de X'-E y X'+E. Sustituya estos valores en el formato general del intervalo de confianza: X'-E X'+E = X' E (X'-E,X'+E 4. Redondee los valores resultantes aplicando la regla de redondeo.

1. Si usa el conjunto de datos original para construir un intervalo de confianza, redondee los limites del intervalo de confianza a una posición decimal más que las empleadas en el conjunto de datos original. 2. Si desconoce el conjunto de datos original y sólo usa las estadísticas resumidas (n, x', s), redondee los limites del intervalo de confianza de acuerdo al mismo número de posiciones decimales que se usan para la media de muestra.

Justificación: La idea básica en que se apoya la construcción de intervalos de confianza tiene que ver con el teorema del limite central, que indica que en el caso de muestras grandes (n > 30), la distribución de las medias de muestra es aproximadamente normal con media y desviación estándar /n. El formato de los intervalos de confianza en realidad es una variación de la ecuación: Z = (X' - )/(/n) X' - = Z (/n) - = Z (/n) - X' (-1) = X' - Z (/n) = X' E Precisión: Un intervalo estrecho ofrece mayor precisión, aunque la probabilidad de que contenga se reduce.

Caso I. Una muestra consiste en 75 televisores adquiridos hace varios años. Los tiempos de reemplazo de esos televisores tienen una media de 8.2 años y una desviación estándar de 1.1 años (basados en datos de "Getting Things Fixed", Consumer Reports). Construya un intervalo de confianza del 90% para el tiempo de reemplazo medio de todos los televisores de esa época. Caso II. Utilice el grado de confianza y los datos de muestra dados para determinar (a) el margen de error y (b) el intervalo de confianza para la media de la población 1. Estaturas de mujeres: confianza del 95%; n=50, x'=63.4 pulgs., s=2.4 pulgs. 2. Promedios de calificaciones: confianza del 99%; n=75, x'=2.76, s=0.88. 3. Puntajes en una prueba: confianza del 90%; n=150, x'=77.6; s=14.2. Ejercicios de la Sección 1 al 10 págs. 175 y 176.

Decisiones. Edición 2016. Pág. 110 Las decisiones dependen con frecuencia de parámetros que son binarios, parámetros con sólo dos posibles categorías dentro de las cuales pueden clasificarse las respuestas. En este evento, el parámetro de interés es la proporción poblacional. Tanto las proporciones como las probabilidades se expresan en forma decimal o fraccionaria. Al trabajar con porcentajes, los convertimos en proporciones omitiendo el signo de por ciento y dividiendo entre 100. Por ejemplo, la tasa del 48% de personas que no compran libros puede expresarse en forma decimal como 0.48.

Estimado puntual para la proporción de población. La proporción de muestra p es el mejor estimado puntual de la proporción de población. p = x/n proporción de muestra de x éxitos en una muestra de tamaño n. Intervalo de confianza para la proporción poblacional. Muchos asuntos de negocios tratan la proporción de la población. Una firma de marketing puede querer averiguar si un cliente (1) compra o (2) no compra el producto. Un banco con frecuencia debe determinar si un depositante (1) pedirá o (2) no pedirá un crédito para auto. Muchas firmas deben determinar la probabilidad de que un proyecto para presupuestar capital (1) generará o (2) no generará un rendimiento positivo.

Si n*p y n*(1-p) son mayores que 5, la distribución de las proporciones muestrales será normal y la distribución muestral de la proporción muestral tendrá una media igual a la proporción poblacional y error estándar de: Error estandar de la distribución muestral de las proporciones muestrales: p = p(1-p)/n = pq/n Estimación del Error estándar de la distribución muestral de las proporciones muestrales: sp = p(1-p)/n = pq/n Margen de error del estimado de la proporción de la población: E = (Z)( pq/n)

Regla de redondeo para estimados de intervalo de confianza para la proporción de población Redondee los limites del intervalo de confianza a tres dígitos significativos. Intervalo de confianza para estimar la proporción poblacional. I.C. para estimar la proporción poblacional = p E Caso I. E = (Z)( pq/n) En una encuesta de 1068 estadounidenses, 673 dijeron que tenían contestadoras telefónicas (basados en datos de International Mass Retail Association, informados en USA Today). Utilizando estos resultados de muestra, determine: a. El estimado puntual de la proporción de la población de todos los estadounidenses que tienen contestadora telefónica. b. El estimado de intervalo del 95% de la proporción de todos los estadounidenses que tienen contestadora telefónica.

I.C. para estimar la proporción poblacional = p E Caso I. E = (Z)( pq/n) En una encuesta de 1068 estadounidenses, 673 dijeron que tenían contestadoras telefónicas (basados en datos de International Mass Retail Association, informados en USA Today). Utilizando estos resultados de muestra, determine: a. El estimado puntual de la proporción de la población de todos los estadounidenses que tienen contestadora telefónica. b. El estimado de intervalo del 95% de la proporción de todos los estadounidenses que tienen contestadora telefónica. a. Estimado puntual para la proporción de población. p = x/n = 673/1068 = 0.630 b. Intervalo de confianza para estimar la proporción poblacional. E = 1.96 ((0.630)(0.370)/1068) = 0.0290 I.C. para estimar la proporción poblacional: 0.630-0.0290 < < 0.630 + 0.0290 0.601 < < 0.659

Decisiones. Edición 2016. Pág. 110 MEGASTAT

0.659 upper confidence limit 0.601 lower confidence limit Estimados y Tamaño de Muestra MEGASTAT Confidence interval - proportion 95% confidence level 0.63 proportion 1068 n 1.960 z 0.029 half-width

En una encuesta de 1068 estadounidenses, 673 dijeron que tenían contestadoras telefónicas (basados en datos de International Mass Retail Association, informados en USA Today). Utilizando estos resultados de muestra, determine: a. El estimado puntual de la proporción de la población de todos los estadounidenses que tienen contestadora telefónica. b. El estimado de intervalo del 95% de la proporción de todos los estadounidenses que tienen contestadora telefónica. a. Estimado puntual para la proporción de población. p = x/n = 673/1068 = 0.630 b. Intervalo de confianza para estimar la proporción poblacional. E = 1.96 (((0.630*0.370)/1068)) = 0.0290 I.C. para estimar la proporción poblacional: 0.630-0.0290 < < 0.630 + 0.0290 0.601 < < 0.659 Este resultado a menudo se informa en el formato siguiente: "Se estima que el porcentaje de los estadounidenses que tiene contestadora telefonica es del 63%, con un margen de error de mas o menos 2.9 puntos porcentuales. También debe informarse el nivel de confianza, pero eso casi nunca se hace en los medios de comunicación. EJERCICIOS DE LA SECCION 20 AL 25 - PAG. 182.

El tamaño de la muestra juega un papel importante al determinar la probabilidad de error así como en la precisión de la estimación. Una vez se ha seleccionado el nivel de confianza, los factores importantes influyen en el tamaño muestral: (1) la varianza de la población ² y (2) el tamaño del error E tolerable que el investigador esta dispuesto a aceptar.

Tamaño de la muestra para estimar. Z = (X' - )/(/n) X' - = Z (/n) n(x' - ) = Z n = Z/(X' - ) n = Z²²/(X' - )² n = Z²²/E² n =[Z/E]² E = Error de Muestreo El tamaño de la muestra debe ser entero. Regla de redondeo para el tamaño de muestra n. Al calcular el tamaño de muestra n, si la fórmula anterior no produce un número entero, siempre debe aumentarse el valor de n al siguiente numero entero mayor.

n =[Z/E]² El tamaño de la muestra no depende del tamaño de la población (N); el tamaño de muestra depende del grado de confianza deseado, el margen de error deseado y del valor de la desviación estándar. La duplicación del margen de error hace que el tamaño de la muestra requerida se reduzca a la cuarta parte de su valor original. Por otro lado, si se reduce a la mitad el margen de error se cuadruplicará el tamaño de la muestra. Lo que esto implica es que si queremos resultados más exactos, es preciso aumentar sustancialmente el tamaño de la muestra. Dado que las muestras grandes generalmente requieren más tiempo y dinero, a menudo es necesario efectuar un trueque entre el tamaño de la muestra y el margen de error E.

n =[Z/E]² Caso I. Un economista desea estimar los ingresos medios durante el primer año de trabajo de un graduado universitario que, en un alarde de sabiduría, tomo un curso de estadística. Cuantos de tales ingresos es necesario encontrar si queremos tener una confianza del 95% en que la media de muestra este a menos de US$500 dólares de la verdadera media de la población? Suponga que un estudio previo revelo que, para tales ingresos, = US$6250. DATOS: N.C.=95% ===> Z=1.96 Queremos que la media de la muestra este dentro de un margen de US$500 de la media de la población. E=US$500 =US$6,250 n = [(1.96 * 6250)/500]²=

MEGASTAT

Caso II. Que tan grande se requiere que sea una muestra para que proporcione una estimación del 90% del numero promedio de graduados de las universidades de la nación con un error de 2000 estudiantes si una muestra piloto reporta que s=8,659? Caso III. Nielsen Media Research quiere estimar la cantidad media de tiempo (en horas) que los estudiantes universitarios de tiempo completo dedican a ver televisión cada día entre semana. Determine el tamaño de muestra necesario para estimar esa media con un margen de error de 0.25 horas (15 minutos). Suponga que se desea un grado de confianza del 96%, y que un estudio piloto indico que la desviación estándar se estima en 1.87 horas.

Decisiones. Edición 2016. Pág. 110 QUE PASA SI SE DESCONOCE? 1.- Podemos utilizar la REGLA PRACTICA DE INTERVALO. En conjuntos de datos representativos, el intervalo del conjunto tiene una anchura aproximada de cuatro desviaciones estándar (4s), así que la desviación estándar se puede aproximar de la siguiente manera: desviación estándar intervalo/4 intervalo/4 Esta expresión proporciona una estimación burda de la desviación estándar, si conocemos los puntajes máximo y mínimo. Si conocemos el valor de la desviación estándar, podemos usarlo para entender mejor los datos, obteniendo estimaciones burdas de los puntajes máximo y mínimo como se indica. mínimo (media) - 2 * (desviación estándar) máximo (media) + 2 * (desviación estándar)

QUE PASA SI SE DESCONOCE? Caso I. n =[Z/E]² Si razonamos que los precios de los libros de textos universitario típicamente varían entre US$10 y US$90 dólares. Usted planea estimar el precio de venta medio de un libro de texto universitario. Cuantos libros de textos deberá muestrear si desea tener una confianza del 95% en que la media de la muestra estará a menos de US$2 dólares de la verdadera media de la población? DATOS: intervalo/4 (US$90-US$10)/4 US$20 N.C.=95% ===> Z=1.96 E=US$2 dólares

QUE PASA SI SE DESCONOCE? n =[Z/E]² Caso II. Boston Marketing Company lo acaba de contratar para realizar una encuesta con el fin de estimar la cantidad media de dinero que los asistentes al cine de Massachussets gastan (por película). Primero use la regla practica del intervalo para hacer un estimado burdo de la desviación estándar de las cantidades gastadas. Es razonable suponer que las cantidades típicas varían entre US$3 dólares y unos US$15 dólares. Luego utilice esa desviación estándar para determinar el tamaño de muestra que corresponde a una confianza del 98% y a un margen de error de 25 centavos de dólar.

Si despejamos a "n" de la expresión del margen de error E. E = (Z) (pq/n) E² = (Z)²(pq/n)² E² = (Z)²(pq/n) E²n = (Z)²(pq) n = [(Z)²(pq)]/E² Cuando se puede obtener un estimado razonable de p utilizando muestras previas, un estudio piloto o los conocimientos de algún experto se utiliza la formula anterior.

Cuando no se conoce el estimado puntual p: n = [(Z)²* 0.25]/E² Si no se puede conjeturarse un valor, puede asignarse el valor de 0.5 tanto a p como a q, con lo que el tamaño de muestra resultante será al menos tan grande como necesita ser. La justificación para la asignación de 0.5 es la siguiente: el valor mas alto posible del producto p*q es de 0.25, y ocurre cuando p=0.5 y q=0.5 como se puede observar en la siguiente tabla que usted debe completar: p q p*q 0.1 0.9 0.09 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Decisiones. Edición 2016. Pág. 110 Caso I. Las compañías de seguros se están preocupando porque el creciente uso de teléfonos celulares esta teniendo como resultado un mayor número de accidentes automovilísticos, y están considerando implementar tarifas más altas para conductores que usan tales aparatos. Queremos estimar, con un margen de error de tres puntos porcentuales, el porcentaje de conductores que hablan por teléfono mientras conducen. Suponiendo que queremos tener una confianza del 95% en nuestros resultados, cuántos conductores deberán encuestar? a. Supongamos que tenemos un estimado de p basado en un estudio previo que indicó que el 18% de los conductores habla por teléfono (basados en datos de la revista Prevention). b. Suponga que no tenemos información previa que sugiera un posible valor de p. SOLUCION: a) DATOS: n = [(Z)²(pq)]/E² p=0.18 ; q=0.82 n = [(1.96)²(0.18*0.82]/(0.03)² = N.F.=95% ==> Z=1.96 E=0.03 = tres puntos porcentuales b) DATOS: n = [(Z)²* 0.25]/E² n = [(1.96)²* 0.25]/(0.03)² =

Decisiones. Edición 2016. Pág. 110 Caso II. Una compañía de comunicaciones esta considerando un proyecto para prestar servicio telefónico de larga distancia. Se le pide a usted realizar un sondeo de opinión para estimar el porcentaje de los consumidores que esta satisfecho con su servicio telefónico de larga distancia actual. Usted quiere tener una confianza del 90% en que su porcentaje de muestra estará a menos de 2.5 puntos porcentuales del valor real para la población, y un sondeo sugiere que el porcentaje en cuestión anda alrededor del 85%. Que tan grande deberá ser la muestra?