Matemáticas III Tema 6 Integrales de superficie

Documentos relacionados
CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 10. Cálculo vectorial.

Integración sobre superficies

Integral de superficie.

CÁLCULO INTEGRAL. HOJA 13.

Universidad Técnica Federico Santamaría

AMPLIACIÓN DE CÁLCULO

Ejercicios Resueltos de Cálculo III.

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

Tema 9. Campos escalares y campos vectoriales. Integrales de línea e integrales de supercie

1 Funciones de Varias Variables

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Aplicaciones físicas

Contenido 1. Integrales Dobles 2. Integrales Triples

1.1 El caso particular de las curvas planas.

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

4 Integrales de línea y de superficie

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo en varias variables

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Superficies paramétricas

INTEGRAL DE SUPERFICIE

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

Matemáticas III Andalucía-Tech

Integrales dobles. Integrales dobles

CAMPOS: CIRCULACIÓN Y FLUJO

Guía n 0: Herramientas de Física y Matemáticas

Integrales de superficie

Los teoremas de Stokes y Gauss

CÁLCULO INTEGRAL. HOJA 12.

INTEGRALES DE SUPERFICIE.

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

Elementos de análisis

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1 Curvas planas. Solución de los ejercicios propuestos.

Tarea 9. H ds = E ds (2)

Introducción. Flujo Eléctrico.

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

4. FUNCIONES DE VARIAS VARIABLES

Integración doble Integrales dobles sobre regiones no rectangulares

Funciones de Clase C 1

Teorema de Green. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1. Introducción 1

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Cambio de variables. ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna 1.

Teoremas de Stokes y Gauss

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

Base y Dimensión de un Espacio Vectorial


Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

2. El conjunto de los números complejos

Áreas entre curvas. Ejercicios resueltos

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

Segundo Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 4deJuniode2010. Primera Parte.

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

Análisis II - Primer Parcial Coloquio- Tema 1

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Breviario de cálculo vectorial

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

Capítulo 3 Soluciones de ejercicios seleccionados

1. Area de una Superficie

a y Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial: i j k / x / y / z

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

PROBLEMAS DE INTEGRALES INDEFINIDAS

1. INTEGRALES DEFINIDAS E IMPROPIAS

Universidad de Sevilla. GIOI y GIERM. Matemáticas III. Departamento de Matemática Aplicada II. Guión del Tema 5: Integrales de Línea.

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

Cálculo II. Tijani Pakhrou

Espacios Vectoriales

ÁLGEBRA LINEAL II Práctica

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 9. Integrales múltiples.

2 Deniciones y soluciones

1. El teorema de la función implícita para dos y tres variables.

Colegio Internacional Torrequebrada. Departamento de Matemáticas

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

ESTÁTICA 3 3 VECTORES

Geometría del espacio

Tema 6. Planos y rectas en el espacio. Problemas métricos (Ángulos, paralelismo y perpendicularidad, simetrías, distancias )

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

4. Integral de línea de funciones escalares de dos y tres variables

AUXILIAR 1 PROBLEMA 1

TEMA 0: Herramientas matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3

GEOMETRÍA DEL ESPACIO EUCLÍDEO

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

Aplicaciones de la derivada 7

Práctica 5 Cálculo integral y sus aplicaciones

Problemas métricos. Ángulo entre rectas y planos

Transcripción:

Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike 3. pain Índice 1. Integrales de superficie 1 1.1. Área de una superficie................................. 1 1.2. Integral de superficie de un campo escalar...................... 2 1.3. Integral de superficie de un campo vectorial. Flujo................. 3 2. Cálculo vectorial en el espacio: teorema de tokes y teorema de Gauss 4 2.1. Teorema de tokes................................... 4 2.2. ivergencia. El teorema de Gauss........................... 5 1. Integrales de superficie 1.1. Área de una superficie ea Φ: U R 2 R 3, una( parametrización ) de una superficie regular donde Φ es de clase E F C 1 en el abierto U y sea I = su primera forma fundamental. F G Para todo subconjunto acotado y cerrado tal que U el área de la porción de superficie con parametrización Φ en se definie como Área() = det I dudv = EG F 2 dudv = Φ u Φ v dudv Puesto que está definida a partir de la primera forma fundamental, el resultado de la integral anterior es el mismo para cualquier parametrización que se tome para. La anterior definición es válida para superficies que son regulares excepto en un número finito de puntos, también llamadas superficies regulares a trozos. Ejemplo. como Calculemos la superficie de una esfera 2 (r) de radio r. La podemos parametrizar Φ(θ, ϕ) = (r sen θ cos ϕ, r sen θ sen ϕ, r cos θ) con (θ, ϕ) [, π] [, 2π] La primera forma fundamental es E = r 2, F =, G = r 2 sen 2 θ, por tanto su área es Área ( 2 (r) ) π = r 4 sen 2 θ dϕdθ = 4πr 2 1

Ejercicio. Comprueba que el área de la gráfica de un campo escalar plano f : U R 2 R de clase C 1 sobre un recinto cerrado y acotado U es 1 + f 2 x + f 2 y dxdy 1.2. Integral de superficie de un campo escalar ea una curva parametrizada regular a trozos con parametrización Φ(u, v) con (u, v). ea f : U R 3 R un campo escalar de forma que U y f es continuo en. La integral de superficie de f sobre la superficie se define como el número f d = f (Φ(u, v)) Φ u Φ v dudv. El valor de la integral de superficie es totalmente independiente de la parametrización Φ tomada para. Propiedades de las integrales de superficie para campos escalares ean f, g : U R 3 R dos campos escalares continuos en U y U una superficie parametrizada regular a trozos. 1. i α, β R entonces (αf + βg) d = α f d + β g d. 2. i para todo (x, y) se verifica que f(x, y) g(x, y) entonces f d g d. 3. i = 1 2 disjuntas salvo quizás puntos del borde, entonces f d = f d + f d. 1 2 4. El área de la superficie coincide con la integral de superficie sobre del campo escalar constante igual a 1, esto es Área() = d. Ejemplo. Calculemos la integral del campo escalar f(x, y, z) = x 2y + z en la superficie que delimita el cubo de vértices opuestos (,, ) y (1, 1, 1) sin la cara superior. Para ello parametrizamos cada una de las cinco caras que forman la superficie. Cara 1: Φ(u, v) = (u, v, ), Φ u Φ v = (,, 1) Cara 2: Φ(u, v) = (u,, v), Φ u Φ v = (, 1, ) Cara 3: Φ(u, v) = (1, u, v), Φ u Φ v = (1,, ) Cara 4: Φ(u, v) = (u, 1, v), Φ u Φ v = (, 1, ) Cara 5: Φ(u, v) = (, u, v), Φ u Φ v = (1,, ) f d = + (u 2v) dudv + (u 2 + v) dudv + (u + v) dudv + ( 2u + v) dudv = 1 2 (1 2u + v) dudv+ 2

1.3. Integral de superficie de un campo vectorial. Flujo ea una superficie parametrizada regular a trozos con parametrización Φ(u, v) con (u, v). ea F : U R 3 R 3 un campo vectorial de forma que U y F es continuo en. La integral de superficie de F (o flujo) sobre se define como el número F d = F (Φ(u, v)) (Φ u Φ v ) dudv = F (Φ(u, v)) N Φ u Φ v dudv. Interpretación del flujo. La integral de un campo vectorial F en la superficie es la integral del campo escalar f = F (Φ) N en dicha superficie, siendo N el vector normal unitario a la superficie en cada punto, es decir F d = F (Φ(u, v)) N d Obsérvese que el valor de la integral de superficie depende de la dirección elegida del vector normal N, esto prueba que su signo depende de la orientación de la parametrización tomada para. Obsérvese que el flujo es tanto mayor cuando más pequeño sea el ángulo que forman el campo vectorial F y el vector normal N. Propiedades de las integrales de superficie para campos vectoriales ean F, G: U R 3 R 3 dos campos vectoriales continuos en U y U una superficie parametrizada regular a trozos. 1. i α, β R entonces (αf + βg) d = α F d + β G d. 2. i representa la misma superficie pero parametrizada con orientación opuesta a la dada inicialmente entonces F d = F d. 3. i = 1 2 disjuntas con las orientaciones dadas por, entonces F d = F d + F d. 1 2 Ejemplo. Calculemos el flujo exterior del campo vectorial F (x, y, z) = pz k, con p R constante, a través de la superficie del paraboloide z = 1 x 2 y 2 por encima del eje XY. Parametrizamos la superficie Φ(u, v) = (u, v, 1 u 2 v 2 ) con 1 u 1 y 1 v 1. Así el producto vectorial fundamental es Φ u Φ v = (1,, 2u) (, 1, 2v) = (2u, 2v, 1) siendo dicho vector exterior a la superficie (para ello, por continuidad, basta comprobarlo en un punto cualquiera de la superficie). Así pz k d = p(1 u 2 v 2 ) dudv = 4p 1 1 3 Nota: Obsérvese que con la parametrización trivial que hemos efectuado, el producto vectorial fundamental coincide con el gradiente del campo g(x, y, z) = z + x 2 + y 2 1 que resulta de la ecuación implicita g(x, y, z) = que define el paraboloide. 3

Figura 1: istintas orientaciones compatibles entre una superficie acotada y su frontera. 2. Cálculo vectorial en el espacio: teorema de tokes y teorema de Gauss 2.1. Teorema de tokes Orientaciones compatibles de una superficie y su curva frontera. ea una superficie parametrizada regular a trozos cuyo borde (frontera) es una curva parametrizada regular a trozos. e dice que las parametrizaciones de y tienen orientaciones compatibles si el movimiento en la curva y los vectores normales a la superficie siguen la regla del sacacorchos. Una forma de ver la orientación es situarnos sobre la frontera en la posición elegida del vector unitario normal a la superficie de forma que el movimiento sobre la curva deje a la superficie a la izquierda. El teorema de tokes generaliza el teorema de Green que hemos visto en el tema anterior de integrales de línea. Teorema de tokes. ea una superficie acotada de R 3 regular a trozos orientable y cuya frontera es una curva simple regular a trozos. i F : U R 3 R 3 es un campo vectorial de clase C 1 en el abierto U tal que U, entonces rot F d = F dc donde y tienen orientaciones compatibles. Obsérvese que si la superficie sobre la que se integra está contenida en el plano XY el teorema de tokes es precisamente el teorema de Green. Ejemplos. Usaremos el teorema de tokes para calcular la integral rot F d siendo F (x, y, z) = z i + x j + y k y 1. la parte de la esfera x 2 + y 2 + z 2 = 4 que se encuentra dentro del cilindro x 2 + y 2 = 1 y en la parte superior del plano XY orientada hacia el interior. Para hallar la curva frontera restamos sus ecuaciones y obtenemos z 2 = 3. Una parametrización compatible de dicha curva será, entonces α(t) = ( sen t, cos t, 3 ), con t 2π por lo que α (t) = (cos t, sen t, ). 4

En consecuencia, por el teorema de tokes: rot F d = F dc = = z dx + x dy + y dz = ( 3 cos t sen 2 t) dt = π 2. la parte del cilindro x 2 + y 2 = 1 por encima del eje XY y por debajo del plano z = x + y + 3. La frontera de la superficie descrita está formada por dos curvas cerradas simples: la parte inferior es una circunferencia de radio 1 parametrizada (de forma compatible) por y la superior es una elipse parametrizada Entonces rot F d = α(t) = (cos t, sen t, ) con t [, 2π] β(t) = (sen t, cos t, sen t + cos t + 3) con t [, 2π] = F dc = cos 2 t dt + 2 π 2.2. ivergencia. El teorema de Gauss F (α(t)) α (t) dt + F (β(t)) β (t) dt = 3 cos 2 t + 3 cos t 1 dt = π + π = 2π ivergencia de un campo vectorial. i F = (F 1, F 2, F 3 ) es un campo vectorial de tres dimensiones de clase C 1 en un abierto U se llama divergencia de F en U al siguiente campo escalar: div F = F = F 1 x + F 2 y + F 3 z. uperficies cerradas. Una superficie regular a trozos se dice que es cerrada cuando encierra un volumen. Una superficie regular cerrada define dos regiones disjuntas del espacio. Una de las regiones es acotada y recibe el nombre de región interior y la otra, no acotada, recibe el nombre de región exterior. Por tanto, una superficie cerrada parametrizada se puede elegir de forma que todos los vectores normales unitarios estén orientados hacia el interior o bien orientados hacia el exterior. En el primer caso decimos que tiene orientación interior Figura 2: uperficie cerrada con orientación exterior. y la representamos. En caso contrario se dice que tiene orientación exterior y se representa +. 5

Teorema de Gauss o de la divergencia. ea una superficie cerrada parametrizada regular a trozos. ea V el volumen encerrado por. i F : U R 3 R 3 es un campo vectorial de clase C 1 en el abierto U de forma que V U entonces F d = div F dxdydz + V donde + representa la superficie tomada con orientación exterior. Ejemplo. Calculemos el flujo del campo vectorial F (x, y, z) = (x, y, z) a través de la esfera de radio 2, 2 (2). Parametrizando la esfera Φ(u, v) = (2 sen u sen v, 2 cos u sen v, 2 cos v) con < u < 2π, < v < π, tenemos Φ u = (2 cos u sen v, 2 sen u sen v, ) y Φ v = (2 sen u cos v, 2 cos u cos v, 2 sen v) y el producto vectorial fundamental es Φ u Φ v = (4 sen u sen 2 v, 4 cos u sen 2 v, 4 cos v sen v) (comprobamos que tiene orientación exterior) 2 (2) + F d = π 8 sen v dudv = 32π Vamos a hacer el mismo cálculo aplicando el teorema de Gauss. Para ello calculamos la divergencia, div F = 1 + 1 + 1 = 3, de aquí V 3 dxdydz = 3 Vol ( 2 (2) ) = 3 4π23 3 = 32π Rodríguez ánchez, F.J.y otros 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike 3. pain 6