Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera."

Transcripción

1 Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. OBJETIVO: Ser capaz de determinar la incertidumbre de un aparato de medición. Ser capaz de calcular la incertidumbre en mediciones directas. Ser capaz de calcular la incertidumbre en mediciones indirectas. Medir es una actividad común en el hombre, desde tiempo inmemorial ha medido la longitud de distancias; para saber que tan lejos está un lugar de otro, para determinar el tamaño de las cosas. Ha medido la cantidad de líquido que cabe en un recipiente. Sin embargo, el hecho de medir no es dar una cantidad numérica. Medir, en el trabajo científico y en la ingeniería, significa dar un resultado numérico acompañado de una incertidumbre o error y las unidades que especifican el tipo de cantidad física. Algunos ejemplos de constantes físicas medidas se dan en la siguiente tabla. Constante Símbolo Valor del cálculo Mejor valor 1986 Incertidumbre Velocidad de la luz C 3.00 X X 10 8 exacto en el vacío (m/s) Carga elemental e 1.60 X X X10-19 (C) Constante de Na 6.02 X X X10 23 Avogadro (mol) -1 Constante de gravitación universal (m 3 /s 2 kg) G 6067 X X X10-11 En la tabla 1. la incertidumbre de cada una de las cantidades físicas, indica con que precisión se ha hecho la medición. No sabemos cuál es el valor verdadero, pero si tenemos un indicador de que tan confiable es el resultado obtenido. Por ejemplo la constante de la gravitación universal es confiable hasta la quinta cifra significativa.

2 laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. Los investigadores de las ciencias exactas y los ingenieros han acordado expresar toda medición, por ejemplo, la constante de la gravitación universal se expresa como sigue G = ( ± ) X m 3 /s 2 kg Lo que significa, que el valor de la constante G se encuentra entre G+ = X m 3 /s 2 kg y G- = X m 3 /s 2 kg En esta práctica aprenderás a calcular la incertidumbre implícita en un aparto de medición como por ejemplo; un vernier, una regla graduada en milímetros, una probeta, etc. Aprenderás a distinguir entre mediciones directas, mediciones indirectas, y mediciones reproducibles, y como calcular sus incertidumbres. Mediciones directas e incertidumbre. En aparatos de medición como una regla, vernier, una balanza mecánica, etc. se define la incertidumbre absoluta o máximo error posible como la mitad de la escala más pequeña. Por ejemplo, en un vernier con el cual podemos medir hasta un décimo de milímetro (0.1 mm), la incertidumbre absoluta será de medio décimo de milímetro, esto es 0.05 mm. Existen aparatos como el tornillo micrométrico con el cuál se puede medir hasta 2 milésimas de milímetro (0.002 mm), en este caso la incertidumbre absoluta del micrómetro es de una milésima de milímetro (0.001 mm). Considérese una balanza granataria con la que se puede medir la masa de objetos hasta una décima de gramo, cuál es su incertidumbre absoluta? δabs = El profesor pedirá que se describa como se usan algunos aparatos de medición y que se determine la incertidumbre absoluta respectiva. En la bitácora de clase describe (de que partes consta, cual es la graduación más pequeña, cual es su incertidumbre, en que unidades está graduado) cada uno de los aparatos de medición que utilizarán en esta clase, así como la manera de usarlos. Elabora una tabla como la mostrada a continuación y registra el error absoluto (incertidumbre absoluta) de cada uno de ellos. Tabla 1. Listado de aparatos de medición, en donde se indica la incertidumbre absoluta de cada uno. Aparato de medición Graduación o escala más pequeña Unidades Incertidumbre absoluta o máximo error posible La incertidumbre relativa de una medición se define como el cocinete de la incertidumbre absoluta entre la medición, δ = δ abs /medición, y la incertidumbre porcentual como el producto de la inceridumbre relativa multiplicada por cien. δ % = δ r X 100.

3 Laboratorio de Física Universitaria A Autor: Enrique Sánchez y Aguilera. 1. Medición directa de una longitud. En esta actividad se medirán algunas longitudes como el largo de un lápiz, el diámetro de una esfera, el diámetro de una placa circular, el espesor de una placa metálica, la altura de un cilindro, etc. Elabora en la bitácora una tabla como la que se muestra a continuación y calcula la incertidumbre relativa y la incertidumbre porcentual de cada dimensión medida. Escribe tus resultados con el número de cifras significativas que permita leer cada aparato de medición, tomando en cuenta su incertidumbre absoluta. Elemento medido Lápiz Lado de una escuadra Varilla Longitud medida Aparato utilizado δ abs (unidades) Medición (unidades) δ r δ % Algunos aparatos de medición traen de fabrica una marca donde se especifica la tolerancia o incertidumbre absoluta. En la siguiente tabla se dan algunos ejemplos, completa la tabla escribiendo la tolerancia de los instrumentos de medición listados y agrega algún otro aparato de medición, como por ejemplo un multímetro, un esferómetro, etc. Aparato Probeta de 25 ml Probeta de 50 ml Probeta de 250 ml Cronómetro digital Vaso de precipitados de 500 ml Vaso de precipitados de 1000 ml Vernier (escala milimétrica) Vernier (escala en pulgadas) Tornillo micrométrico o palmer (escala milimétrica) Tolerancia o incertidumbre 2. Medición directa del tiempo. Cuál es tu tiempo de respuesta? El uso de cronómetros, ya sea analógicos o digitales, requiere de cierta habilidad para hacer una buena medición del tiempo. En cualquiera de los dos tipos de cronómetros existe un botón que acciona el mecanismo de medición, esto implica que hay un tiempo que no forma parte de la medición y esta relacionado con la rapidez del operador para prender el cronómetro al iniciar un evento y apagarlo cuando este termina. El intervalo de tiempo entre prender el cronómetro e inmediatamente apagarlo se llama tiempo de respuesta del operador.

4 Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. Cuál es la diferencia entre un cronómetro analógico y uno digital? En la siguiente tabla registra tu tiempo de respuesta para cinco intentos y calcula el valor promedio. El promedio de estas mediciones será tu tiempo de respuesta. Cronómetro analógico (medición) promedio Tiempo de respuesta (segundos) Cronómetro digital (medición) promedio Tiempo de respuesta (segundos) Tolerancia cronómetro digital s Tolerancia cronómetro analógico s Para registrar la medición del tiempo que dura un evento, es necesario restar el tiempo de respuesta al tiempo medido. Mide el tiempo que tarda una pelota en recorrer una distancia horizontal de 10 metros cuando se lanza con velocidad constante. Lanzamiento Tiempo (s) Lanzamiento Tiempo (s) T P (promedio de los tiempos de lanzamiento) s T PR (Promedio menos tiempo de respuesta) s Medición T PR ± Tolerancia = ± s

5 Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. Unidad: Errores e incertidumbres en mediciones Agosto Medición directa de un área. La medición directa del área de una superficie se puede hacer comparando la cuadrícula de una hoja de papel milimétrico con la superficie del cuerpo en investigación. En este experimento se utilizarán hojas tamaño carta. Este método solo se aplica a superficies planas regulares e irregulares, como un cubo, una hoja de árbol. También se puede medir el área de una superficie cilíndrica rodando el cilindro sobre el papel milimétrico. Sobre una hoja de papel milimétrico coloca un cuerpo con caras planas. Traza el perímetro del cuerpo y determina su área. Cuál es la graduación más pequeña en una hoja de papel milimétrico? Cuál es la incertidumbre absoluta de la escala que estas utilizando? Elemento medido Área en mm 2 Hoja de árbol Calculadora Cilindro (área lateral) medición δ r δ % Area ± δ % Determinar la incertidumbre en una medición indirecta Una medición indirecta es aquella en la cual no se compara directamente el objeto medido con el patrón de medición correspondiente, por ejemplo, el área de la superficie de la cubierta de una mesa, el área de la superficie de una esfera, el área de un campo de fútbol, etc. Se dice que una medición es indirecta cuando se efectúa un cálculo a partir de mediciones directas. Como ejemplos de mediciones indirectas tenemos la determinación de la velocidad de la luz, la medición de la masa de un electrón, etc. Da otros ejemplos de mediciones indirectas

6 Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. INCERTIDUMBRE DEL PRODUCTO DE DOS MEDICIONES. Sean dos mediciones A y B, obtenidas al medir las longitudes de los lados de una lámina rectangular. A = 7± 0.5 mm y B = 3 ± 0.5 mm La pregunta es: cuál es la incertidumbre relativa y cuál la incertidumbre porcentual del área de la lámina? Sea Z la magnitud del área de la lámina rectangular, entonces Z = A B, en esta ecuación por tanto A=Ao ± δa y B = B o ± δb z = Z o ± δz, siendo Zo = Ao B o y δz la incertidumbre absoluta en donde A o = 7 mm y su incertidumbre absoluta δa es 0.5 mm. Para el caso de B se tiene B o = 3 mm y δb = 0.5 mm La incertidumbre relativa del área Z esta dada por δz/z o = δa/a o + δb/b o Ahora bien Zo = 21 mm 2 y su incertidumbre relativa es δz/z o = 0.5/ /3 fijate que la incertidumbre relativa no tiene unidades. La incertidumbre porcentual será (δz)r * 100 = 24 % Se puede calcular la incertidumbre absoluta, la cuál está dada por δz/ = (δa/a o + δb/b o )Z o de donde δz = 5.04 mm 2 Con estos resultados se puede escribir el área de la lámina rectangular Z = 21 ± 5.04 mm 2 En esta actividad se determinará la incertidumbre relativa y porcentual de algunas cantidades que son el resultado de una medición indirecta. El encargado del laboratorio te proporcionará algunos objetos para que determines el área de su superficie o bien su volumen. Llena las siguientes tablas anotando la cantidad medida en la columna correspondiente, según sea el caso. En la bitácora efectúa los cálculos necesarios

7 Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. Cuerpo Esfera Prisma rectangular Libro Cuaderno Cilindro Cubo Aparato utilizado Ancho Largo Altura Diámetro Cuerpo Esfera Prisma rectangular Libro Cuaderno Cilindro Cubo Incertidumbre absoluta Area ± incertidumbre porcentual Volumen ± incertidumbre porcentual Determinar la incertidumbre de medidas reproducibles. A un alumno del curso de Química General se le pide que determinar la masa de una muestra de tapones de goma del No 5. Cuál sería su sorpresa, al darse cuenta de que no todos los tapones tienen la misma masa. En la siguiente tabla se ha registrado los datos de las mediciones. Tapón No Masa (g) Se puede asociar una incertidumbre a cada medición considerando el error absoluto de la balanza. Después de una inspección cuidadosa de los datos se ve que la mayoría de las masas no están dentro del intervalo de la masa promedio ± la incertidumbre absoluta. La pregunta es qué hacer en este caso? Lo más adecuado es calcular la masa promedio y obtener la diferencia con cada una de las masa. La máxima de las diferencias será la incertidumbre de una medición reproducible. Qué se entiende por medida reproducible?

8 Laboratorio de Fisica Universitaria A Autor: Enrique Sánchez y Aguilera. Con los datos de la tabla anterior, calcula lo siguiente. i) Masa promedio de los tapones de hule del No. 5 M promedio = ii) Llena la siguiente Tabla Tapón # Masa del tapón Masa del tapón masa promedio iii) En el siguiente espacio escribe el valor absoluto de la Máxima de las diferencias iv) Masa del tapón - Masa promedio I máxima = La masa más representativa de un tapón de hule del No. 5 es M = Masa promedio ± la máxima de las diferencias. M = Determinar la incertidumbre de una constante Como se muestra en la introducción, toda constante que sea una cantidad física tiene una incertidumbre. En esta actividad se medirá el diámetro, la circunferencia y el radio del círculo máximo de una pelota de softball y de una esfera de madera. Con un cordón, rodea la pelota de softball y la esfera y marca este en el lugar donde se cierra el circulo. Con una regla de 30 cm de longitud mide la longitud del cordón. Cómo medirías el diámetro de la pelota y de la esfera? Explica

9 Laboratorio de Física Uníversítaría A Autor: Enrique Sánchez y Aguilera. Los griegos descubrieron que la relación entre el diámetro de un círculo y la longitud de su circunferencia está dad por π = (longitud de la circunferencia del círculo)/(diámetro del círculo) El valor de π se ha determinado con cierta precisión y se considera como valor aceptado (este número se tomará como el valor verdadero) Cuerpo Diámetro Longitud de la circunferencia Valor de π calculado Pelota de softball Esfera de madera Promedio del valor del número pi πexp = Calcula la incertidumbre relativa del número π δπ/π = π exp - π /π = cuáles son las unidades del número π? Da una explicación.

10

Autor: Enrique Sánchez y Aguilera. Agosto 2001

Autor: Enrique Sánchez y Aguilera. Agosto 2001 IV: Medidas reproducibles y su incertidumbre. V: Incertidumbre de una constante OBJETIVO : Ser capaz de determinar la incertidumbre de medidas reproducibles. Ser capaz de calcular la incertidumbre de una

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura...

LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... LA MEDIDA IES La Magdalena Avilés. Asturias Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... etc. Medir una magnitud consiste en compararla

Más detalles

LABORATORIO 1: MEDICIONES BASICAS

LABORATORIO 1: MEDICIONES BASICAS UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO : MEDICIONES BASICAS Realizar mediciones de objetos utilizando diferentes

Más detalles

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamento de Física Práctica # 6 Mediciones

Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamento de Física Práctica # 6 Mediciones Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamento de Física Práctica # 6 Mediciones I. Introducción. A partir del desarrollo el concepto de número, el hombre tuvo la necesidad de

Más detalles

Área de Ciencias Naturales LABORATORIO DE FÍSICA. Física I. Actividad experimental No. 1. Magnitudes físicas y su medición

Área de Ciencias Naturales LABORATORIO DE FÍSICA. Física I. Actividad experimental No. 1. Magnitudes físicas y su medición Área de Ciencias Naturales LABORATORIO DE FÍSICA Física I ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACIÓN: Actividad experimental No. 1 Magnitudes físicas y su medición EXPERIMENTO No. 1 Medición

Más detalles

PRACTICA DE LABORATORIO NO. 1

PRACTICA DE LABORATORIO NO. 1 UIVERSIDAD PEDAGÓGICA ACIOAL FRACISCO MORAZÁ CETRO UIVERSITARIO REGIOAL DE LA CEIBA DEPARTAMETO DE CIECIAS ATURALES PRACTICA DE LABORATORIO O. 1 I PERIODO 2014 ombre de la Practica: MEDICIOES E ICERTIDUMBRES.

Más detalles

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.1. Propiedades Particulares de la Materia

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.1. Propiedades Particulares de la Materia Área de Ciencias Naturales LABORATORIO DE FISICA Física II ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACION: Actividad experimental No.1 Propiedades Particulares de la Materia EXPERIMENTO No.

Más detalles

Física. Magitud m b m

Física. Magitud m b m Física Magitud 1. a) La distancia entre la Tierra y el Sol es de, 150 Gm. Expresar esta distancia en el SI. b) La memoria RAM de un ordenador es, 1024 Mb. c) El tamaño de un átomo de hidrógeno de, 10 nm.

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE TLAXCALA

COLEGIO DE BACHILLERES DEL ESTADO DE TLAXCALA COLEGIO DE BACHILLERES DEL ESTADO DE TLACALA DIRECCIÓN ACADÉMICA DEPARTAMENTO DE BIBLIOTECAS Y LABORATORIOS. MANUAL DE ACTIVIDADES EPERIMENTALES DE: PRUEBAS FÍSICAS I (QUINTO SEMESTRE) SEMESTRE 2009-B

Más detalles

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas OBJETIVOS MEDICIÓN Declarar lo que es una medición, error de una medición, diferenciar precisión de exactitud. Reportar correctamente una medición, con las cifras significativas correspondientes utilizando,

Más detalles

Semana 6 Bimestre I Número de clases 16 18

Semana 6 Bimestre I Número de clases 16 18 Semana 6 Bimestre I Número de clases 16 18 Clase 16 Prácticas de laboratorio Actividad 1 Normas de seguridad y medición Conoce las normas de laboratorio y aprende a medir! 1 Normas de laboratorio Use prenda

Más detalles

PRÁCTICA N 1: INSTRUMENTOS DE MEDIDA DE LONGITUD, TIEMPO Y MASA. Sistema Internacional de unidades (SI)

PRÁCTICA N 1: INSTRUMENTOS DE MEDIDA DE LONGITUD, TIEMPO Y MASA. Sistema Internacional de unidades (SI) PRÁCTICA N 1: INSTRUMENTOS DE MEDIDA DE LONGITUD, TIEMPO Y MASA Unidad patrón referencia utilizada para determinar el valor de una magnitud, se le asigna un valor unitario Magnitudes Fundamentales: del

Más detalles

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1 No 1 LABORATORIO DE FISICA PARA LAS CIENCIAS DE LA VIDA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Realizar mediciones de magnitudes de diversos objetos

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

Guía de trabajo No 1 Medidas

Guía de trabajo No 1 Medidas Guía de trabajo No 1 Medidas OBJETIVOS [1.1] Realizar la identificación correcta de la medida tomada. Tomar conciencia de la variabilidad en la medida experimental. Usar las convenciones dadas por el S.I.

Más detalles

El trabajo en el laboratorio implica medir magnitudes físicas mediante la utilizacion de instrumentos de medida.

El trabajo en el laboratorio implica medir magnitudes físicas mediante la utilizacion de instrumentos de medida. Instrumentos de Medida para el laboratorio de fisica 11 y General. Mediciones El trabajo en el laboratorio implica medir magnitudes físicas mediante la utilizacion de instrumentos de medida. Medir es la

Más detalles

Propagación de Incertidumbres

Propagación de Incertidumbres Practica 3 Propagación de Incertidumbres Medición indirecta. Incertidumbres en cantidades calculadas En la práctica anterior nos hemos ocupado solamente del concepto de incertidumbre de una magnitud que

Más detalles

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Errores e Incertidumbre Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Notación Científica 0 1 2 (1,45 ± 0,05) cm Objetivos: Después de completar este tema,

Más detalles

LOS INSTRUMENTOS DE MEDICIÓN

LOS INSTRUMENTOS DE MEDICIÓN LOS INSTRUMENTOS DE MEDICIÓN INTRUMENTO MAGNITUD UNIDAD Cinta métrica Regla Longitud: es la distancia entre dos puntos; por ejemplo, alto, ancho, grosor, largo. Metro (m). Múltiplos, para grandes distancias,

Más detalles

Profesora: Ana María Gallardo Suárez. Características de los INSTRUMENTOS DE MEDIDA PRACTICA Nº 1 CURSO: 3 ESO. Recursos ana.fjb.

Profesora: Ana María Gallardo Suárez. Características de los INSTRUMENTOS DE MEDIDA PRACTICA Nº 1 CURSO: 3 ESO. Recursos ana.fjb. Características de los INSTRUMENTOS DE MEDIDA PRACTICA Nº 1 CURSO: 3 ESO Recursos ana.fjb.es Introducción Los instrumentos de medida están definidos por una serie de características que debes conocer para

Más detalles

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido.

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. Metrología Básica 1.1. Objetivos 1.1.1. General Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. 1.1.2. Específicos Aplicar los procesos

Más detalles

Naturaleza de la ciencia

Naturaleza de la ciencia capítulo 1 Naturaleza de la ciencia sección 2 Estándares de medición Antes de leer Si alguien te pregunta cuál es el ancho de tu pupitre, cómo lo medirías? Lo medirías en pulgadas, centímetros, pies, yardas

Más detalles

LABORATORIO: DETERMINACIÓN DE LA DENSIDAD POR DIFERENTES MÉTODOS

LABORATORIO: DETERMINACIÓN DE LA DENSIDAD POR DIFERENTES MÉTODOS COLEGIO AGUSTINIANO CIUDAD SALITRE AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL PROCESOS FISICO QUÍMICOS GRADO SEXTO LABORATORIO: DETERMINACIÓN DE LA DENSIDAD POR DIFERENTES MÉTODOS JUSTIFICACIÓN Realizamos

Más detalles

MEDICION DE CANTIDADES FISICAS

MEDICION DE CANTIDADES FISICAS UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FISICA II TELECOMUNICACIONES MEDICION DE CANTIDADES FISICAS Esta primera práctica introduce un conjunto de

Más detalles

LABORATORIO DE INTRODUCCIÓN A LA FISICA GUIA DE LABORATORIO EXPERIENCIA Nº 1

LABORATORIO DE INTRODUCCIÓN A LA FISICA GUIA DE LABORATORIO EXPERIENCIA Nº 1 LABORATORIO DE INTRODUCCIÓN A LA FISICA GUIA DE LABORATORIO EXPERIENCIA Nº Sistema de Unidades, Medidas de con cronómetro, Medidas de Longitudes con calibrador Integrantes: Profesor: PUNTAJE OBTENIDO PUNTAJE

Más detalles

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas:

1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, 2) Determine el área de cada una de las partes sombreadas: Plantear y resolver los siguientes problemas: 1) Si una pizza de 32cm de diámetro se corta en 8 porciones exactamente iguales, determinar el área de cada porción. 2) Determine el área de cada una de las

Más detalles

GUIA COMPLEMENTARIA DE EJERCICIOS DE INDETERMINACIONES

GUIA COMPLEMENTARIA DE EJERCICIOS DE INDETERMINACIONES UNIVERSIDD TECNOLÓGIC NCIONL FCULTD REGIONL GRL. PCHECO U.D.B.: FÍSIC SEMINRIO UNIVERSITRIO GUI COMPLEMENTRI DE EJERCICIOS DE INDETERMINCIONES Ejercicio nº 1 Medir la longitud del segmento B. B C D Utilizar

Más detalles

1. Complete la siguiente tabla, relacionada con las magnitudes físicas fundamentales: Unidad de medida en el sistema internacional de unidades

1. Complete la siguiente tabla, relacionada con las magnitudes físicas fundamentales: Unidad de medida en el sistema internacional de unidades PARTE II. EJERCICIOS PROPUESTOS 1. Complete la siguiente tabla, relacionada con las magnitudes físicas fundamentales: Magnitud Masa Temperatura Cantidad de sustancia Unidad de medida en el sistema internacional

Más detalles

Procesos científicos básicos: Medir

Procesos científicos básicos: Medir Procesos científicos básicos: Medir 1 (Cómo trabajar en la sala de clases) Medir es el proceso que suministra datos cuantitativos sobre un objeto o fenómeno. Se expresa a través de un número y una magnitud,

Más detalles

Geometría en 3D: Preguntas del Capítulo

Geometría en 3D: Preguntas del Capítulo Geometría en 3D: Preguntas del Capítulo 1. Cuáles son las similitudes y las diferencias entre prismas y pirámides? 2. Cómo se nombran los poliedros? 3. Cómo encuentras la sección transversal de una figura

Más detalles

Recursos. Temas. Tiempo. Evaluación. Competencias:

Recursos. Temas. Tiempo. Evaluación. Competencias: Lic. José Antonio Martínez y Martínez @jamm2014 Competencias: Utiliza formas geométricas, símbolos, signos y señales para el desarrollo de sus actividades cotidianas. Aplica el pensamiento lógico, reflexivo,

Más detalles

FISICA APLICADA. Laboratorio Experimental 1: METROLOGIA

FISICA APLICADA. Laboratorio Experimental 1: METROLOGIA A - Objetivo de la experiencia FISICA APLICADA Laboratorio Experimental 1: METROLOGIA Medida de longitudes con mayor precisión que la dada por regla de lectura directa. Conocimiento y utilización de calibre

Más detalles

EL PROMEDIO Y LA DESVIACIÓN TÍPICA

EL PROMEDIO Y LA DESVIACIÓN TÍPICA EL PROMEDIO Y LA DESVIACIÓN TÍPICA Cuando se realizan muchas medidas de una variable bajo las mismas condiciones, los resultados serán, casi siempre, distintos. Esto se debe a la naturaleza aleatoria del

Más detalles

EXPERIMENTO 3 MEDIDAS DE PEQUEÑAS LONGITUDES

EXPERIMENTO 3 MEDIDAS DE PEQUEÑAS LONGITUDES 1 EXPERIMENTO 3 MEDIDAS DE PEQUEÑAS LONGITUDES 1. OBJETIVOS Identificar cada una de las partes que componen un calibrador y un tornillo micrométrico y sus funciones respectivas. Adquirir destreza en el

Más detalles

Práctica adicional. Nombre Fecha Clase

Práctica adicional. Nombre Fecha Clase Práctica adicional Investigación 1 1. Los cuatro modelos planos de abajo se doblan formando cajas rectangulares. Al doblar el modelo plano iii se forma una caja abierta. Al doblar los otros modelos planos

Más detalles

MANUAL DE PRÁCTICAS DE LABORATORIO

MANUAL DE PRÁCTICAS DE LABORATORIO INSTITUTO TECNOLÓGICO SUPERIOR DE LIBRES MANUAL DE PRÁCTICAS DE LABORATORIO CIENCIAS BASICAS ASIGNATURA: Fundamentos de Física CLAVE: ALC- 1010 ELABORÓ M.C. Martha Irene Bello Ramírez Libres, Puebla FORMATO

Más detalles

Viscosidad de un líquido

Viscosidad de un líquido Viscosidad de un líquido Laboratorio de Mecánica y fluidos Objetivos Determinar el coeficiente de viscosidad de un aceite utilizando el viscosímetro de tubo y aplicando la ecuación de Poiseuille. Equipo

Más detalles

Determinación de las Densidades PLANTEAMIENTO DEL PROBLEMA

Determinación de las Densidades PLANTEAMIENTO DEL PROBLEMA Determinación de las Densidades PLANTEAMIENTO DEL PROBLEMA Esta práctica consistirá en determinar la densidad de diferentes sustancias sólidas y líquidas. Los líquidos pueden tener forma regular (cilindros

Más detalles

LABORATORIO DE FÍSICA FUNDAMENTAL

LABORATORIO DE FÍSICA FUNDAMENTAL LABORATORIO DE FÍSICA FUNDAMENTAL EXPERIENCIA 2 USO DEL VERNIER 1. OBJETIVO El alumno aprenderá cómo realizar mediciones utilizando un vernier. Además será capaz de identificar que instrumento de medición

Más detalles

1. MEDIDA Y MÉTODO CIENTÍFICO

1. MEDIDA Y MÉTODO CIENTÍFICO 1. MEDIDA Y MÉTODO CIENTÍFICO 1. Introduce un recipiente con agua caliente en el congelador del frigorífico. Observa y describe lo que sucede con el tiempo. En la superficie libre del agua aparece una

Más detalles

Introducción al estudio de las mediciones

Introducción al estudio de las mediciones y fluidos 1.0 Medición Una medición es el resultado de una operación humana de observación mediante la cual se compara una magnitud con un patrón de referencia. Por ejemplo, al medir el diámetro de una

Más detalles

Calculando el volumen de un prisma recto triangular

Calculando el volumen de un prisma recto triangular Bitácora del Estudiante Calculando el volumen de un prisma recto triangular Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Qué propiedad de una figura mides utilizando pies cúbicos

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 1. INSTRUMENTOS DE MEDICIÓN Preparado por. Ing. Ronny J. Chirinos S., MSc

Más detalles

TEMA 2. LA MEDIDA EL SISTEMA INTERNACIONAL DE UNIDADES

TEMA 2. LA MEDIDA EL SISTEMA INTERNACIONAL DE UNIDADES TEMA 2. LA MEDIDA. En general, la observación de un fenómeno resulta incompleta a menos que dé lugar a una información cuantitativa. Por otro lado, la experimentación nos obliga a realizar una labor clave

Más detalles

Calcular La parte entera es 78 y la decimal es Esto qué significa? La parte entera nos dice que 3 cabe 78 veces completas en 235.

Calcular La parte entera es 78 y la decimal es Esto qué significa? La parte entera nos dice que 3 cabe 78 veces completas en 235. 3. Usen la calculadora y calculen: En la calculadora solo se escriben las cifras de los números, no se escribe los puntos para separar millones, ni unidades de mil. 78.254 + 452.148 + 1.547.478 45.001

Más detalles

EXPERIMENTO No. 1 ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMETRICO Y ESFEROMETRO

EXPERIMENTO No. 1 ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMETRICO Y ESFEROMETRO EXPERIMENTO No. 1 ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMETRICO Y ESFEROMETRO OBJETIVO 1. Estudiar los errores y su propagación a partir de datos tomados de un experimento simple. 2. Determinar

Más detalles

PRÁCTICA 1. Mediciones

PRÁCTICA 1. Mediciones PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..

Más detalles

25 ANIVERSARIO 2ª PRUEBA. 21 de febrero de Subvenciona: Departamento de Educación, Universidad, Cultura y Deporte

25 ANIVERSARIO 2ª PRUEBA. 21 de febrero de Subvenciona: Departamento de Educación, Universidad, Cultura y Deporte 2ª PRUEBA 2 de febrero de 204 Subvenciona: Departamento de Educación, Universidad, Cultura y Deporte PROBLEMA EXPERIMENTAL. Caída de una bolita en un fluido. En la figura se muestra una fotografía, con

Más detalles

Procesos de Fabricación I. Guía 2 0. Procesos de Fabricación I

Procesos de Fabricación I. Guía 2 0. Procesos de Fabricación I Procesos de Fabricación I. Guía 2 0 Procesos de Fabricación I Procesos de Fabricación I. Guía 2 1 Facultad: Ingeniería Escuela: Ingeniería Mecánica Tema: Uso del pie de rey y Micrómetro. Objetivo Al finalizar

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Inventario de Laboratorio

Inventario de Laboratorio Inventario de Laboratorio Introducción a la Física Experimental Departamento de Física Aplicada. Universidad de Cantabria. Febrero 11, 2004 Relación carga/masa del electrón. 1 1. Medida de dimensiones

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica INGENIERÍA CIVIL EN MECANICA PLAN 2012 GUÍA DE LABORATORIO ASIGNATURA METROLOGÍA Y SISTEMAS DE MEDICIÓN CODIGO

Más detalles

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31 Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería Métodos Numérico Hermes Pantoja Carhuavilca 1 de 31 CONTENIDO Introducción Hermes Pantoja Carhuavilca 2 de

Más detalles

Prisma, cilindro y cono. Anselmo necesita elaborar una pieza de madera maciza que tiene una forma como esta:

Prisma, cilindro y cono. Anselmo necesita elaborar una pieza de madera maciza que tiene una forma como esta: Prisma, cilindro y cono Lección 5 Anselmo necesita elaborar una pieza de madera maciza que tiene una forma como esta: Cuánto mide el ancho de la pieza? Cuánto mide el largo de la pieza? Cuánto mide la

Más detalles

VOLÚMENES DE POLIEDROS PRISMA:

VOLÚMENES DE POLIEDROS PRISMA: VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen

Más detalles

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE 1. OBJETIVOS Guión de Prácticas. PRÁCTICA METROLOGIA. Medición Conocimientos de los fundamentos de medición Aprender a utilizar correctamente los instrumentos básicos de medición. 2. CONSIDERACIONES PREVIAS

Más detalles

MEDICIÓN DE LA DENSIDAD DE UN SÓLIDO

MEDICIÓN DE LA DENSIDAD DE UN SÓLIDO PRÁCTICA DE LABORATORIO I-03 MEDICIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVOS Entender cómo funciona un vernier y aprender a usarlo. Combinar las mediciones de volumen y masa para determinar la densidad

Más detalles

Gasto a través de un tubo

Gasto a través de un tubo Gasto a través de un tubo Laboratorio de Mecánica y fluidos Objetivos Medir el gasto de un líquido que fluye a través de un tubo. Observar y medir las presiones a lo largo de un tubo por el cual se mueve

Más detalles

Laboratorio de Física PRÁCTICA 2

Laboratorio de Física PRÁCTICA 2 PRELABORATORIO: - Masa y unidades de masa - Peso y unidades de peso. - Diferencia entre masa y peso. - Balanza - Densidad y unidades de densidad. - Densidad de cuerpos sólidos - Densidad de cuerpos líquidos.

Más detalles

Cálculo de densidades.

Cálculo de densidades. Cálculo de densidades. Objetivo Determinación de la densidad de sólidos y líquidos mediante diferentes procedimientos. En todos los casos, se deberán estimar las incertidumbres o errores de medida. Material

Más detalles

Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área

Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área 10-1 Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área El área de una figura es la cantidad de superficie que cubre. El área se mide en unidades cuadradas. Estimar el área de una

Más detalles

DENSIDAD Y PESO ESPECÍFICO

DENSIDAD Y PESO ESPECÍFICO DENSIDAD Y PESO ESPECÍFICO Adaptación del Experimento Nº 2 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 43-47. Autorizado por el Autor. Materiales: Cilindros graduados

Más detalles

Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones.

Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones. Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones. Resumen La física, como los demás ciencias, es una empresa de creación, no simplemente una colección de hechos. La física

Más detalles

TEMA 1. LA MATERIA. PROPIEDADES GENERALES. LA MEDIDA.

TEMA 1. LA MATERIA. PROPIEDADES GENERALES. LA MEDIDA. TEMA 1. LA MATERIA. PROPIEDADES GENERALES. LA MEDIDA. De qué están hechos todos los objetos y cuerpos que nos rodean?. Si miramos a nuestro alrededor vemos objetos perfectamente diferenciados como por

Más detalles

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis EXPERIMENTOS Selección del/los modelos Obtención de leyes Validación de/los modelos EXPERIMENTACIÓN

Más detalles

Errores en Las Mediciones

Errores en Las Mediciones 1 Objetivo: Estudiar los conceptos básicos sobre medidas y errores a través del cálculo de porcentajes al efectuar mediciones Teoría El conocimiento que cada uno de nosotros a adquiriendo y acumulando

Más detalles

Universidad Metropolitana Centro de Aguadilla Laboratorio de Química. Medidas de Masa y Densidad e Incertidumbre

Universidad Metropolitana Centro de Aguadilla Laboratorio de Química. Medidas de Masa y Densidad e Incertidumbre Universidad Metropolitana Centro de Aguadilla Laboratorio de Química Medidas de Masa y Densidad e Incertidumbre Objetivos: Reconocer la incertidumbre en las medidas Familiarizarse con las medidas de longitud,

Más detalles

METROLOGÍA Y ENSAYOS

METROLOGÍA Y ENSAYOS Plan de recuperación Verano 2017 METROLOGÍA Y ENSAYOS La realización de este plan de recuperación supone el 20% de la nota de la convocatoria de Septiembre 2017 (60 puntos) TEST (Un punto cada pregunta

Más detalles

PRÁCTICA 3 DINÁMICA ROTACIONAL

PRÁCTICA 3 DINÁMICA ROTACIONAL PRÁCTICA 3 DINÁMICA ROTACIONAL. Objetivos.. Objetivo General Determinar experimentalmente el momento de inercia de un objeto a partir de cálculos estadísticos y de un análisis de regresión..2. Objetivos

Más detalles

III. APARATOS DE MEDICION. Ángulos - tiempos - masa - temperatura

III. APARATOS DE MEDICION. Ángulos - tiempos - masa - temperatura III. APARATOS DE MEDICION Ángulos - tiempos - masa - temperatura OBJETIVO Aprender a manejar algunos aparatos que son de gran importancia para las mediciones de ángulos, tiempo, masa y temperatura. RESUMEN

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES. Dpto. de Física y Química. R. Artacho

4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES. Dpto. de Física y Química. R. Artacho 4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES R. Artacho Dpto. de Física y Química 1. MAGNITUDES Y UNIDADES Índice CONTENIDOS 1. La investigación científica. 2. Las magnitudes. 3. La medida y su

Más detalles

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías CURSO PROPEDEÚTICO DE FÍSICAF Formación básica de Física Destinado a alumnos matriculados en estudios de ingenierías PRESENTACIÓN CURSO PROPEDEÚTICO DE FÍSICA Bloque 1: Magnitudes y vectores Bloque 2:

Más detalles

9. GEOMETRÍA DE SÓLIDOS

9. GEOMETRÍA DE SÓLIDOS 9. GEOMETRÍA DE SÓLIDOS 1. Se quiere empapelar una habitación que tiene las siguientes dimensiones: 9, 25m de largo; 4, 75m de ancho y 2, 2m de alto. Las aberturas que no serán empapeladas corresponden

Más detalles

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm.

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm. Cifras significativas. Definición. Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y

Más detalles

Parte B. Contacto:

Parte B. Contacto: Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física Nivel Medio. Parte B El presente material sirve de apoyo

Más detalles

Otras tareas y actividades: Preguntas y problemas

Otras tareas y actividades: Preguntas y problemas FISICA MECANICA DOCUMENTO DE CONTENIDO TALLER DE EJERCICIOS LAPIZ Y PAPEL Otras tareas y actividades: Preguntas y problemas A continuación usted encontrara preguntas y problemas que debe resolver para

Más detalles

PROPIEDADES DE LA MATERIA. Nombre del Alumno: Profesor: Grupo:

PROPIEDADES DE LA MATERIA. Nombre del Alumno: Profesor: Grupo: PROPIEDADES DE LA MATERIA Nombre del Alumno: Profesor: Grupo: 2. Espacio sugerido: Laboratorio de usos múltiples. 3. Desempeños y habilidades. 1. Identifica problemas, formula preguntas de carácter científico

Más detalles

Examen estandarizado A

Examen estandarizado A Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg

Más detalles

Introducción al tratamiento de datos

Introducción al tratamiento de datos Introducción al tratamiento de datos MEDICIÓN? MEDICIÓN Conjunto de operaciones cuyo objetivo es determinar el valor de una magnitud o cantidad. Ej. Medir el tamaño de un objeto con una regla. MEDIR? MEDIR

Más detalles

Examen A del capítulo

Examen A del capítulo Eamen A del capítulo Usar después del capítulo Indica si el sólido es un poliedro. Si es así, halla el número de caras, vértices y aristas.. 2. 3.. Determina si el poliedro es regular y/o conveo. 2. 4.

Más detalles

Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática

Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática Programa Acompañamiento Matemática Cuadernillo de ejercitación Ejercitación Área y volumen de sólidos Mapa conceptual Tienen CUERPOS GEOMÉTRICOS Figuras geométricas que ocupan un lugar en el espacio. Se

Más detalles

Pueden medirse dimensiones lineales exteriores y profundidades. Además el Vernier consta de una regla graduada en escala amétrica y / o pulgadas.

Pueden medirse dimensiones lineales exteriores y profundidades. Además el Vernier consta de una regla graduada en escala amétrica y / o pulgadas. METROLOGIA Objetivo Aprender a conocer y utilizar instrumentos de medidas de longitud tanto grandes como pequeñas con la exactitud necesaria, dentro de estos instrumentos se utilizaran micrómetro, flexo

Más detalles

ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO

ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO ERRORES REGLA, PIE DE REY O VERNIER, TORNILLO MICROMÉTRICO OBJETIVOS 1. Estudiar los errores y su propagación a partir de datos tomados de un experimento simple. 2. Determinar el espesor de alambres y

Más detalles

Slide 1 / Cuál es la densidad de un bloque de aluminio que tiene una masa de 4050 kg y su volumen es 1.5 m 3?

Slide 1 / Cuál es la densidad de un bloque de aluminio que tiene una masa de 4050 kg y su volumen es 1.5 m 3? Slide 1 / 68 1 Cuál es la densidad de un bloque de aluminio que tiene una masa de 4050 kg y su volumen es 1.5 m 3? Slide 2 / 68 2 Cuál es la masa de un bloque de forma rectangular de dimensiones de 0.04m

Más detalles

MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π

MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π 1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital

Más detalles

Untitled.notebook February 01, Geometría 3 D

Untitled.notebook February 01, Geometría 3 D Geometría 3 D Tabla de Contenidos Sólidos 3 Dimensional Redes Volumen Prismas y Cilindros Haga clic en el tema para ir a esa sección Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

PRÁCTICAS DE LABORATORIO: MEDIR Y REGISTRAR

PRÁCTICAS DE LABORATORIO: MEDIR Y REGISTRAR PRÁCTICAS DE LABORATORIO: MEDIR Y REGISTRAR IES Celestino Mutis. Madrid. Departamento de CC Naturales Por J.A. Bertomeu UN POCO DE TEORÍA... MAGNITUD Tomemos un libro y un borrador y observémoslos. Los

Más detalles

Limpia a detalle el recipiente cilíndrico, valiéndose del cepillo de alambre en caso de ser necesario.

Limpia a detalle el recipiente cilíndrico, valiéndose del cepillo de alambre en caso de ser necesario. PARA DETERMINAR MASA UNITARIA Pagina 1 de 10 I.- Objetivo: El propósito de este instructivo es establecer la forma como se realiza la calibración interna de los recipientes cilíndricos que se utilizan

Más detalles

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato - Magnitudes y unidades - El S.I. de unidades - Medida y error Física Física y química 1º 1º Bachillerato Magnitud Es todo aquello que puede ser medido Medición Medir Conjunto Es comparar de actos una

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas PÁGINA 8 Pág. 8 0 Divide y simplifica. a) 7 : b) : c) : 6 a) 7 : = 7 : = 9 b) : = : = = c) : = : = = 6 6 7 Reduce a índice común y efectúa. a) 6 b) : 6 c) 0 : 0 d) ( ) : ( ) 6 6 a) = b) = 0 6 0 8 78 6

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS

TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS MÓDULO - Ámbito Científico-Tecnológico TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS. REPASO A LAS FIGURAS PLANAS ELEMENTALES Actividad (p. 40). Calcula el área de un triángulo equilátero de lado m.

Más detalles

MAGNITUDES DE UNA ESFERA

MAGNITUDES DE UNA ESFERA MAGNITUDES DE UNA ESFERA Asignatura: Física Biomecánica Profesor: Orlando Acevedo Autores: Katherine Natalia Aguirre Guataqui María Paola Reyes Gómez Andrea Viviana Rodríguez Archila Laura Carolina Martínez

Más detalles

NMX-C-083-ONNCCE DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DE ESPECIMENES

NMX-C-083-ONNCCE DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DE ESPECIMENES NMX-C-083-ONNCCE-2014. DETERMINACIÓN DE LA RESISTENCIA A LA COMPRESIÓN DE ESPECIMENES NMX-C-083-ONNCCE-2014. Determinación de la resistencia a la compresión de especímenes. Esta norma mexicana establece

Más detalles