-Todos los materiales de la Naturaleza están compuestos por moléculas y átomos. -Las componentes microscópicas obedecen las leyes de Newton.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "-Todos los materiales de la Naturaleza están compuestos por moléculas y átomos. -Las componentes microscópicas obedecen las leyes de Newton."

Transcripción

1 Teoría Cinética de los gases -Todos los materiales de la Naturaleza están compuestos por moléculas y átomos. -Las componentes microscópicas obedecen las leyes de Newton. -Sus movimientos son aleatorios. Gas Ideal Consideremos N moléculas moviéndose libremente en un recipiente cúbico de lado a, orientado a lo largo de los ejes cartesianos. Al chocar una molécula con una pared perpendicular al eje x cambia su momentum en: El tiempo que demora la molécula en chocar con la misma pared es: Por lo tanto, la fuerza ejercida por la molécula sobre la pared, de acuerdo a la Tercera Ley de Newton, es: Dado que hay N moléculas y que la presión es, tenemos que: donde es el promedio del cuadrado de la componente x de la velocidad de una molécula en el gas. Dado que las moléculas se mueven aleatoriamente, debe ser que:

2 donde es la velocidad cuadática media de una molécula en el gas. Esto es: Comparando con la ecuación de estado del gas ideal, obtenemos la importante relación: Esta relación permite interpretar la temperatura como la energía cinética media de una molécula en el gas. Esta interpretación es general y se aplica a sólidos y líquidos también. Recordando (*), se tiene que: Esto se conoce como el Teorema de Equipartición de la Energía: La contribución a la energía interna de un gas de cada grado de libertad de sus moléculas es Calor Específico Molar de un gas ideal Se define: Consideremos un proceso a volumen constante. Por lo tanto W=0. La Primera Ley da:

3 Si es constante tenemos que: Esta relación se aplica a todos los gases ideales, sean monoatómicos o no. Para cambios infinitesimales de temperatura se tiene: Para un gas monoatómico se encuentra: Esta predicción calza bien con los gases reales monoatómicos. Consideremos un proceso a presión constante. Se tiene: Esto es: Esta conclusión se aplica a cualquier gas ideal. Para un gas ideal monoatómico se tiene: Procesos adiabáticos para un gas ideal En un proceso adiabático no hay intercambio de calor. De la primera ley:

4 pero: Despejando dt y recordando que, tenemos: Por lo tanto: La equipartición de la energía Se puede mostrar que como consecuencia de la Física clásica, es válido el teorema de Equipartición de la energía mencionado anteriormente. Veamos ahora como se aplica a gases ideales: i) Molécula monoatómica: 3 grados de libertad(traslación)... ii) Molécula biatómica:3 grados de libertad(traslación)+ 2 grados de libertad (rotación con un eje invariante),.. iii)molécula poliatómica:3 grados de libertad(traslación)+ 3 grados de libertad (rotación arbitraria),... iv) Molécula diatómica con energía vibracional(resorte):3(t)+2(r)+2(v)=7. Esto implicaría, lo que no concuerda con los experimentos. Además depende de la temperatura, lo que implica que los diferentes grados de libertad se van excitando a diferentes energías. Esto se puede entender sólo en el marco de la Mecánica Cuántica. -Cuantización de la energía: Se requiere un quantum de energía adecuado para excitar los grados de libertad. Si la temperatura es muy baja sólo los grados de libertad traslacionales contribuyen al calor específico.

5 v)para sólidos a altas temperaturas: Los átomos vibran en torno a sus posiciones de equilibrio. Cada uno tiene una energía:. Esto es 6 grados de libertad. Esto da (Ley de Dulong-Petit). Esto falla a bajas temperaturas donde se requiere la Mecánica Cuántica. Ley de las atmósferas Determinemos como varía la presión con la altura sobre la superficie de la Tierra. Suponemos que es un gas ideal y que la temperatura es constante. Sea y la altura sobre la superficie de la Tierra y por unidad de volumen. Se tiene: el número de moléculas pero Lo que implica: Esta última fórmula se llama ley de las atmósferas. Para la presión se tiene Se define el valor promedio Ej: -

6 -Energía potencial gravitacional media:. La distribución de Boltzmann Esto es el número de moléculas por unidad de volumen que tienen energía E. Es válido también en Mecánica Cuántica. Ejercicio: Excitación térmica en un átomo con dos niveles. Distribución de velocidades En 1860 J.C. Maxwell descubrió la ley de distribución de velocidad de las moléculas de un gas. Sea tal que el número de moléculas del gas con módulo de la velocidad entre v y v+dv es: De la Ley de Boltzmann, el número de moléculas(por unidad de volumen) que tiene energía (cinética), entre E y E+dE es: Escribiendo la última expresión en coordenadas esféricas para v y recordando que hay N moléculas de gas, lo que fija distribución de Maxwell:, se tiene la Ejercicio:

7 -Encontrar la velocidad más probable. R: -La rapidez promedio. R: -La velocidad cuadrática media Trayectoria libre media Las velocidades promedio de las moléculas que calculamos más arriba son grandes. Entonces por qué los olores en una pieza demoran un tiempo relativamente largo en detectarse? La razón es que las moléculas chocan entre sí. No se propagan en línea recta. La distancia promedio recorrida por la molécula entre dos choques sucesivos se llama recorrido libre medio l. Para calcularlo imaginemos que las moléculas tienen diámetro d. Se puede ver que dos moléculas chocarán solamente si la distancia entre sus centros es menor a 2d. En forma equivalente podemos pensar que el choque ocurre entre una molécula de radio 2d y otra puntual. Consideremos el movimiento de la molécula más grande. Su rapidez promedio es. En un tiempo t recorre una distancia. Durante este tiempo chocará con un número de moléculas: Por lo tanto la distancia entre choques sucesivos es: -frecuencia de choque f= choques por unidad de tiempo=. -tiempo libre medio=.

8 Hemos supuesto que las moléculas que chocan con la grande son estacionarias. Si incluimos su movimiento se tiene: Información obtenida de: Difusión de los gases El fenómeno recibe el nombre de difusión. Se produce a causa de la agitación de las partículas de un gas que invaden el espacio ocupado por el aire, las partículas de aire también repartidos por todo el volumen del recipiente. Por ejemplo: dentro de un recipiente el aire es incoloro mientras que el vapor de bromo es rojo pardo así que a los pocos minutos el vapor de bromo invade el espacio ocupado por el aire. Ley de Graham La Ley de Graham, formulada en 1829 por Thomas Graham, establece que las velocidades de difusión de los gases son inversamente proporcionales a las raíces cuadradas de sus respectivas densidades. Siendo v las velocidades y δ las densidades. Se hace uso de este principio en el método de difusión de separación de isótopos. Los diferentes procesos que se realizan en las plantas, como lo son: la difusión, la osmosis y la imbibición vegetal. Se encuentran íntimamente ligados con el transporte de agua y de soluciones desde el punto de origen hasta el medio donde ésta es activada. Cada sustancia se difunde libremente de otras hasta que se difunden todas equitativamente. En la planta la velocidad de difusión depende del gradiente lo cual está determinado por la diferencia entre las concentraciones de las sustancias en las dos regiones y por la distancia que las separa. El fenómeno de difusión está relacionado con la energía cinética de las moléculas. Gracias a su movimiento constante, las partículas de una sustancia, se distribuyen uniformemente en el espacio libre. Si hay una concentración mayor de partículas en un punto habrá más choques entre sí,

9 por lo que hará que se muevan hacia las regiones de menor número: las sustancias se difunden de una región de mayor concentración a una región de menor concentración. Velocidad de difusión de los gases De los 5 estados de la materia, los gases presentan la mayor facilidad de difusión de sus respectivas moléculas, como ocurre en el aire, ya que sus moléculas tienen velocidades superiores. Las moléculas de diferentes clases tienen velocidades diferentes, a temperatura constante, dependiendo únicamente de la densidad. A la vez, las densidades se pueden relacionar con la masa y el volumen porque (d=m/v); cuando M sea igual a la masa (peso) v molecular y v al volumen molecular, podemos establecer la siguiente relación entre las velocidades de difusión de dos gases y su peso molecular: y como los volúmenes moleculares de los gases en condiciones iguales de temperatura y presión son idénticos, es decir V1 = V2, en la ecuación anterior sus raíces cuadradas se cancelan, quedando: Ejemplo Cual es la velocidad de difusión del oxígeno con respecto al hidrógeno? si la masa molar del oxígeno es 16 y la del hidrógeno es 1: La velocidad de difusión del hidrógeno es 4 veces mayor que la del oxígeno Ver applet en: Movimiento browniano en dos dimensiones

10 Una partícula suficientemente pequeña como un grano de polen, inmersa en un líquido, presenta un movimiento aleatorio, observado primeramente por el botánico Brown en el siglo XIX. El movimiento browniano pone de manifiesto las fluctuaciones estadísticas que ocurren en un sistema en equilibrio térmico. Tienen interés práctico, por que las fluctuaciones explican el denominado "ruido" que impone limitaciones a la exactitud de las medidas físicas delicadas. El movimiento browniano puede explicarse a escala molecular por una serie de colisiones en una dimensión en la cual, pequeñas partículas (denominadas térmicas) experimentan choques con una partícula mayor. EJERCICIOS DE APLICACIÓN VELOCIDADES 1. Qué gas tiene mayor velocidad de difusión, el neón o el nitrógeno? Respuesta Primero se necesita conocer las densidades de los gases que intervienen. Como una mol de gas ocupa 22.4 litros a T.P.E., sus densidades serán (peso molecular/volumen). neón = 20/22.4 = 0.88 g/lt nitrógeno = 28/22.4 = 1.25 g/lt sea v1 = velocidad de difusión del nitrógeno y v2 = velocidad de difusión del neón. Es decir, el nitrógeno tiene una velocidad de difusión 0.84 veces menor que la del neón. 2. Ordene los gases siguientes en orden creciente de sus velocidades de difusión: H2, CI2, N2, CH4, He, HCI Respuesta Como lo que se pide es el orden creciente de sus velocidades de difusión y no sus velocidades relativas, basta con arreglar los gases en orden decreciente de sus pesos moleculares (ya que el gas de mayor peso molecular se difunde más lentamente que el de menor peso molecular). gases CI2 HCI N CH4 He H2 pesos moleculares

11 3. Un gas se difunde 5.0 veces más rápido que otro. Si el peso molecular (M) del primero es 20, cuál es el peso molecular (M2) del segundo? Respuesta Según la ley de difusión de Graham por lo que y las velocidades de difusión tienen la relación 5.0: 1.0 elevando ambos miembros al cuadrado El peso molecular del segundo gas es 500 Como volúmenes iguales de gases a la misma temperatura y presión contienen el mismo número de moléculas, y como el volumen de cada gas tiene un peso diferente, entonces los pesos de las moléculas deberán ser diferentes. Así, si pesamos volúmenes iguales de gases diferentes, encontraremos los pesos relativos de sus moléculas. El peso de litros de un gas en condiciones estándar (TPE) se conoce como su peso molecular gramo (PMG) y ese volumen como volumen molecular gramo (VMG). Este valor se eligió por ser el volumen ocupado por 32 g de oxígeno (O2) en condiciones TPE, que hasta 1962 era el patrón de comparación en el cálculo de pesos moleculares. El número de moléculas realmente presente en litros (VMG) ha sido calculado por diferentes métodos habiéndose encontrado 6.02 X 1023 moléculas; este valor llamado número de Avogadro o N, también se conoce como mol. 4. Cuántas moléculas hay en 1.0 litros de oxígeno a 0 ºC y 1.0 X 10-5 mm de presión? Respuesta Sabemos que litros de cualquier gas a TPE contiene X 1023 moléculas (N). Por lo que: litros de oxígeno a 0 ºC y 760 mm de presión contendrá X 1023 moléculas y 1.0 litro de oxígeno a 0 ºC y 760 mm de presión contendrá: y 1.0 litro de oxígeno a 0 ºC y 1 mm de presión contendrá:

12 de aquí que: 1.0 litro de oxígeno a 0 ºC y 1.0 X 10-5 mm de presión contendrá: 3.6 X 1019 X 1.0 X 10-5 = 3.6 X 1014 moléculas 5. En condiciones TPE 1.25 g de un gas ocupan 250 ml. Cuál es el peso molecular gramo del gas? Respuesta Sabemos que 1 molécula gramo de cualquier gas ocupa litros a TPE; por lo que debemos encontrar qué peso del gas ocupa litros. Así: Con lo que: 1.25 g? 250 ml PMG? ml 6. A 0 ºC 11 velocidad promedio de una molécula de O2 es de 4.25 X 104 cm/seg. Cuál sería su velocidad promedio si la temperatura fuera de 25 ºC? Respuesta T a energía cinética ( ) es proporcional a la temperatura absoluta, que en este ejemplo cambia de 273 ºK (FC) a 298 ºK (25 ºC). Por lo que: y

1 Teoría Cinética de los gases. 2 Gas Ideal

1 Teoría Cinética de los gases. 2 Gas Ideal 1 Teoría Cinética de los gases -Todos los materiales de la Naturaleza están compuestos por moléculas y átomos. -Las componentes microscópicas obedecen las leyes de Newton. -Sus movimientos son aleatorios.

Más detalles

El término teoría cinética hace referencia al modelo microscópico para un gas ideal Suposiciones: 1.- En los gases las moléculas son numerosas y la

El término teoría cinética hace referencia al modelo microscópico para un gas ideal Suposiciones: 1.- En los gases las moléculas son numerosas y la CAP 21 SERWAY El término teoría cinética hace referencia al modelo microscópico para un gas ideal Suposiciones: 1.- En los gases las moléculas son numerosas y la separación promedio entre ellas es grande

Más detalles

Teoría cinética de los gases.

Teoría cinética de los gases. . Con la finalidad de interpretar las propiedades macroscópicas de los sistemas gaseosos en función del comportamiento microscópico de las partículas que los forman, los fisicoquímicos estudian detalladamente

Más detalles

UNIDAD 2: ESTADO GASEOSO

UNIDAD 2: ESTADO GASEOSO UNIDAD 2: ESTADO GASEOSO 1 CARACTERISTICAS DE LOS GASES Los gases poseen masa y ocupan un determinado volumen en el espacio, este volumen queda determinado por el volumen del recipiente que los contiene.

Más detalles

QUÍMICA GENERAL GASES IDEALES

QUÍMICA GENERAL GASES IDEALES QUÍMICA GENERAL GASES IDEALES INTRODUCCIÓN TEORÍA CINÉTICA DE LOS GASES LEYES DE LOS GASES IDEALES TEORÍA CINÉTICA DE LOS GASES DEFINICIÓN Entre 1850 y 1880 Clausius y Boltzmann desarrollaron esta teoría,

Más detalles

Gases...1. Características: Volumen:...1. Temperatura:

Gases...1. Características: Volumen:...1. Temperatura: Índice de contenido Gases......1 Características:......1 Volumen:......1 Temperatura:......1 Presión:......2 Medición de presiones:......2 Ley de Boyle (relación presión volumen):......2 Ley de Charles

Más detalles

Teoría cinética de los gases

Teoría cinética de los gases Teoría cinética de los gases Modelo Molecular El número de moléculas es grande, así como la separación promedio entre ellas comparadas con sus dimensiones. El volumen de las moléculas es despreciable cuando

Más detalles

Tema 5.-Propiedades de transporte

Tema 5.-Propiedades de transporte Tema 5.- Propiedades de transporte Tema 5.-Propiedades de transporte 5.1-Teoría cinética de los gases 5.2.-Difusión 5.3.-Sedimentación 5.4.-Viscosidad 5.5.-Electroforesis 5.1-Teoría cinética de los gases

Más detalles

Tema 5.- Propiedades de transporte

Tema 5.- Propiedades de transporte Tema 5.- Propiedades de transporte Tema 5.-Propiedades de transporte 5.1-Teoría cinética de los gases 5.2.-Difusión 5.3.-Sedimentación 5.4.-Viscosidad 5.5.-Electroforesis 5.1-Teoría cinética de los gases

Más detalles

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES

Tema 5 TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES TEORÍA CINÉTICA DE LOS GASES Tema Entre los siglos XVIII y XIX Bernoulli, Krönig, Clausius, Maxwell y Boltzmann desarrollaron la Teoría Cinética Molecular de los Gases para explicar el comportamiento de

Más detalles

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas:

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas: LEYES DE LOS GASES LEY DE AVOGADRO: Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

P T = P A + P B + P C.

P T = P A + P B + P C. 6. Ley de Dalton: La ley de Dalton establece que en una mezcla de gases cada gas ejerce su presión como si los restantes gases no estuvieran presentes. La presión específica de un determinado gas en una

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

Teoría cinética de los gases

Teoría cinética de los gases eoría cinética de los gases Modelo molecular del gas ideal Al desarrollar este modelo, haremos las siguientes suposiciones: El número de moléculas es grande, así como la separación promedio entre ellas

Más detalles

Teoría Cinética de los Gases

Teoría Cinética de los Gases NOMBRE: CURSO: EJEMPLO: Un envase con un volumen de 0,3 m³ contiene 2 moles de helio a 20º C. Suponiendo que el helio se comporta como un gas ideal, calcular: a) la energía cinética total del sistema,

Más detalles

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 R-1 Explica qué le ocurre a la densidad de un gas cuando: se dilata se le aumenta la presión a temperatura constante Cuando una sustancia se dilata, su masa

Más detalles

GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones

GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones Grupo A - CONCEPTOS GENERALES: CONCEPTO DE GAS Y VAPOR Grupo B - LEYES GENERALES DE LOS GASES IDEALES: Grupo C- LEY DE GRAHAM

Más detalles

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 R-1 Explica qué le ocurre a la densidad de un gas cuando: se dilata se le aumenta la presión a temperatura constante Cuando una sustancia se dilata, su masa

Más detalles

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA

Más detalles

Algunas sustancias gaseosas a T y P ambiente

Algunas sustancias gaseosas a T y P ambiente LOS GASES Algunas sustancias gaseosas a T y P ambiente Fórmula Nombre Características O2 Oxígeno Incoloro,inodoro e insípido H 2 Hidrógeno Inflamable, más ligero que el aire. He Helio Incoloro, inerte,

Más detalles

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage:

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage: Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 3. Gases ideales y estados termodinámicos. i. Concepto y características del gas ideal.

Más detalles

ESTADO GASEOSO LEYES PARA GASES IDEALES

ESTADO GASEOSO LEYES PARA GASES IDEALES ESTADO GASEOSO LEYES PARA GASES IDEALES Estados de agregación COMPORTAMIENTO DE LOS GASES No tienen forma definida ni volumen propio Sus moléculas se mueven libremente y al azar ocupando todo el volumen

Más detalles

Actividad introductoria

Actividad introductoria Grado 10 Ciencias naturales Unidad 2 De qué está hecho todo lo que nos rodea? Tema Qué tan rápido viajan las moléculas de nitrógeno y oxígeno en el aire? Curso: Nombre: Actividad introductoria Lee con

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA

Más detalles

El modelo cinético molecular para un gas ideal

El modelo cinético molecular para un gas ideal El modelo cinético ecular para un gas ideal En 166, Robert Boyle encontró que el volumen de un gas a temperatura constante es proporcional al inverso de la presión ley de Boyle 1 (1) P En 1787, Jacques

Más detalles

Conceptos previos: tener la misma temperatura

Conceptos previos: tener la misma temperatura Conceptos previos: Un termómetro mide la temperatura. Dos cuerpos en equilibrio térmico deben tener la misma temperatura *las escalas de temperatura Celsius y Fahrenheit se basan en la temperatura de congelación

Más detalles

La distribución de Boltzmann

La distribución de Boltzmann La distribución de Boltzmann Ludwig Boltzmann: Ensembre microcanónico. Energía total del sistema es constante. Todos los estados microscópicos son igualmente probables. La entropía del sistema es:s = k

Más detalles

T E O R Í A C I N É T I C A D E L O S G A S E S

T E O R Í A C I N É T I C A D E L O S G A S E S T E O R Í C I N É T I C D E L O S G S E S Entendemos por teoría cinética de la materia el intento mediante el cual se desean explicar las propiedades observables en escala gruesa o macroscópica de sistemas

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II Diagnóstico 1PTO: NO ENTREGADA EN TIEMPO Y FORMA. 2PTS: ACTIVIDAD INCOMPLETA. 3PTS: ACTIVIDA COMPLETA. 1 TEMÁTICA INTEGRADORA ESCENARIO DIDÁCTICO PREGUNTA GENERADORA 2 Desarrolla, analiza e interpreta

Más detalles

DEPARTAMENTO DE FISICA UNIVERSIDAD DE SANTIAGO DE CHILE GASES IDEALES

DEPARTAMENTO DE FISICA UNIVERSIDAD DE SANTIAGO DE CHILE GASES IDEALES INTRODUCCIÓN GASES IDEALES Las dos primeras unidades del programa de cuarto medio estudian temas estrechamente ligados entre si como lo es la teoría cinética, temperatura, calor, termodinámica. Abordaremos

Más detalles

Introducción a la termodinámica

Introducción a la termodinámica Introducción a la termodinámica Prof. Jesús Hernández Trujillo Fac. Química, UNAM 31 de enero de 2017 Fisicoquímica La termodinámica es una rama de la Fisicoquímica Fisicoquímica: El estudio de los principios

Más detalles

FÍSICA 4. { k vdv 0<v< V. dn v = (a) Calcular el número de choques por segundo que efectúa una molécula contra otras (d(o 2 )=0.22nm).

FÍSICA 4. { k vdv 0<v< V. dn v = (a) Calcular el número de choques por segundo que efectúa una molécula contra otras (d(o 2 )=0.22nm). FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 4: MECÁNICA ESTADÍSTICA 1. La función de distribución de velocidades escalares de un grupo de N partículas está definida por { k dv 0 V 2. (a)

Más detalles

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P)

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO Nombre Grupo Matrícula PROPIEDADES DE LOS GASES: I. Completa correctamente la siguiente tabla. PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) VOLUMEN (V)

Más detalles

Ley de Charles. Por qué ocurre esto?

Ley de Charles. Por qué ocurre esto? Ley de Charles En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y, observó que cuando se aumentaba la temperatura el

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

EL ESTADO GASEOSO P R E S I Ó N

EL ESTADO GASEOSO P R E S I Ó N EL ESTADO GASEOSO El aire está compuesto, principalmente, de los elementos oxígeno y nitrógeno. Otros elementos no metálicos existen en la naturaleza como gases en condiciones ordinarias como hidrógeno

Más detalles

UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO

UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO 1. LOS ESTADOS DE AGREGACIÓN DE LA MATERIA. CAMBIOS DE ESTADO Una misma sustancia

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS FACULTAD DE INGENIERIAS Y TECNOLOGIAS ING. PAUL VISCAINO VALENCIA DOCENTE Esmeraldas, 06 de Julio del 2016 UNIVERSIDAD TECNICA "LUIS VARGAS TORRES"

Más detalles

Principios y conceptos básicos de Química

Principios y conceptos básicos de Química Principios y conceptos básicos de Química Se estudiarán durante las dos primeras quincenas, estos contenidos están en el tema 2 del libro de texto. Quincena 1ª - Repaso de conceptos estudiados en ESO (Densidad,

Más detalles

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Química General Departamento de Química Cap. 3: Gases Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Propiedades de los Gases: Presión del Gas Presión del gas Fuerza (N) P (Pa)

Más detalles

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. 1. LEYES PONDERALES En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. Ley de conservación de la masa de Lavoisier Lavosier

Más detalles

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I RINCIIOS FISICOQUÍMICOS EN GEOFÍSICA I Introducción Conceptos Básicos de Termodinámica ropiedades Físicas de los Gases Gases Ideales Ecuaciones de Estado INTRODUCCIÓN La fisicoquímica se divide en 4 áreas:

Más detalles

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

1. Los estados de la materia

1. Los estados de la materia 1. Los estados de la materia Propiedades La materia que nos rodea aparece ante nosotros con muy diversos aspectos. Presenta distintas formas, colores, dureza, fluidez pero en general, consideramos que

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

Nombre completo: Fecha: Clave:

Nombre completo: Fecha: Clave: Instituto Evangélico América Latina EDUCACIÓN A DISTANCIA PROCESO DE MEJORAMIENTO DEL APRENDIZAJE PRIMER SEMESTRE Físico-Química Bachillerato por Madurez Punteo Nombre completo: Fecha: Clave: Instrucciones

Más detalles

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 4. Primera ley de la Termodinámica. i. Concepto de Trabajo aplicado a gases. ii. Trabajo

Más detalles

Movimiento Browniano Comentarios históricos

Movimiento Browniano Comentarios históricos Capítulo 2 Movimiento Browniano En este capítulo presentamos los conceptos básicos asociados al movimiento Browniano. Estos conceptos van a ser útiles para el desarrollo de los capítulos posteriores. 2.1.

Más detalles

LA MATERIA. El volumen de un líquido se mide con un recipiente graduado (pipetas y probetas) o aforados (matraz aforado.

LA MATERIA. El volumen de un líquido se mide con un recipiente graduado (pipetas y probetas) o aforados (matraz aforado. LA MATERIA Materia es todo aquello que ocupa espacio y tiene masa. Las propiedades de los sistemas materiales pueden ser: Propiedades generales, como la masa o el volumen. Todos los sistemas los poseen

Más detalles

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA 1. SUSTANCIAS PURAS Y MEZCLAS 2. LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS 2.1. LEY DE CONSERVACIÓN DE LA MATERIA Enunciada en 1783 por Lavoisier: La materia ni se crea ni se destruye, únicamente

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

EJERCICIOS RESUELTOS DE LA UNIDAD 1

EJERCICIOS RESUELTOS DE LA UNIDAD 1 1 EJERCICIOS RESUELTOS DE LA UNIDAD 1 A) Masas moleculares 1. Si las masas atómicas del carbono (C), oxígeno (O) e hidrógeno (H) son 12, 16 y 1 u, respectivamente, calcula las masas moleculares, y la masa

Más detalles

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO GASES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos constituidos por átomos, partículas separadas e indivisibles Átomos de

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

DEFINICIONES ELEMENTALES

DEFINICIONES ELEMENTALES DEFINICIONES ELEMENTALES A partir de las leyes pónderales y de la ley de Lavoisier aparece el concepto de peso equivalente ó peso de combinación, que es el peso de un elemento que se combina con un peso

Más detalles

QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos

QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos EL RINCÓN DEL APROBADO Tu academia en Orense Galerías Santo Domingo 607342451 QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos A.1.- Átomo, peso atómico, peso molecular, mol. Un átomo es una

Más detalles

INTRODUCCIÓN. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

INTRODUCCIÓN. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA INTRODUCCIÓN Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA 1. DEFINICIÓN DE FLUIDO (1) 1. DEFINICIÓN DE FLUIDO (2)

Más detalles

Ejercicios. Ejercicios. 1. Cuántas moléculas de metano (CH 4) ) hay en 10 moles de dicho compuesto? 2. Calcula la masa de 10 moles de CO 2

Ejercicios. Ejercicios. 1. Cuántas moléculas de metano (CH 4) ) hay en 10 moles de dicho compuesto? 2. Calcula la masa de 10 moles de CO 2 TEMA 3: 3 : LOS GASES EL MOL Ya hemos visto que los átomos y las moléculas de los elementos y compuestos son extremadamente pequeños. En 1 gramo de H 2O hay 3,3. 10 22 moléculas. En cualquier muestra de

Más detalles

GUIA DE ESTUDIO FÍSICA 4 MÓDULO PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 4 MÓDULO PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 4 MÓDULO PREPARACIÓN

Más detalles

Estructura de la materia

Estructura de la materia LA MATERIA 1. Qué es la materia? 2. Estructura de la materia. 3. Propiedades de la materia 4. Estados de la materia. 5. Los cambios de estado. 6. Actividades. 7. Soluciones de las actividades. Qué es la

Más detalles

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO GASES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos constituidos por átomos, partículas separadas e indivisibles Átomos de

Más detalles

Determinación de la relación Cp/Cv en gases

Determinación de la relación Cp/Cv en gases Determinación de la relación p/v en gases Objetivo. En esta práctica se determinará la relación entre p/vγ o coeficiente isentrópico de un gas combinando un sencillo proceso de expansión en condiciones

Más detalles

Introduction a la termodinámica. M. Daniel Hernandez Dávila Febrero 2012

Introduction a la termodinámica. M. Daniel Hernandez Dávila Febrero 2012 Introduction a la termodinámica M. Daniel Hernandez Dávila Febrero 2012 Objetivo Asumir una actitud crítica de los conceptos previos que se involucran en el estudio de la Termodinámica Competencias a desarrollar

Más detalles

1. a) Define a la unidad de masa atómica. b) Explica porqué cuando en los datos se indica la masa atómica de los elementos no se le pone unidades.

1. a) Define a la unidad de masa atómica. b) Explica porqué cuando en los datos se indica la masa atómica de los elementos no se le pone unidades. NÚMERO DE AVOGADRO / MOL 1. a) Define a la unidad de masa atómica. b) Explica porqué cuando en los datos se indica la masa atómica de los elementos no se le pone unidades. a) La uma es la doceava parte

Más detalles

UNIDAD VII TEMPERATURA Y DILATACIÓN

UNIDAD VII TEMPERATURA Y DILATACIÓN UNIDAD VII TEMPERATURA Y DILATACIÓN TEMPERATURA Expresión del nivel térmico de un cuerpo Un cuerpo con mucha temperatura tiene mucha cantidad de calor; sin embargo hay cuerpos como el mar con gran cantidad

Más detalles

COMPORTAMIENTO GASEOSO

COMPORTAMIENTO GASEOSO 1 COMPORTAMIENTO GASEOSO 2 ACTIVIDAD de Completar y colorear e interpretar Baje la química CHANG de la página web: liceoquimica-rgg.jimdo.com Busque la página 172 capitulo V 1. MEMORICE la siguiente lista

Más detalles

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO DISOLUCIONES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos consitudios por átomos, partícuals separads e indivisibles Átomos

Más detalles

CANTIDAD DE SUSTANCIA. EL MOL. Física y Química 3º de E.S.O. IES Isidra de Guzmán

CANTIDAD DE SUSTANCIA. EL MOL. Física y Química 3º de E.S.O. IES Isidra de Guzmán CANTIDAD DE SUSTANCIA. EL MOL Física y Química 3º de E.S.O. IES Isidra de Guzmán Introducción Es fácil contar los garbanzos que hay en un puñado de esta legumbre. Hay que tener más paciencia para contar

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS I

LABORATORIO DE OPERACIONES UNITARIAS I UNIVERSIDD DEL ZULI FCULTD DE INGENIERÍ ESCUEL DE INGENIERÍ QUÍMIC DEPRTMENTO DE INGENIERÍ QUÍMIC BÁSIC LORTORIO DE OPERCIONES UNITRIS I DIFUSION BINRI EN FSE GSEOS Profesora: Marianela Fernández Objetivo

Más detalles

UNIDAD 3 ESTADO GASEOSO

UNIDAD 3 ESTADO GASEOSO UNIDAD DIDÁCTICA 3 UNIDAD 3 ESTADO GASEOSO En la naturaleza, las sustancias se puede presentar en tres diferentes estados de agregación: sólido, líquido y gaseoso, cada uno de los cuales se distingue por

Más detalles

Relación entre mol y constante de Avogadro

Relación entre mol y constante de Avogadro Relación entre mol y constante de Avogadro Los químicos trabajan con aspectos cuantitativos que pueden ser vistos y tocados, es decir, cantidades macroscópicas, tales como masa en gramos y volumen en litros,

Más detalles

Teoría Mol Nº Avogadro Gases perfectos Física y Química. 1º bachiller CONCEPTOS PREVIOS

Teoría Mol Nº Avogadro Gases perfectos Física y Química. 1º bachiller CONCEPTOS PREVIOS CONCEPTOS PREVIOS Masa atómica: Es la masa de un átomo en reposo. En cursos anteriores denominábamos número atómico a la masa de un átomo (protones + neutrones). Pero los elementos tienen átomos con diferente

Más detalles

Propiedades de la materia que nos rodea

Propiedades de la materia que nos rodea Propiedades de la materia que nos rodea Propiedades generales La masa: Cantidad de materia que tiene un objeto, se mide en Kg en el SI. DOS SUSTANCIAS DIFERENTES PUEDEN TENER IGUAL MASA NO SIRVE PARA DIFERENCIAR

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química Gases RECUERDEN QUE: En los ejercicios de gases SIEMPRE deben trabajar con la temperatura en K ( C + 273). Además, por conveniencia, en esta unidad cuando hablemos de masa molar en gases, usaremos la sigla

Más detalles

Los gases y la Teoría Cinética

Los gases y la Teoría Cinética Para practicar Utiliza tu cuaderno y trata de resolver los siguientes ejercicios: 1.-En una tabla similar a la siguiente, introduce las propiedades características de un SÓLIDO, un LÍQUDO o un GAS, como

Más detalles

Derivación por Equilibrio de Complejo Activado

Derivación por Equilibrio de Complejo Activado 1/3/14 Energía Libre de Gibbs reactivos G Estado de transición Productos Coordenada de reacción Reacción: HO + CH 3 r [HO --- CH 3 --- r] + CH 3 OH + r http://upload.wikimedia.org/wikipedia/commons/thumb/9/99/rxn_coordinate_diagram_5.pg/4px-rxn_coordinate_diagram_5.pg

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases Al finalizar este módulo usted podrá: UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM 3003 Módulo de Gases Enunciar las Leyes de: 1. Boyle 2. Charles

Más detalles

FES. Electrones libres en los metales. Modelo de Sommerfeld.

FES. Electrones libres en los metales. Modelo de Sommerfeld. . Suponemos que el sólido metálico se puede modelizar de acuerdo a las siguientes hipótesis: 1. En el metal existen los denominados electrones de conducción que están constituidos por todos los electrones

Más detalles

Termodinámica. Calor y Temperatura

Termodinámica. Calor y Temperatura Termodinámica Calor y Temperatura 1 Temas 4. PRIMERA LEY DE LA TERMODINÁMICA. 4.1 Concepto de Trabajo aplicado a gases. 4.2 Trabajo hecho por un gas ideal para los procesos: Isocóricos, isotérmicos, Isobáricos

Más detalles

CAPITULO VII DIFUSIVIDAD Y EL MECANISMO DE TRANSPORTE DE MASA

CAPITULO VII DIFUSIVIDAD Y EL MECANISMO DE TRANSPORTE DE MASA CPITULO VII DIFUSIVIDD Y EL MECNISMO DE TRNSPORTE DE MS 7.1 Difusión de concentración de masa La transferencia de masa. Diferencia en la concentración de alguna especie o componente químico en una mezcla.

Más detalles

Departamento de Química del Cinvestav

Departamento de Química del Cinvestav Departamento de Química del Cinvestav Preguntas tipo examen de admisión de Fisicoquímica I. Mecánica Clásica. Cual de los siguientes cuerpos está sometido a la acción de la mayor fuerza, tomando como referencia

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

Problemas de enfriamiento

Problemas de enfriamiento Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante

Más detalles

Dispositivos Cilindro-Pistón

Dispositivos Cilindro-Pistón Presión ejercida sobre superficies sólidas: sistema cilindro-pistón Un sistema importante desde el punto de vista termodinámico es el sistema cilindro-pistón, ya que se puede estudiar con él el comportamiento

Más detalles

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales BALANCE DE ENERGÍA Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales Los objetivos del balance de Energía son: Determinar la cantidad energía necesaria para

Más detalles

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos Unidad 0 CÁLCULOS QUÍMICOS Unidad 0. Cálculos químicos 1 0. Leyes ponderales Leyes que rigen las combinaciones químicas. Se basan en la experimentación y miden cuantitativamente la cantidad de materia

Más detalles