5º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos."

Transcripción

1 Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [ ] 5º curso de Ingenieros Industriales 5º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos. Huelva, Dic Profesor: Rafael Sánchez Sánchez 0

2 ÍNDICE 1. INTRODUCCIÓN A LA DINÁMICA. 2. FUERZAS QUE SOPORTA UNA MÁQUINA. 3. FUERZA DE INERCIA, PAR DE TORSIÓN DE INERCIA. 4. DETERMINACIÓN DE FUERZAS EN UN MECANISMO. 5. MÉTODOS DE ANÁLISIS DE FUERZAS EN MECANISMOS PLANOS DE ESLABONES ARTICULADOS Análisis mediante el principio de superposición Análisis mediante el método matricial. 1

3 1. Introducción a la dinámica. Al diseñar las piezas de una máquina o de un mecanismo, debemos tener en cuenta su resistencia para soportar las fuerzas o pares de torsión, que van a actuar sobre los eslabones individuales que lo componen. Por tanto cada componente de una máquina, por pequeño que sea, debe analizarse cuidadosamente, con respecto a su papel en la transmisión de esfuerzos. Imaginemos un mecanismo de cuatro barras, que estará compuesto por cuatro eslabones, y por cuatro pares o articulaciones (ya sean pernos o rodamientos). Deberemos analizar todos ellos desde el punto de vista de su resistencia, poniendo especial cuidado en estos últimos, ya que frecuentemente son los elementos más críticos en las máquinas, debido a que sufren una fuerte concentración de esfuerzos. 2. Fuerzas que soporta una máquina. Las fuerzas que actúan sobre una máquina o mecanismo, pueden ser debidas a diversos motivos: el propio peso de los eslabones (fuerzas de gravedad), cargas externas, cargas disipativas (fuerzas de rozamiento), las aceleraciones sufridas por los eslabones (fuerzas de inercia), etc. Sin embargo normalmente consideraremos, que el peso de los eslabones es despreciable frente a las restantes fuerzas, durante el análisis dinámico. Además si el mecanismo está bien lubricado, vamos a poder considerar despreciables las fuerzas de rozamiento, y a pesar de ello obtener resultados suficientemente precisos, pero que simplifica enormemente la resolución del problema. Por tanto para abordar el estudio dinámico de los mecanismos planos, tendremos en consideración únicamente las cargas externas y las fuerzas de inercia. 2

4 3. Fuerza de inercia, y par de torsión de inercia. De mecánica, sabemos que las ecuaciones de movimiento plano que se aplican a un cuerpo rígido, como es un eslabón de nuestro mecanismo, vienen dadas por las expresiones: Donde: F = M A g [1] T = I α [2] _ F : es la suma vectorial de todas las fuerzas que actúan sobre el cuerpo. M : es la masa del cuerpo. _ A g : es la aceleración del centro de masas del cuerpo. _ T : es la suma vectorial de todos los momentos o pares que actúan sobre un eje que pasa por el centro de masas. I : es el momento de inercia del cuerpo alrededor del anterior eje. _ α : es la aceleración angular del cuerpo en el plano del movimiento. En las ecuaciones [1] y [2] los términos de la derecha, es decir: M A g y I α, representan a las fuerzas de inercia. Generalmente este término será conocido, una vez que a través del análisis cinemático hayamos calculado la aceleración lineal y/o angular de nuestro eslabón. Si estos términos, de las fuerzas de inercia, los englobamos con el resto de las fuerzas [1] y [2] las podemos expresar como: 3

5 _ F T = 0 [3] _ T T = 0 [4] De esta manera, los problemas cinéticos que afectan a mecanismos articulados de cuerpos rígidos en movimiento plano, los podemos reducir a un problema de equilibrio estático. 4. Determinación de fuerzas en un mecanismo. En el análisis de fuerzas de un mecanismo completo, se debe analizar individualmente cada eslabón como si fuese un cuerpo libre, mediante el diagrama de fuerzas que actúan sobre él. Para determinar las direcciones de las fuerzas, debemos recordar las leyes de la estática. En nuestro caso, vamos a recordar estas leyes particularizadas a los eslabones del mecanismo: 1. Si sobre un eslabón actúan dos fuerzas, y éste está en equilibrio estático, las dos fuerzas deben ser colineales e iguales en magnitud, pero de sentido opuesto. Si solo se conocen los puntos de aplicación A y B, las direcciones se pueden determinar a partir de la línea que une A con B. 2. Si sobre un eslabón, actúan tres fuerzas, y éste está en equilibrio estático, las líneas de acción de las tres fuerzas deben concurrir en un punto K. Por tanto si se 4

6 conocen las líneas de acción de dos de las fuerzas, la de la tercera debe pasar por su punto de aplicación y por el punto de concurrencia K. 3. Un eslabón sometido a un par está en equilibrio estático, únicamente si actúa sobre él otro par coplanar con el primero, de igual magnitud, y de sentido inverso. En el análisis estático, la suma vectorial de las fuerzas que actúan sobre cada eslabón debe ser igual a cero, para que haya equilibrio. Esto también debe cumplirse para el análisis dinámico, cuando hay fuerzas de inercia. En ambos casos las ecuaciones pueden resolverse grafica y analíticamente, para calcular las fuerzas que nos son desconocidas. La utilización de uno u otro método dependerá de: 5

7 Así utilizaremos: Del tipo de mecanismo. Del número de posiciones a analizar. 1. Métodos gráficos en: Mecanismos de eslabones articulados, cuando estudiemos solamente una sola posición. 2. Métodos an alíticos en: Mecanismos simples, como levas, engranajes, y en mecanismos de eslabones articulados cuando debamos estudiar varias posiciones, o un ciclo completo, sobre todo si contamos con ayuda informática. 5. Métodos de análisis de fuerzas en mecanismos planos de eslabones articulados. Los estudios en los que nos basaremos para realizar el análisis de las fuerzas que actúan sobre un mecanismo, son: El principio de superposición. El análisis matricial. El primero lo aplicaremos en la solución gráfica o mediante cálculos manuales sencillos, y la segunda se adapta mejor cuando realicemos los cálculos utilizando el ordenador Análisis mediante el principio de superposición. El principio de superposición establece que el efecto resultante de varias fuerzas sobre un cuerpo, es equivalente a la suma de los efectos parciales, sobre el mismo, de cada una de ellas. Por tanto, en un mecanismo de n eslabones articulados haremos un análisis separado de cada uno de los n eslabones, considerando las fuerzas de inercia y exteriores que actúan sobre cada uno de ellos, así como los pares de torsión. Posteriormente los resultados de esos análisis los sumaremos para determinar las fuerzas y pares de torsión totales sobre el mecanismo completo. 6

8 Por tratarse de una sola posición de un mecanismo, utilizaremos el análisis gráfico. Supongamos el típico mecanismo de cuatro barras, tal como se representa en la figura: En el cual conocemos las fuerzas que actúan sobre el mismo (como podría ser el peso del portón de un coche, la carga a trasportar, la fuerza máxima del viento, las fuerzas de inercia sobre cada eslabón, etc.) y que denominamos P 2, P 3, y P 4. Y por consiguiente, para diseñar estructuralmente el mismo necesitamos conocer las reacciones en los cuatro pares o articulaciones. Así mismo deberemos calcular el par motor que debemos aplicar al eslabón 2 (por ejemplo) para que el mecanismo permanezca equilibrado. Para hacer el cálculo de manera gráfica, y posteriormente aplicarle el método de superposición, debemos considerar el mecanismo en su estado definitivo como suma de los siguientes tres estados que denominaremos ( ), ( ), ( ): 7

9 Empezaremos analizando el estado ( ), y dentro de este estado, el eslabón 3, el cual está sometido únicamente a los esfuerzos F 43 y F 23 que le ejercen los eslabones 4 y 2 respectivamente _ Y puesto que se debe cumplir en el eslabón F 3 = 0, deducimos que F 43 y F 23 deben ser iguales y de sentido contrario, y siguiendo la dirección del eslabón, a fin de que también se cumpla que M 3 = 0. Si ahora analizamos el eslabón 4, sobre él, además de P 4 actúan las fuerzas F 14 (fuerza que ejerce el eslabón 1 sobre el 4) y F 34 (fuerza que ejerce el eslabón 3 sobre el 4). Para que el eslabón este en equilibrio, debe cumplirse que: P 4 + F 14 + F 34 = 0 Además, las tres fuerzas deben cortarse en un punto, para que se cumpla que M 4 = 0. De la primera ecuación vectorial conocemos P 4, la dirección de F 34, y con ello podemos determinar la dirección de F 14, ya que sabemos que ha de pasar por el punto de corte de las líneas de dirección de P 4 y de F 34 tal como se muestra en la figura adjunta, podemos con ello determinar la dirección de F 14, y con ella, realizar el siguiente polígono de fuerzas. 8

10 Con este polígono resolvemos la ecuación vectorial, y podemos obtener el valor de las reacciones F 14 y F 34, y por consiguiente la reacción F 32 que es igual y de sentido contrario a F 34, tal como vimos en la resolución del eslabón 3. A partir de aquí, analizaremos el eslabón 2, para lo cual, igual que hemos hecho con los eslabones 3 y 4, lo aislaremos de acuerdo con la siguiente figura: De su análisis, para que F 2 = 0 se debe cumplir que F 32 + F 12 = 0, es decir que F 12 es igual en módulo a F 32 tiene la misma dirección y sentido contrario. Por otro lado, para que M 2 = 0, se debe cumplir que: M 2 = F 32 h Quedando con ello resuelto el problema del estado que hemos denominado ( ). Igualmente resolveremos el estado ( ), en este caso empezaríamos analizando el eslabón 4, continuaríamos por el eslabón 3, y finalmente por el 2, para 9

11 obtener M 2. Posteriormente abordaremos el estado ( ) empezando su análisis por el eslabón 4, continuaremos con el 3, y finalizaremos con el 2 para calcular M 2 Una vez resueltos los tres estados, para resolver el estado definitivo, aplicaremos el método de superposición, teniendo en cuenta que: F 14 = F 14 + F 14 + F 14 F 12 = F 12 + F 12 + F 12 F 23 = F 23 + F 23 + F 23 F 34 = F 34 + F 34 + F 34 M 2 = M 2 + M 2 + M Análisis mediante el método matricial. Para plantear el método matricial, vamos a considerar el mecanismo de 4 barras articuladas como el de la siguiente figura En ella podemos ver que, como situación más genérica, los centros de masas g 2, g 3, g 4 de los eslabones, no están en las líneas rectas que unen los pares o articulaciones. Por otro lado, es evidente que igual que en el método de superposición, para poder tener en cuenta las fuerzas de 10

12 inercia, debemos previamente analizar cinemáticamente el mecanismo, a fin de obtener la aceleración lineal de los centros de masas de cada eslabón. Si analizamos cada eslabón de forma aislada: Las ecuaciones vectoriales del movimiento de cada eslabón las podemos poner como: F 32 F 21 = m 2 A g2 [1] r 22 x F 32 r 21 x F 21 + M 2 = I 2 α 2 [2] F 43 F 32 = m 3 A g3 [3] r 33 x F 43 r 32 x F 32 = I 3 α 3 [4] F 14 F 43 = m 4 A g4 [5] r 44 x F 14 r 43 x F 43 = I 4 α 4 [6] Desarrollando [1, 3 y 5] en sus componentes X e Y: 11

13 F 32x F 21x = m 2 A g2x F 32y F 21y = m 2 A g2y F 43x F 32x = m 3 A g3x F 43y F 32y = m 3 A g3y F 14x F 43x = m 4 A g4x F 14y F 43y = m 4 A g4 y Y ahora desarrollando los productos cruzados de los vectores en [2, 4 y 6], teniendo en cuenta que, r x F = r x F y r y F x : r 22 xf 32y r 22y F 32x r 21x F 21y + r 21y F 21x =I 2 α 2 M 2 r 33 xf 43y r 33y F 43x r 32x F 32y + r 32y F 32x =I 3 α 3 r 44 xf 14y r 44y F 14x r 43x F 43y + r 43y F 43x =I 4 α 4 Ecuaciones, que junto con las 6 anteriores, forman un sistema de 9 ecuaciones con 9 incógnitas: F 21x, F 21y, F 32x, F 32y, F 43x, F 43y, F 14x, F 14y, M 2 Las cuales podemos presentar en forma matricial: F 21x m 2 A g2x F 21y m 2 A g2y r 21y -r 21x -r 22y r 22x F 32x I 2 α F 32y m 3 A g3x F 43x = m 3 A g3y 0 0 r 32y -r 32x -r 33y r 33x F 43y I 3 α F 14x m 4 A g4x F 14y m 4 A g4y r 43y -r 43x -r 44y r 44x 0 M 2 I 4 α 4 Sistema de ecuaciones lineales que es fácilmente resoluble a través de programas informáticos o incluso calculadoras programables. De ahí que este método matricial este pensado para la resolución mediante ordenador, mientras que el método de superposición se utilizará cuando tengamos que resolver nuestro mecanismo mediante cálculo manual. 12

TEMA 6 ESTÁTICA. Bibliografía recomendada:

TEMA 6 ESTÁTICA. Bibliografía recomendada: TEMA 6 ESTÁTICA 0 > Introducción. 1 > Equilibrio. Tipos de equilibrio. 2 > Principios fundamentales y ecuaciones cardinales de la Estática. 3 > Estática de sistemas planos. 3.1 > Reacciones en apoyos y

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Estática

Pontificia Universidad Católica de Chile Facultad de Física. Estática Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA 1. Competencias Plantear y solucionar problemas con base en los principios y

Más detalles

PROBLEMAS ESTÁTICA FARMACIA

PROBLEMAS ESTÁTICA FARMACIA PBLEMAS ESÁICA AMACIA PBLEMA 1 La figura muestra el diagrama de fuerzas sobre la cadera izquierda de una persona de 70 kg puesta en pie que apoya todo su peso sobre el pie izquierdo (ha encogido la pierna

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL.

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL. INSTITUTO POLITÉCNICO NACIONAL. ESCUELA SUPERIOR DE INGENIERIA MECÁNICA Y ELÉCTRICA. UNIDAD CULHUACÁN. Ecuación de la recta Calculo Vectorial Ing. Jonathan Alejandro Cortés Montes de Oca Antes de iniciar

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

Fuerzas ejercidas por campos magnéticos

Fuerzas ejercidas por campos magnéticos Fuerzas ejercidas por campos magnéticos Ejemplo resuelto nº 1 Se introduce un electrón en un campo magnético de inducción magnética 25 T a una velocidad de 5. 10 5 m. s -1 perpendicular al campo magnético.

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

Estática Profesor Herbert Yépez Castillo

Estática Profesor Herbert Yépez Castillo Estática 2015-1 Profesor Herbert Yépez Castillo Introducción 8.1 Tipos de Estructuras Armaduras Marcos Máquinas 8.2 Armadura Estabilidad y determinación estática externas Estabilidad y determinación estática

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero.

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero. EQUILIBRIO. Un cuerpo está en equilibrio cuando se encuentra en reposo o tiene un movimiento uniforme. Analíticamente se expresa cuando la resultante de las fuerzas que actúan sobre un cuerpo es nula,

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Apellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios

Más detalles

Estática. Principios Generales

Estática. Principios Generales Estática 1 Principios Generales Objetivos Cantidades básicas e idealizaciones de la mecánica Leyes de Newton de movimiento y gravitación SI sistema de unidades y uso de prefijos Cálculo numérico Consejos

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

Análisis de una armadura

Análisis de una armadura Análisis de una armadura Estática M1003 Grupo: 2 Miguel Ángel Ríos Integrantes: Gabriela Gutiérrez Bernal A01373859 Ricardo Medina Moreno A01373521 Luis Bernardo Lazcano Fernández A01373312 Juan Carlos

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

LABORATORIO No. 6. Segunda ley de Newton

LABORATORIO No. 6. Segunda ley de Newton LABORATORIO No. 6 Segunda ley de Newton 6.1. Introducción No hay nada obvio acerca de las relaciones que gobiernan el movimiento de los cuerpos. En efecto, tomó alrededor de 4000 años de civilización para

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

MECANICA I Carácter: Obligatoria

MECANICA I Carácter: Obligatoria UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA I Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DE CREDITO HT

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

Guía de Problemas. CINEMÁTICA de la MARCHA. Introducción

Guía de Problemas. CINEMÁTICA de la MARCHA. Introducción Guía de Problemas CINEMÁICA de la MARCHA Introducción La Cinemática es una rama de la Mecánica que estudia el movimiento sin tomar en cuenta las fuerzas que lo originan. Para la descripción cinemática

Más detalles

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton

CONTENIDO DINÁMICA DE LA PARTÍCULA. Conceptos fundamentales: masa y fuerza. Leyes de Newton CONTENIDO Conceptos fundamentales: masa y fuerza Leyes de Newton Ejemplos de fuerzas: peso, fuerza elástica, rozamiento, etc. Diagrama de cuerpo libre Momento lineal y conservación del momento lineal Momento

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

Física. José Luis Trenzado Diepa. Introducción

Física. José Luis Trenzado Diepa. Introducción Física José Luis Trenzado Diepa Introducción El programa de Física que se propone va destinado a aquellos alumnos que van a realizar el Curso de Acceso para Mayores de 25 años, de la Universidad de Las

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar

Más detalles

Biomecánica: una mirada al funcionamiento de nuestro cuerpo

Biomecánica: una mirada al funcionamiento de nuestro cuerpo Biomecánica: una mirada al funcionamiento de nuestro cuerpo Resumen Modesto Sosa 1 humano responsables de producir las condiciones de equilibrio en estructuras óseas y musculares, el trabajo mecánico producido

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Física I. Carrera: INM Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

Física I. Carrera: INM Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería Industrial INM - 0401 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

ESCALARES Y VECTORES

ESCALARES Y VECTORES ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo

Más detalles

TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO

TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO NIVEL SEPTIMO Fuerza y movimiento Fuerzas que actúan simultáneamente sobre un objeto en movimiento o en reposo Condición de equilibrio de un cuerpo Fuerza peso, normal, roce, fuerza aplicada Diferencia

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES

Más detalles

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 5 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl LA RELACIÓN DE PROPORCIONALIDAD 1. DESCRIPCIÓN GENERAL DE

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Fuerzas de Rozamiento

Fuerzas de Rozamiento Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina romibaldi@hotmail.com Viale, Tatiana tatianaviale@hotmail.com Objetivos Estudio de las fuerzas

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA

DEPARTAMENTO DE INGENIERIA MECÁNICA DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 1 CÁLCULO DE LA VIDA DE LOS RODAMIENTOS DE UNA CAJA DE CAMBIOS 2 Cálculo de la vida de los rodamientos de una caja

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

XII. LAS LEYES DE LA DINÁMICA

XII. LAS LEYES DE LA DINÁMICA Índice 1. La masa y el momento lineal. 2. Las leyes de Newton 3. Conservación de momento lineal 4. Impulso y cantidad de movimiento 5. Relatividad y tercera ley 2 1 La masa y el momento lineal Es lo mismo

Más detalles

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Mecánica Vectorial Cap. 3 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Cómo tener éxito en Matemáticas? Paso 1: El trabajo duro triunfa sobre el talento natural. Paso 2: Mantenga una mente abierta.

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen

Más detalles

La masa, ni se crea ni se destruye, seguro?

La masa, ni se crea ni se destruye, seguro? La masa, ni se crea ni se destruye, seguro? Muchos estudiantes de primer curso y de segundo curso de bachiller me preguntan por qué se estudia Física clásica, es decir, las concepciones físicas de los

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

ANALISIS DE ESTRUCTURAS. Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas.

ANALISIS DE ESTRUCTURAS. Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas. ANALISIS DE ESTRUCTURAS Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas. TIPOS DE ESTRUCTURAS Armaduras: estructuras estacionaria concebidas

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,

Más detalles

Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.

Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es. Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar

Más detalles

Clasificación estática de las estructuras

Clasificación estática de las estructuras lasificación estática de las estructuras pellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) epartamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica Superior de rquitectura

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

NOMBRE DE LA ASIGNATURA: Diseño de elementos mecánicos

NOMBRE DE LA ASIGNATURA: Diseño de elementos mecánicos NOMBRE DE LA ASIGNATURA: Diseño de elementos mecánicos APORTACIÓN AL PERFIL Diseñar elementos mecánicos aplicados en sistemas mecatrónicos, analizando condiciones de falla bajo diversas solicitaciones

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO

ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO 1. Sobre un cuerpo de 20

Más detalles

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B

PROBLEMAS Y EJERCICIOS RESUELTOS SOBRE FUERZA ELECTROMOTRIZ, FUERZA CONTRAELECTROMOTRIZ, CIRCUITOD DE CORRIENTE CONTINUA A C B Ejercicio resuelto Nº 1 Dado el circuito de la figura adjunta: ε = 15 V A r i = 0,5 Ω B R 2 R 1 A C B R 3 R 4 R 1 = 2 Ω ; R 2 = 1 Ω ; R 3 = 2 Ω ; R 4 = 3 Ω Determinar: a) Intensidad de corriente que circula

Más detalles

SILABO DE FISICA II I. DATOS GENERALES

SILABO DE FISICA II I. DATOS GENERALES UNIVERSIDAD PRIVADA DEL NORTE Departamento de Ciencias SILABO DE FISICA II I. DATOS GENERALES 1.1 Facultad : Ingeniería 1.2 Carrera Profesional : Ingeniería Industrial 1.3 Departamento Académico : Ciencias

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación.

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO

Más detalles

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA

CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA CONVERSIONES DE COORDENADAS UTM A TOPOGRÁFICAS Y VICEVERSA En Bolivia la cartografía topográfica oficial (Escalas 1: 250 000, 1: 100 000 y 1: 50 000) se edita en el sistema de proyección cartográfica UTM

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

Logaritmos. Logaritmo en base b de un argumento x igual a n (exponente) si y solo si b elevado a n da como resultado a x.

Logaritmos. Logaritmo en base b de un argumento x igual a n (exponente) si y solo si b elevado a n da como resultado a x. Logaritmos Revisadas las potencias y los radicales podemos abordar los logaritmos, los cuales están relacionados con la exponenciación a través la siguiente función. log b x = n x = b n Logaritmo en base

Más detalles

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería en Sistemas Computacionales SCM - 0409 3-2-8 2.- HISTORIA DEL

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

PROGRAMA DE ESTUDIO. Práctica ( ) Teórica ( X ) Presencial ( X ) Teórica-práctica ( ) Híbrida ( )

PROGRAMA DE ESTUDIO. Práctica ( ) Teórica ( X ) Presencial ( X ) Teórica-práctica ( ) Híbrida ( ) Nombre de la asignatura: MECANISMOS PROGRAMA DE ESTUDIO Clave: IME08 Ciclo Formativo: Básico ( ) Profesional ( X ) Especializado ( ) Fecha de elaboración: marzo 2015 Horas Semestre Horas semana Horas Teoría

Más detalles

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA Área : Tecnología Asignatura : Tecnología e Informática Grado : 7 Nombre del docente: Jorge Enrique Giraldo Valencia 1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA La ley de Ohm expresa la relación que

Más detalles