(Se recogerá a las 17,30 h. aproximadamente)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(Se recogerá a las 17,30 h. aproximadamente)"

Transcripción

1 Resistencia de Materiales, Elasticidad y Plasticidad. Examen extraordinario 9 de diciembre de 4 Ejercicio. Apellidos Nombre Nº... Curso 3º (Se recogerá a las 7,3 h. aproximadamente) La estructura de la figura a) es una viga apoyada-atirantada de sección variable. Entre los tramos AD y EB su sección será la doble T metálica de la figura b). En el tramo DE a determinar, su sección será la mixta de la figura c). Las características mecánicas de los materiales se dan en las figuras. Para la carga puntual P de la figura a), situada en el centro C del vano, (despreciando el peso propio de la viga) se pide: a) Calcular el esfuerzo axil en el cable y determinar la sección mínima S (cm ) necesaria para que no exceda su tensión admisible (figura a)) y para que la flecha en el punto B no exceda de L/5. (En el cálculo de movimientos, se desprecia la deformación por esfuerzo axil en la viga.) (3 puntos) b) Calcular los esfuerzos en la sección central C de la viga y dibujar y acotar los diagramas de deformaciones y de tensiones normales. (3 puntos) c) Acotar las posiciones de los puntos D y E entre los que la sección debe ser la reforzada de la figura c). ( puntos) d) Calcular el esfuerzo rasante total (kn) que han de resistir los conectadores de la figura c) entre las secciones central C y extrema E. (Nota: al tratarse de viga de sección variable, no es válida la fórmula de Collignon de las tensiones tangenciales.) ( puntos)

2 Datos ORGN a.3 b a 9a h a 5a. b h a h h 6a E a.. 8 E h 3. 7 L 5a P a σ adm. 5 α 6. π σ cable 6 8 b a =.7 h a =.45 b h =.63 h h =.8 L = 5 P = 7 n A a 5a9. a 3a8a. A a =.8 E a n = 7 E h. a h a 3. b a h a a 3. b a a a = Esfuerzos V P T V cos( α) N Vtan. ( α) M P L 4. L cable L sin( α) V = 35 N = T = 7 N = M =.3 3 L cable = 7.3 T Diseño cable Por resistencia Ω 4. Ω = 3.5 cm σ adm Por alargamiento δ L. 5 cos( α) TL. cable δ =.5 Ω E. a δ Ω cable max( Ω) 4. Ω cable = cm 4. Ω = cm Sección homogeneizada b. h h h A h n A A a A h A =.44 h h h A. h A. a a h h c s A h h h A. h h a A. a a c i A c s =.89 c i =.34 Comprobación c s c i h a h h = b. 3 h h h a n. h h h A. h c s A. a a c i =.95 3 =.8 a Punto x sin donde debe empezar el refuerzo N Vx. sin h σ. a adm A a a N x sin σ. a adm x A a Vh. sin = 5.45 L ref L x. sin L ref = 4. a L ref =.73 L Tensiones en sección C (reforzada) σ sh N A n M. c s σ sh.5 4 = σ ih N A M. c s h h n σ ih = σ ia N A M. c i σ ia = σ sa n. σ ih σ sa =

3 F sh Fuerza rasante F J F τ σ sh σ ih. b. h h h F τ = F sa F ih F ia

4 Examen final extraordinario Resistencia de Materiales, Elasticidad y Plasticidad 9 de diciembre de 4 Ejercicio Apellidos.. Nombre Nº matrícula Curso 3º Este ejercicio se recogerá a las 8, h El arco de directriz circular de la figura tiene un extremo A empotrado y un extremo B sobre un apoyo vertical y un apoyo elástico horizontal de constante k = kn/m, y además dispone de una articulación en la sección de clave C. El radio de la directriz es R = 5 m. Sabiendo que el tramo BC experimenta un incremento térmico uniforme de T = 5 ºC, que la rigidez a flexión es E = x 5 m kn, y el coeficiente de dilatación térmica α = -5 ºC -, se pide: a) Calcular la fuerza que actúa en el muelle del apoyo B (5 puntos). b) Calcular el movimiento horizontal de B ( puntos). c) Obtener la expresión analítica de la ley de momentos flectores, y acotarla sobre la directriz ( puntos). d) Calcular el giro relativo de la rótula C ( puntos). C A B π Cuadro de ayuda: Solución de la integral ( ) ( ) f x f x dx f (x) f (x) sen x cos x π sen x π/ cos x π/

5 * *,-: irn o ::.,.. ü.- " t { if {.,t {-='il- i {n'u(s^ b\r\' a (o^,á'l // L {*.. (t-@q\ q li t;, {; i!\r ft! *ryt l"r R fr,'.a = il t( Ú -tqo' -, i i -'qs i.--' v \i.,ér",* *tr. \ \-,\, \"?" j\i :* {rrir*-lt *! v- -*--&^*-, /- ' [. 6"* #-l a n-ft ) r H :,L ' \-h --t hg : # Íí \-+s+-c{j^x /'{s} i^ (t- ^,,,^tr' 'i\ t. tf % \ré f ü" w,# (vát) + r( : o,g**'3 tbh q LTL -t j^ X d{il fi:.} i ii r* u rf. )r' 'r"rrds + $.*,t )flt u^.-f r l -,*p"r*.*\] L {u-.*b} (-r-a*\ +,\ {t 4 TZ =o rnry,r_ ti fi f L?rdr c ft_ 3ü d r ú.,.4tt= r',. --!'[o(r^,nb-rr.o] = aót ', ]" _ *?4 * bt B y" + *^o = * lo.-',ú 3t t4 ^* ) ^tr 'f- r$lü + 'TL,4t- = 4gr: - i - (-r)*o+ r-/ o] = r ór ' Lirl -. tnt,,^,. c t^ (Z)!,- (4), urlq /'Z..r ñ), ["*9 ft t ET * fr, Z* ^i u-.-_dg +,^ 3 =) fi t\ g*ar( 4 { * 7*. = d T. á 4x n{ g3l-k..-!, fo 4- e;ay Hn *, f + tr \ rk4* )* l**-"*-u--"* L U{\ s -rl \U/.r" á -w\cufl-r,^ $) #+ &ff aüt.b- z,]4?, -L,'\---l' \; t -rue -A*"! ^rq)n, zd l-tl - hgs 'L r á Hfl Z (\ 6r Lt eí. T "ff\ re\ lc"- ** '*'. {r}

6 t i!; Z,+l lá f '_' lal' l:i : tfc ^?tznr;,, i l-'.,!l.rs L L ^.- : /_ü!_{:* ( + ' Zg *irj,t! l',, f g\ :' r t //,// /É- Í.\ h ' r',/t./.-.. t -/-a n, qltl lrff i4-r" \,' l'*'i'' J o,\i +l l? h.**--j '''4'ot''t'4 i í) tl ;; t fj *J n l\t-'y l{ r/ {o üz i :: t, *J ' ü,,4. it { t q Z\L n [9,n]: Zn{L

7 EXAMEN EXTRAORDNARO DE RESSTENCA DE MATERALES, APELLDOS... ELASTCDAD Y PLASTCDAD NOMBRE NÚMERO. 9 de diciembre de 4 CURSO 3º ADAPTACÓN Ejercicio 3 (Se recogerá a las : horas aproximadamente) En la viga biempotrada de la figura a actúa la carga axil P en el punto B. La viga tiene una sección de cm. La curva tensión- deformación del material, tanto en carga como en descarga, es la reflejada en la figura b, donde se indica la tensión de fluencia, así como la deformación correspondiente al límite elástico y la de rotura. Determinar: ) Valor de P que plastifica una sección de la viga ( puntos) ) Valor de P que produce la rotura de la viga (3 puntos) 3) Tensiones en los tramos AB y BC de la viga cuando se descarga desde el valor de P determinado en el apartado ) hasta el valor de P determinado en el apartado ) (3 puntos) 4) Movimiento horizontal que experimenta el punto B al finalizar el estado de carga definido en el apartado anterior, medido desde la posición inicial, previa al inicio de la carga de la viga ( puntos) σ (MPa) A B P C m 6 m Figura a x -3 x -3 ε Figura b

8

9

10

11 Resistencia de Materiales, Elasticidad y Plasticidad. Examen extraordinario 9 de diciembre de 4 Ejercicio 4. Apellidos Nombre Nº... Curso 3º Alumnos de Adaptación marcad X aquí G (Se recogerá a las,3 h. aproximadamente) Un cuerpo elástico se encuentra en un estado de deformación plana constante del cual se conocen las tres componentes de tensión mostradas en la figura: la tensión normal F sobre el plano OA y las tensiones tangenciales J y J 3 sobre los planos AB y OB, respectivamente, con las magnitudes y sentidos indicados en la figura. (Los planos verticales OA y AB son perpendiculares entre sí.) Las constantes elásticas del material son E= MPa, <=,5. Se pide: a) Determinar el tensor de tensiones en los ejes x, y de la figura (y z, perpendicular hacia arriba). ( 4 puntos) b) Encontrar las magnitudes de las tensiones principales y sus direcciones ( puntos) c) Calcular el alargamiento del segmento OA. ( puntos) d) Calcular el cierre (positivo) o apertura (negativa) del ángulo recto OAB. ( puntos)

12 a ORGN σ 48a. τ 564a. τ 3 3a. E. 8 ν.5 De τ 3 se deduce =-3a Usamos las siguientes fórmulas τ 3 σ α σ. x cos( α). τ. xy sin( α). cos( α) σ. y sin( α) τ α σ y σ. x sin( α) cos( α) τ. xy cos( α) sin( α) α atan 9 π α α α. 8 = α. 8 = 53.3 π π cos α sin α. cos α sin α sin α. cos α. σ x σ y σ. τ. xy sin α. cos α τ τ. xy cos α sin α σ x σ y cos α sin α. cos α sin α sin α. cos α. σ. τ. xy sin α. cos α τ τ. xy cos α sin α σ x = 6 σ y = 4 σ z ν. σ x σ y σ z = 5 T 3 σ x σ y T 3 = σ z T σ x σ y σ σ x σ y β atan σ σ x σ x σ y cos β d sin β σ = d =.67 σ σ x σ y σ x σ y σ = β atan σ σ x d cos β sin β σ σ z σ = 5 d.67 d =.964 d d = La tensión normal a σ resulta σ ABAB σ x σ y σ σ ABAB = 48

13 σ ABAB ν. σ σ z ε OAOA E δ OA = ε OAOA = δ OA ε. OAOA 9 G E.( ν) γ OAB τ G γ OAB = El ángulo se cierra Otros métodos Debido a que sobre OA también tendremos τ por planos prependiculares, la tensón total sobre OA es: σ x 3 3 σ y σ. 4 τ. 4 Se obtienen las mismas σ x, σ y El tensor de deformaciones es D. E σ x ν. σ y σ z.( ν).( ν) σ y ν. σ x σ z D = ε. OAOA 5 ( 4 3) 4. D. ε 3 OAOA = γ OAB. 5 T D. γ 3 4 OAB = La forma habitual de obtener el σ ABAB anterior es T 4 4 σ.. ABAB T. 5 3 σ 3 ABAB = 48

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 9.1.- Dos hilos metálicos, uno de acero y otro de aluminio, se cuelgan independientemente en posición vertical. Hallar la longitud

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o

I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l. U l a d i s l a o G á m e z S o l a n o 1 A n t o l o g í a : P r o m o c i ó n y A n i m a c i ó n d e l a l e c t u r a M i n i s t e r i o d e E d u c a c i ó n P ú b l i c a I n s t i t u t o d e D e s a r r o l l o P r o f e s i o n a l.

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide:

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide: Elasticidad resistencia de materiales Tema 2.3 (Le de Comportamiento) Nota: Salvo error u omisión, los epígrafes que aparecen en rojo no se pueden hacer hasta un punto más avanzado del temario Problema

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

El modelo de barras: cálculo de esfuerzos

El modelo de barras: cálculo de esfuerzos Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras

Más detalles

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 EJERCICIO Nº 1 ZAPATAS: CARGAS DE HUNDIMIENTO Una zapata

Más detalles

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas: Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Flexión Compuesta. Flexión Esviada.

Flexión Compuesta. Flexión Esviada. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada

Más detalles

Análisis de Tensiones.

Análisis de Tensiones. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 8 Análisis de Tensiones. Problema 1 Se tiene una estructura perteneciente a un graderío que soporta una carga de 1 tonelada en el punto

Más detalles

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

ELASTICIDAD Y RESISTENCIA DE MATERIALES Cuestiones y problemas

ELASTICIDAD Y RESISTENCIA DE MATERIALES Cuestiones y problemas ELASTCDAD Y RESSTENCA DE MATERALES Cuestiones y problemas Juan García Cabrera Título: Elasticidad y resistencia de materiales. Cuestiones y problemas Autor: Juan García Cabrera SBN: 84-8454-499-0 Depósito

Más detalles

FERNANDO SARRÍA ESTRUCTURAS, S.L. PLAZA MAYOR BAJO SARRIGUREN (NAVARRA)

FERNANDO SARRÍA ESTRUCTURAS, S.L. PLAZA MAYOR BAJO SARRIGUREN (NAVARRA) REF.: 00.007 vna FORJADO DE PRELOSAS PRETENSADAS DE VIGUETAS NAVARRAS, S.L. Altxutxate, Polígono Industrial de Areta 60 HUARTE-PAMPLONA (NAVARRA) FICHAS DE CARACTERÍSTICAS TÉCNICAS FERNANDO SARRÍA ESTRUCTURAS,

Más detalles

Seguridad Estructural (64.17)

Seguridad Estructural (64.17) TRABAJO PRACTICO 4 Resuelva los siguientes problemas calculando el índice de confiabilidad β de Hasofer y Lind. Salvo cuando se indique lo contrario expresamente, considere que las variables aleatorias

Más detalles

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura

Más detalles

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES Fig. 2.a Cuando se estudia el fenómeno que ocasionan las fuerzas normales a la sección transversal de un elemento, se puede encontrar dos

Más detalles

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1 CURSO 2010/2011 PUENTES I PRACTICA 1 En la figura se muestra la sección transversal de un puente formado por cinco vigas prefabricadas doble T de hormigón pretensado separadas 2,635 metros entre sí. La

Más detalles

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita.

PROBLEMA 1. Se pide: 1. Calcular para una confiabilidad del 95 % el valor máximo que puede tomar F para que la pieza tenga vida infinita. PROBLEMA 1 La pieza de la figura, que ha sido fabricada con acero forjado de resistencia última 750 MPa y densidad 7850 kg/m 3, sirve intermitentemente de soporte a un elemento de máquina, de forma que

Más detalles

,oo". J. ,oo'. + '[ uoo-,lroo-,lroo'-,] ] Estructuras hiperestáticas. (Pr. 1)

,oo. J. ,oo'. + '[ uoo-,lroo-,lroo'-,] ] Estructuras hiperestáticas. (Pr. 1) E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. UNIVERSIDAD DE GRANADA Estructuras hiperestáticas. (Pr. 1) En Ias cuatro estructuras siguientes calcular las reacciones, leyes de esfuerzos (cortantes,

Más detalles

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS

HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS VIGAS MIXTAS El tema se refiere a vigas formadas por perfiles metálicos donde la losa de hormigón armado colabora para absorber los esfuerzos de compresión. Este tipo de vigas tiene la ventaja de colocar

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

RESISTENCIA A ESFUERZO CORTANTE

RESISTENCIA A ESFUERZO CORTANTE Capítulo 4 RESISTENCIA A ESFUERZO CORTANTE Problemas de Geotecnia y Cimientos 10 Capítulo 4 - Resistencia a esfuerzo cortante PROBLEMA 4.1 Calcular los esfuerzos que actúan sobre el plano π, que forma

Más detalles

Pórticos espaciales. J. T. Celigüeta

Pórticos espaciales. J. T. Celigüeta Pórticos espaciales J. T. Celigüeta Pórtico espacial. Definición Estructura reticular. Barras rectas de sección despreciable. Cualquier orientación en el espacio. Barras unidas rígidamente en ambos extremos.

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 9: TENSION Y DEFORMACION AXIAL SIMPLE 1- Una barra prismática de sección transversal circular está cargada por fuerzas P, de acuerdo a la figura siguiente.

Más detalles

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES I ICM FLEXION Y AXIAL 2013 roberto.ortega.a@usach.cl RESISTENCIA DE MATERIALES

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

Tema 5 : FLEXIÓN: TENSIONES

Tema 5 : FLEXIÓN: TENSIONES Tema 5 : FLEXIÓN: TENSIONES σ MAX (COMPRESIÓN) G n n σ MAX (TRACCIÓN) Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.Zamora (U.SAL.) 008 5.1.Representar los diagramas de fueras cortantes de momentos

Más detalles

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS 1. El dibujo de la figura muestra una combinación de pluma de brazo con un tensor que soporta una carga de 6kN. Ambas piezas están hechas de

Más detalles

Energía debida al esfuerzo cortante. J. T. Celigüeta

Energía debida al esfuerzo cortante. J. T. Celigüeta Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

Flexión. (Pr. 1) Sabiendo que las cargas que pueden actuar sobre la pasarela son: Peso propio: 200kplm2. Sobrecarga de uso distribuida: 300kplm2

Flexión. (Pr. 1) Sabiendo que las cargas que pueden actuar sobre la pasarela son: Peso propio: 200kplm2. Sobrecarga de uso distribuida: 300kplm2 E.T.S. DE INGENItrROS DE CAMINOS, CANALES Y PUERTOS. UNIVERSIDAD DE GRANADA Flexión. (Pr. 1) Se quiere construir una pasarela peatonal biapoyada de L2m de luz, cuya anchura es de 2.5m. Para sustentar dicha

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

ESTABILIDAD II A (6402)

ESTABILIDAD II A (6402) 1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano

Más detalles

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N)

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) 1. A) Dadas las siguientes vigas, clasificarlas según su sustentación en: empotradas, simplemente apoyadas, en voladizo, continuas, con articulaciones,

Más detalles

CAPITULO 4. División 1. Cálculo de uniones por pernos Cálculo de uniones por soldadura Cálculo de uniones por pegamento

CAPITULO 4. División 1. Cálculo de uniones por pernos Cálculo de uniones por soldadura Cálculo de uniones por pegamento CAPITULO 4 Proyecto de elementos de sueción, anclae y cierre División Cálculo de uniones por pernos Cálculo de uniones por soldadura Cálculo de uniones por pegamento Introducción PROYECTO DE UNIONES PERNOS

Más detalles

INTEGRIDAD ESTRUCTURAL Y FRACTURA

INTEGRIDAD ESTRUCTURAL Y FRACTURA INTRODUCCIÓN OBJETIVOS Tratamiento de datos y parámetros relacionados con en ensayo de tracción axial. En particular se pretende que el alumno realice los siguientes cálculos en EXCEL: 1.- Obtener la curva

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

CURSO DE MECANICA APLICADA MATERIALES Y SU ENSAYO

CURSO DE MECANICA APLICADA MATERIALES Y SU ENSAYO CURSO DE MECANICA APLICADA MATERIALES Y SU ENSAYO Actividad práctica Nº 2 y 3 2017 8 Ensayos Ejercicio Nº 1: Realizando un ensayo de tracción sobre una probeta de sección circular de acero SAE 1010 se

Más detalles

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas Teoremas energéticos fundamentales del análisis estructural Aplicación a celosías planas Índice Directos Densidad de energía Complementarios Densidad de energía complementaria Energía elástica (Función

Más detalles

Vigas Principales C1 C2 C3 doble T. Se adopta un entablonado y se verifica. Se adoptaron tablones de 12 x 1 de escuadria.

Vigas Principales C1 C2 C3 doble T. Se adopta un entablonado y se verifica. Se adoptaron tablones de 12 x 1 de escuadria. TALLER VERTICAL DE ESTRUCTURAS VILLAR FAREZ- LOZADA Ejemplo: Cálculo de entrepiso de madera. - 2013 - Nivel 1 El diseño adoptado responde a la necesidad de generar un entrepiso de madera de 3.50 m. por

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

Resistencia de Materiales FLEXIÓN PLANA I: (Cálculo de tensiones)

Resistencia de Materiales FLEXIÓN PLANA I: (Cálculo de tensiones) Resistencia de ateriales FLEXIÓN PLANA I: (Cálculo de tensiones) Resistencia de ateriales FLEXIÓN PLANA I: (Cálculo de tensiones). Introducción. Lees diagramas en vigas isostáticas. Tensiones en la barra

Más detalles

1. Vigas de gran altura

1. Vigas de gran altura Vigas de gran altura Victorio E. Sonzogni Noviembre 2005 1. Vigas de gran altura 1.1. Generalidades El estudio de vigas de gran altura, ménsulas cortas, etc., así como porciones de vigas cercanas a la

Más detalles

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos

Nudos Longitud (m) Inercia respecto al eje indicado. Longitud de pandeo (m) (3) Coeficiente de momentos Barra N3/N4 Perfil: IPE 300, Perfil simple Material: Acero (S275) Z Y Inicial Nudos Final Longitud (m) Área (cm²) Características mecánicas I y I z I t N3 N4 5.000 53.80 8356.00 603.80 20.12 Notas: Inercia

Más detalles

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular Mecánica de Sólidos UDA 3: Torsión en Ejes de Sección Circular 1 Definición y Limitaciones Se analizarán los efectos que produce la aplicación de una carga de torsión sobre un elemento largo y recto como

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido:

2. Un ensayo de tracción lo realizamos con una probeta de 15 mm de diámetro y longitud inicial de 150 mm. Los resultados obtenidos han sido: PROBLEMAS ENSAYOS 1. Un latón tiene un módulo de elasticidad de 120 GN/m 2 y un límite elástico de 250 10 6 N/m 2. Una varilla de este material de 10 mm 2 de sección y 100 cm de longitud está colgada verticalmente

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

MECÁNICA II CURSO 2006/07

MECÁNICA II CURSO 2006/07 1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************ .- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 6. Flexión 3 un miembro 4 Una viga con un plano de simetría es sometido a pares iguales y opuestos M que actúan en dicho plano.

Más detalles

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial ASIGNATURA: RESISTENCIA DE MATERIALES GUÍA N 1: ESFUERZOS Y DEFORMACIONES NORMALES 1.- Sabiendo que la fuerza en la barra articulada AB es 27 kn (tensión), hallar (a) el diámetro d del pasador para el

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre

Más detalles

PUENTES II PRÁCTICA Nº4. PUENTES MIXTOS

PUENTES II PRÁCTICA Nº4. PUENTES MIXTOS PRÁCTICA Nº4. PUENTES MIXTOS Enunciado Se ha adjudicado el proyecto de construcción de un tramo de carretera convencional a una empresa constructora. Entre otras estructuras del proyecto se encuentra la

Más detalles

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17

1º E.U.I.T.I.Z. Curso Electricidad y Electrometría. Problemas resueltos tema 6 1/17 1º E.U.I.T.I.Z. Curso 2004 05. Electricidad y Electrometría. Problemas resueltos tema 6 1/17 4.- Calcular el vector inducción magnética, B, en el punto O, creado por una corriente eléctrica de intensidad

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo doce: Ejemplo 10 Ejemplo diez. Se pide: Calcular las solicitaciones y dimensionar todos los elementos que componen el entrepiso de madera que se muestra en la planta

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones

Más detalles

ANEJO Nº 5.- CÁLCULOS MECÁNICOS ÍNDICE

ANEJO Nº 5.- CÁLCULOS MECÁNICOS ÍNDICE ANEJO Nº 5.- CÁLCULOS MECÁNICOS ÍNDICE 1.- CÁLCULO MECÁNICO DE LAS CONDUCCIONES... 2 APÉNDICE Nº 1. CÁLCULO MECÁNICO DE LAS CONDUCCIONES - 1 - 1.- CÁLCULO MECÁNICO DE LAS CONDUCCIONES El objetivo del presente

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

F F. ! x (m)

F F. ! x (m) Examen de diciembre, 5-VI-7. Análisis de Estructuras I NOMBRE FIRMA: CÁLCULO PLÁSTICO: PROBLEMA Tiempo: h 5 m. La estructura de nudos rígidos de la figura se comporta según el modelo rígido-plástico. Calcúlese:

Más detalles

PRÁCTICA Nº 17 ACEROS PARA HORMIGONES II. Contenido: 17.1 Aptitud al doblado 17.2 Características mecánicas 17.3 Control del acero

PRÁCTICA Nº 17 ACEROS PARA HORMIGONES II. Contenido: 17.1 Aptitud al doblado 17.2 Características mecánicas 17.3 Control del acero Prácticas de Materiales de Construcción I.T. Obras Públicas PRÁCTICA Nº 17 ACEROS PARA HORMIGONES II Contenido: 17.1 Aptitud al doblado 17.2 Características mecánicas 17.3 Control del acero ANEJO 1: Instrumental

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones

Más detalles

Mecánica. Cecilia Pardo Sanjurjo. Tema 04. Cables. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA

Mecánica. Cecilia Pardo Sanjurjo. Tema 04. Cables. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Mecánica Tema 04. Cables. Cecilia Pardo Sanjurjo DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: CreaHve Commons BY NC SA 3.0 Cables Los hilos o cables son elementos ampliamente

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura)

HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) HORMIGÓN ARMADO II TP 07 ELEMENTOS Y ZONAS DONDE NO SE CUMPLE LA HIPÓTESIS DE BERNOUILLI. (Elementos de gran altura) 1) Modelos de Barras Las condiciones generales que deben cumplir los modelos de Puntales

Más detalles

Leyes de comportamiento

Leyes de comportamiento Lección 4 Leyes de comportamiento Contenidos 4.1. Ley general de comportamiento elástico-lineal...... 50 4.2. Relaciones experimentales entre tensiones y deformaciones 51 4.2.1. l ensayo de tracción (compresión)..............

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

Estructuras de acero: Problemas Pilares

Estructuras de acero: Problemas Pilares Estructuras de acero: Problemas Pilares Dimensionar un pilar de 4 m de altura mediante un perfil, sabiendo que ha de soportar una carga axial de compresión F de 400 una carga horiontal P de 0, que estos

Más detalles

2- Propiedades Mecánicas de los Materiales

2- Propiedades Mecánicas de los Materiales 2- Propiedades Mecánicas de los Materiales Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil 1 Contenido 2. Propiedades mecánicas de los materiales 2.1 Ensayos de materiales para conocer sus

Más detalles

Problemas de Placas Rectangulares. Método de Navier

Problemas de Placas Rectangulares. Método de Navier ESTRUCTURAS II. E.T.S.I.C.C.P., UNIVERSIDAD DE GRANADA. CURSO 2005-2006 Problemas de Placas Rectangulares. Método de Navier Problema 1 La placa rectangular, de lados a y b, y espesor t, simplemente apoyada

Más detalles

Mecánica de Sólidos - Torsión. 4- Torsión. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil

Mecánica de Sólidos - Torsión. 4- Torsión. Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil 4- Torsión Prof. JOSÉ BENJUMEA ROYERO Ing. Civil, Magíster en Ing. Civil Contenido 4. Torsión 4.1 Hipótesis básicas. Elementos de sección recta circular. Esfuerzos generados por efectos de torsión. 4.2

Más detalles

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch MENI PLI I. EXMEN FINL. 07-06-99. PIME EJEIIO TIEMPO: 50 x x x 1. educir a partir de las siguientes ecuaciones y = αch, ch sh = 1 α α α las expresiones de la longitud y la tensión de la catenaria ( puntos)..

Más detalles

ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 05/04/2016 INGENIERÍA EN CONSTRUCCION- U.VALPO 128

ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 05/04/2016 INGENIERÍA EN CONSTRUCCION- U.VALPO 128 ESTRUCTURAS METALICAS Capítulo III Compresión Axial INGENIERÍA EN CONSTRUCCION- U.VALPO 18 Compresión Axial Casos más comunes de miembros que trabajan a compresión. Columnas. Cuerdas superiores de armaduras.

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO EXPRESIÓN GRÁFICA 3 a POE Fecha: 15/04/2013 2º CONTROL DE EXPRESIÓN GRÁFICA. NORMAS E INFORMACIÓN

ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO EXPRESIÓN GRÁFICA 3 a POE Fecha: 15/04/2013 2º CONTROL DE EXPRESIÓN GRÁFICA. NORMAS E INFORMACIÓN º CONTROL DE EXPRESIÓN GRÁFICA. NORMAS E INFORMACIÓN 1º El carnet de la Escuela se debe situar en lugar visible. º El alumno debe cumplimentar los casilleros de identificación con apellidos, nombre, grupo

Más detalles

METALURGIA Y SIDERURGIA. Hoja de Problemas Nº 2. Ensayos mecánicos

METALURGIA Y SIDERURGIA. Hoja de Problemas Nº 2. Ensayos mecánicos METALURGIA Y SIDERURGIA Hoja de Problemas Nº 2 Ensayos mecánicos 1. Un tirante metálico de alta responsabilidad en un puente de ferrocarril fue diseñado inicialmente con un acero sin ninguna exigencia

Más detalles

TENSIONES. 1. El estado de tensiones de un punto viene dado por el siguiente tensor de segundo orden: es efectivamente un tensor de segundo orden.

TENSIONES. 1. El estado de tensiones de un punto viene dado por el siguiente tensor de segundo orden: es efectivamente un tensor de segundo orden. TENSIONES. El estado de tensiones de un punto viene dado por el siguiente tensor de segundo orden: 500 500 800 = 500 000 750 MPa 800 750 00 r Calcule el vector de tensiones T n en el plano definido por

Más detalles

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A Q U E S E E N C U E N T R A E N I N T E R N E T E N : h t t p : / / w w w. l a n d e r. e s / w e b m

Más detalles