Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************"

Transcripción

1 .- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima ue se produce en la viga. a a Datos: a m 800 kg/m E. 0 6 kg/cm. ************************************************************************ a) Cálculo de las reacciones exteriores. A C R A R a figura anterior es euivalente a: 576 kgm A R A R R A + R 5a 5 A a ar El ángulo girado en el empotramiento debe ser nulo. 576 A a a a + 6 Sustituyendo los datos obtenemos: A 06 kg m R A 0 kg. R 580 kg. A 0 Nótese ue estos resultados se pueden obtener de forma más directa consultando el formulario de vigas en el caso de viga empotrada-apoyada y procediendo por superposición.

2 b) Aplicando superposición: l 8 a l a δ δ 8 a 7 f ext ( - ) a - δ a aplicando los datos numéricos, resulta I 5 cm ; el perfil adecuado es IPN 0, con I 50 cm,con el ue resulta: f ext. mm c) Tramo A: Z x 00 x 0 < x <,8 A x Integrando obtenemos la ecuación de la elástica: y A (, x 70 x x C x C ) Imponiendo condiciones de contorno: y(0) 0 ' y (0) 0 y A (, x 70 x x ) Podemos calcular la flecha máxima ue se produce en este tramo, para hallar el punto en el ue se produce hacemos y 0. Resolviendo la ecuación anterior obtenemos el punto de máxima flecha en ese tramo. 87 x,677m. ymax

3 Tramo C: Z 00 x 0 < x <, y C (, x C x C ) Imponiendo las condiciones de contorno obtenemos la ecuación de la elástica. y (, ) 0 y C ' C y C x (, ) y A(, 8 ), x C ' ( x C ) (, x ) y C x En este tramo, la flecha máxima es: 75 x 0 m. ymax C Por tanto, la flecha máxima se produce en el tramo A. 87 y,06 0 max m.,06mm. Nótese ue los resultados del tramo A se pueden obtener de forma más directa consultando el formulario de vigas en el caso de viga empotrada-apoyada y procediendo por superposición de las ecuaciones de la elástica ue allí figuran; la derivada daría el giro en el apoyo, y la elástica de C sería dicho giro multiplicado por (a!x) menos la elástica de la viga en voladizo.

4 5.- a viga biempotrada de la figura tiene una articulación en su punto medio, sobre la ue actúa una fuerza F horizontal. Datos: 50 m 00 kg/m F 000 kg Sección IPE-00 Se pide: a) Reacciones en los empotramientos y leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal, acotando los valores más característicos. b) En la articulación, la flecha y el ángulo ue forman las dos tangentes. c) Sección en ue se produce la σ max, y la ley de variación de σ en dicha sección acotando los valores extremos. ************************************************************************ a) En primer lugar resolveremos la hiperasticidad de cargas verticales. articulación F V V Además tenemos ue: V V a condición de deformación a imponer será la igualdad de flechas en la articulación, por tanto: 8 V V Resolviendo la ecuación anterior obtenemos el valor de V: V 6 En cuanto al euilibrio de fuerzas horizontales cabe decir ue la fuerza F horizontal se absorbe por igual en ambos empotramientos, ya ue se encuentra aplicada a la misma distancia de ambos. Recordemos ue la reacción ejercida por cada empotramiento es inversamente proporcional a su distancia al punto de aplicación. También se puede justificar simplemente considerando ue se trata de un estudio de cargas antisimétricas, lo ue implica reacciones antisimétricas. Por tanto:

5 F/ F F/ A C Aplicando las ecuaciones de euilibrio hallamos las reacciones en los empotramientos. R R C A A C F/ A R A F A C x R C C F/ A continuación obtendremos las leyes de variación: Normales: Cortante: F N para 0 < x < N F para < x < T y 6 x para 0 < x < T y omento flector: z z para < x < 6 5 x + x para 0 < x < 6 6 x para < x < 6 ( )

6 F/ A R A A C x F R C C F/ F Normales N x F 6 Cortante T y Flector z 9 5 b) ediante el formulario de vigas podemos hallar fácilmente la flecha y el ángulo: Considerando el tramo C: V f, 7mm Para el cálculo del ángulo de las tangentes lo dividiremos en tramos: Tramo A:

7 A V 6 Teniendo en cuenta ue V 6 obtenemos: 7 A 6 96 Tramo C: V C El ángulo ue forman las tangentes será la suma de los dos anteriores: 6 A C c) a sección donde se produce la σ max es en x 0, está producida por una tracción uniforme más flexión. y z flexión tracción 76

8 6.- Datos de la estructura de la figura: a a 00 m. b 50 m c 50 m P 000 kg 800 kg/m I z,pilar 500 cm I z,dintel 700 cm Se pide: P a) Reacciones en el apoyo y en el b empotramiento, y leyes de momentos c flectores, esfuerzos cortantes y esfuerzos normales, acotando los valores más característicos. b) Giro del apoyo y de la esuina. c) Dibujar a estima (pero cuidando detalles: tangencias, inflexiones, etc.) la deformada de la estructura. ************************************************************************ a) En primer lugar, separaremos el pilar del dintel, definiendo así un sistema más sencillo; en el ue aparece como incógnita el momento. Para ue dicho sistema sea euivalente a la estructura dada, en la unión del pilar y el dintel debe conservarse el ángulo inicial de 90º; por tanto, el ángulo de giro debe ser igual en ambos. a b P c Descompondremos a su vez los estados de cargas del pilar y del dintel en casos más simples para poder emplear directamente el formulario de vigas. euivale a: + a a d d El giro total del extremo izuierdo del dintel será por tanto:

9 a a d d Descomponiendo el pilar en estados de carga más sencillos tenemos: P P ( b c) P c b p b p El giro total del extremo superior del pilar será por tanto: b p ( b c) P + p c b Ambos giros deben ser iguales, por tanto: a d a d b p ( b c) P + Resolviendo la igualdad anterior obtenemos el valor del momento : ( b c) I p c a + 6 P I d b 86kgm I p 6 b + 8 a I d A continuación calcularemos las leyes de cortantes, normales y momentos flectores. T p c b T T Cortantes T

10 N Normales N omento flector Siendo: a T 98kg a a T 0 en x,8m. V + V a T + 7kg a P c T ( b c) + 5kg b b P ( b c) T ( b ( b c) ) 66kg b b N N T T

11 ( a x) ( a x) T 58kgm T b c 58 ( ) kgm T b + P c kgm b) Para obtener el giro de la esuina basta sustituir en alguna de las expresiones de anteriores; en la del dintel: a a 0, mrad esuina 60 d c) El giro del apoyo lo podemos obtener a partir del formulario de vigas. d a d a 6 d Por tanto, el giro total será: a a 6, 5 apoyo d d mrad d) Tenemos ue tener en cuenta ue en la esuina se conserva el ángulo de 90º entre el dintel y el pilar, además tenemos el ángulo girado por la esuina y por el pilar. Existen inflexiones en los puntos donde se anula el momento flector. Punto de inflexión

12 7.- a viga de la figura está soportada por un apoyo y dos tirantes, como se indica en la figura. Sección de cada tirante: cm Sección de la viga: IPE-0 E. 0 6 kg/cm Hallar: 5º 5º a) σ en los tirantes. 000 kg/m b) σ max en la viga. c) Flecha en los extremos. (Cotas en metros) NOTA.- Este problema es más sencillo de lo ue aparenta a primera vista. Observar ue la estructura es simétrica, lo ue permite reducir el problema a un caso más simple. ************************************************************************ a) Debido a ue la estructura es simétrica reducimos el problema a: 5º 000 kg/m 0 5 En primer lugar descompondremos la viga en suma de estados de carga sencillos para poder calcular la flecha en el punto de unión con el tirante. 000 kg/m + T x T y Podemos simplificar aún más el estado de cargas de modo ue empleemos directamente el formulario de vigas. f Ty

13 f P f P f Siendo P 500kg. y 500 kg cm. a flecha del punto de unión del tirante con la viga fruto de la suma de los cuatro estados de carga es: P Ty ftotal T T y a condición de deformación es ue el tirante y la viga deben permanecer unidos lo ue implica ue el extremo del tirante se debe deformar lo mismo ue el punto de unión con la viga. δ V δ T f 5º De la figura anterior se obtiene: Siendo δ T T E A T T T E A T f δ + δ V T

14 Ty δ V E AV donde I 8cm A V,cm T E A A T cm Sustituyendo valores: f total 5,6,965 0 T V a condición de deformación ueda por tanto: f total 5,6,965 0 T T + E A T T E A V Sustituyendo en la ecuación anterior tenemos: T 778kg. T σ tirante 778kg cm AT En general, en vigas es despreciable la deformación longitudinal. En este caso, se podría haber prescindido de δ v, simplificando así el problema: f δ T 5º a condición de deformación ueda de la forma: f δ T Así resuelto: T 78kg. T σ tirante 78kg cm AT Que, como puede comprobarse, es muy similar a la del primer procedimiento. b) Para la determinación de la tensión normal máxima en la viga debemos hallar el diagrama de momentos flectores. a viga se puede representar como: T y T T T x y 57kg A T x

15 a fuerza T x provocará una compresión uniforme en el tramo A. T y A x R A,5 A kg m R A, kg. a ecuación del momento flector será: ( x) 6+ x 500 x para 0 < x < m. ( x) x Su representación es: x 500 para < x <,5m. T y A x R A 6 kg m 5 kg m omento flector kg m El máximo momento flector se produce en el empotramiento, donde además se produce una compresión uniforme. a tensión será: z N ο x + 50kg cm W A 5, z c) a flecha en el extremo se puede calcular como superposición de efectos.

16 T y + T y C f f f Empleando el formulario de vigas obtenemos: f 7, 68cm 8 P f 5, 7cm P 0, 095rad f C, 976cm f total f f f,mm.

17 8.- Para el eje de la figura: a) Dimensionar con sección circular, con el criterio: σ adm 600 kg/cm. b) Representar el diagrama de giros y acotar los máximos (en radianes). Datos: P 500 kg ; E 0 6 kg/cm ; µ 0 ; a 500 mm. b 700 mm. r 50 mm. a z r P y b x r a ********************************************************************** a) Nos encontramos con un eje ue está sometido a tres tipos de solicitaciones: ) Tensión normal σ x debida a las fuerzas P. ) Tensión cortante τ de torsión (las fuerzas P no están aplicadas en el eje). ) Tensión cortante τ debido a P. (No tienen excesiva importancia por lo ue no las consideraremos). Reducimos las fuerzas al eje: P P P r 6500 kg cm Calcularemos los diagramas de momentos flectores. Para su cálculo nos basaremos en el formulario de vigas. P Plano vertical 5 T y (kg.) z (N cm) 667

18 Plano horizontal P 978 T z (kg.) y (N cm) 667 El cálculo del momento torsor se realiza del mismo modo ue el problema 9, por tanto no explicaremos su deducción. Su ley de variación es: x x (N cm) X 6765 El siguiente paso es determinar el punto sometido a una mayor tensión. Para ello atenderemos a los diagramas de momentos flectores y torsores. Observando los diagramas, se aprecia en los empotramientos el máximo momento flector combinado con un momento torsor ue, aunue no es el máximo, sí es apreciablemente Calcularemos su tensión normal.

19 fr El punto ue está sometido a máxima tracción es el y el de máxima compresión es el. fy fz f σ r x 68 f W σ r x π D W f π D r ext 6775N cm ext a tensión cortante producida por el momento torsor en los puntos considerados será: t 575 kg cm τmax τ max. tors 6 t π D ext τmax σ σ x σ x τ + π Dext 6775 π Dext π Dext 600 Resolviendo la ecuación anterior obtenemos: D ext 76, mm. Comprobamos ahora en los puntos donde el momento torsor es máximo con el momento flector ue corresponde; concretamente comprobaremos los puntos de aplicación de la carga P. En estos puntos tenemos: 6765 kg cm t f kg cm Procediendo igual ue en el punto anterior obtenemos un diámetro de 65,8 mm. as secciones más cargadas son por tanto las de los empotramientos. Por último, ueda comprobar el cortante producido por P. Por ser una sección circular, la expresión de la tensión cortante máxima será:

20 siendo T T y + T z τ max T Ω 06 kg Ω 5,7 cm Sustituyendo en la ecuación obtenemos: τ 59,7 kg cm a influencia de τ debida a esfuerzo cortante es peueña y no la consideramos. Si en algún caso particular tuviera importancia exigiría un estudio más riguroso ue presenta complicaciones ya ue no coinciden en el mismo punto los máximos de la τ debida a fuerza cortante, la τ debida a momento torsor y la σ x debida a momento flector. Por tanto, no la consideramos y redondeamos a un diámetro de 77 mm. b) A partir del diagrama de momento torsor podemos deducir los giros de las diferentes secciones mediante la fórmula: ϕ ( x) x G I x 0 0 dx Como en cada uno de los tramos el momento torsor es constante: ϕ i x G I i 0 En ambos extremos de la viga el giro será nulo puesto ue están empotrados. Debido a la antisimetría de las cargas basta con calcular uno de los tramos extremos para calcular el diagrama entero. En el primer tramo: N cm. x 50 cm. E Sustituyendo en la ecuación anterior, y teniendo en cuenta ue G ( + µ ) obtenemos el giro. ϕ,8 0 rad. El diagrama de giros será: ϕ (rad) ϕ 0,008 (+) X (cm) (-) -0,008

21 9.- Dimensionar el elemento resistente AC-D con sección circular maciza uniforme (dar el diámetro en nº entero de mm.), con el criterio: Flecha en D mm. Datos: P 000 kg E, 0 6 kg/cm µ 0 (Cotas en mm. ) z y Indicación: Considerar las deformaciones por torsión y flexión en AC y la deformación por flexión en D. ********************************************************************** Para calcular la flecha en D tenemos ue tener en cuenta tres efectos. - El elemento AC está sometido a flexión por lo ue el punto descenderá así como la barra D. - El elemento AC está sometido a torsión lo ue implica ue la barra D también girará. - a barra D trabaja como una viga en voladizo ue también tendrá una flecha. En primer lugar reduciremos la fuerza P al punto. x A 00 D P C A C P D 0000 kg cm El descenso del punto se puede calcular fácilmente mediante el formulario de vigas. P π R π D f siendo I tenemos ue: 9 6 P E π D,6 cm D f Seguidamente calculamos el giro del punto ; nos encontramos con un problema hiperestático, pero debido a la antisimetría podemos calcular directamente el diagrama de momentos torsores. P

22 x x (kg cm) X (cm) 5000 El giro de la barra AC en la sección viene dado por la fórmula: siendo φ ( + µ ) G I x E G e 0 I 0 π R π D Por tanto: φ E π D ( + µ ) x,60 rad D φ D f El descenso del punto D debido al giro de AC será:,60 f φ D cm D Por último ueda hallar el descenso de D por ser una viga en voladizo con la carga en el extremo libre. φ D f f Recurriendo al formulario de vigas obtenemos: P D 6 P D,6 f cm E π D D El descenso del punto D será:

23 9,077 f f + f + f cm D Como el descenso del punto D tiene ue ser mm: 9,077 0, D Resolviendo la ecuación anterior y redondeando a un número entero de milímetros obtenemos D 8mm.

24 0.- Dimensionar la sección de la viga de la figura con perfil IPN, con la condición de ue la flecha en el punto de aplicación de la carga no exceda de mm. E, 0 6 kg/cm P000 kg Cotas en metros ********************************************************************** En primer lugar, descompondremos la viga en tramos para poder aplicar directamente el formulario de vigas. P000 kg A C D Euivale a: P000 kg E A Tenemos ue tener en cuenta ue aunue esté separada en varios tramos es la misma viga; por tanto, los ángulos girados por la viga en los puntos de unión de los tramos deben ser iguales para mantenerse la continuidad. Tramo A: P f E 8 8 P 6 Tramo C: 6 C 6 Tramo CD: C Igualando el giro en el punto C para los tramo C y CD obtenemos: 6 C C D

25 Igualando el giro en el punto para los tramo A y C y sustituyendo la ecuación anterior obtenemos: P 6 6 P 0 Sustituyendo en la ecuación de la flecha hallada anteriormente: 0,7 P f E 8 f E 0,mm. Resolviendo obtenemos: I 555cm Por tanto el perfil reuerido es un IPN 0 Se obtiene un planteamiento más directo aplicando el teorema de los tres momentos: n- n n+ donde: n E I n, n n, n + n E I n, n n, n + E I n, n+ n, n+ + n+ E I n, n+ n, n+ 6 Pn, n Pn, n+ ( + ) n n Aplicándolo a nuestro problema: P 0 0 Cte A C D / / n n n P, ( + ) + 6 P

26 n n + ( + ) 0 n + Resolviendo el sistema de ecuaciones anterior obtenemos: P 0 Como puede verse, los resultados son coincidentes por uno y otro método.

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo

Más detalles

Problemas de la Lección 6: Flexión. Tensiones

Problemas de la Lección 6: Flexión. Tensiones : Flexión. Tensiones Problema 1: Para las siguientes vigas hallar los diagramas de esfuerzos cortantes y momentos flectores. Resolver cada caso para los siguientes datos (según convenga) P = 3000 kg ;

Más detalles

**********************************************************************

********************************************************************** .4.- En la viga: a) Para la solución de construirla con tablones, se han elegido éstos finalmente con dimensiones 7 x 9 cm. Se trata ahora de mantenerlos unidos mediante pernos de mm. adm 800 kg/cm, dispuestos

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) > Ecuación de Transformación para la Deformación Plana. Relaciona el tensor de deformaciones de un punto con la medida de una galga en ese punto con un ángulo φ del eje

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos

Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m

60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE.............................................. APELLIDOS........................................... CALLE................................................

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Tema 6.3 FLEXIÓN HIPERESTÁTICA

Tema 6.3 FLEXIÓN HIPERESTÁTICA Tema 6.3 Nota: A continuación se muestra el sistema de coordenadas de todos los problemas donde se definen las condiciones de contorno. Problema 6.3.1 Una viga de 12 m de longitud está construida con una

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica.

8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica. . eterminar los esfuerzos en todas las barras de la celosía de la figura cuando en el punto hay una carga horizontal de 0kN eterminar además las componentes horizontal y vertical del desplazamiento de

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos:

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos: Viga continua con múltiples patologías 1/5 Figura 1 Viga continua con multiples patologías Problema de viga continua Vamos a calcular todos los esfuerzos, reacciones y curvaturas, y a dibujar la deformada

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

********************************************************************** En primer lugar hallaremos la excentricidad de la carga:

********************************************************************** En primer lugar hallaremos la excentricidad de la carga: 31.- Calcular la flecha máima la σ máima que resultan con el modelo de soporte esbelto sometido a carga ecéntrica. E =,1 10 6 kg/cm m. P=10000 kg. M=5000 kgm Sección pn 0 soldados a tope en las alas **********************************************************************

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS IIND 4.2 ESTRUCTURS EJERCICIOS ROUESTOS 1. a figura representa una estructura constituida por barras unidas entre sí y al suelo (plano horizontal XOZ) mediante rótulas. a Y 2 1 a) Comprobar si dicha estructura

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

PROBLEMA 1 (10 puntos)

PROBLEMA 1 (10 puntos) RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:

Más detalles

15.5. Torsión uniforme en barras prismáticas de sección de

15.5. Torsión uniforme en barras prismáticas de sección de Lección 15 Torsión uniforme Contenidos 15.1. Distribución de tensiones tangenciales estáticamente equivalentes a un momento torsor................ 186 15.2. Torsión uniforme en barras prismáticas de sección

Más detalles

El esfuerzo axil. Contenidos

El esfuerzo axil. Contenidos Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

LEE ATENTAMENTE ANTES DE COMENZAR!

LEE ATENTAMENTE ANTES DE COMENZAR! UNVERSDD PONTFC COS ESCUE TÉCNC SUPEROR DE NGENERÍ (C) ND. 3 er CURSO. ESTCDD RESSTENC DE TERES. 0/03. Examen final EE TENTENTE NTES DE COENR! El examen consta de varios ejercicios, ue se repartirán sucesivamente,

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOLIITIONES OMINDS V M T N x L M V Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 2008 9.1.-En la viga de la figura calcular por el Teorema de los Trabajos Virtuales: 1)

Más detalles

Leonardo Da Vinci (Siglo XV)

Leonardo Da Vinci (Siglo XV) UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

Vigas Hiperestáticas

Vigas Hiperestáticas Vigas Hiperestáticas A.J.M.Checa November 11, 7 En el tipo de vigas que vamos a analizar en esta sección, el número de incógnitas es mayor que el número de ecuaciones. Por tanto, hemos

Más detalles

a) aumento de temperatura T en todas las barras de la estructura articulada. E, I E, I L 1

a) aumento de temperatura T en todas las barras de la estructura articulada. E, I E, I L 1 Ejercicio nº 1. Tiempo: 45 m. Puntuación: 3,0 Se permite el uso del formulario de vigas 1.1 Hallar el coeficiente de rigidez, k, tal ue F=ku, siendo u el desplazamiento relativo de los puntos de aplicación

Más detalles

Prácticas de Resistencia 12-13

Prácticas de Resistencia 12-13 Prácticas de Resistencia 12-13 1) Calcular las reacciones en los apoyos de la viga de la figura 1 para los siguientes dos casos de la carga actuante: parábola de 2º grado con tangente horizontal en C;

Más detalles

TEMA 11: ESTRUCTURA DE BARRAS

TEMA 11: ESTRUCTURA DE BARRAS TEMA 11: ESTRUCTURA DE BARRAS ESTRUCTURAS 1 ENRIQUE DE JUSTO MOSCARDÓ ANTONIO DELGADO TRUJILLOh ANTONIA FERNÁNDEZ SERRANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos, Teoría

Más detalles

Prácticas Complementarias de Resistencia 12-13

Prácticas Complementarias de Resistencia 12-13 Prácticas Complementarias de Resistencia 12-13 1) Dibujar sendos croquis con las reacciones acotadas en magnitud y sentido para las vigas de la figura 1: Figura 1 2) Calcular las reacciones del muro y

Más detalles

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES EJERCICIOS PROPUESTOS Hoja 6 Norma EA-95 1. a) En la viga continua isostática de la figura, representar las siguientes líneas de influencia,

Más detalles

1.- De las siguientes afirmaciones, marque la que considere FALSA:

1.- De las siguientes afirmaciones, marque la que considere FALSA: APLIACIÓN DE RESISTENCIA DE ATERIALES. CURSO 0-3 CONVOCATORIA ETRAORDINARIA. 8jun03 Fecha de publicación de la preacta: de Julio Fecha hora de revisión: 9 de Julio a las 0:30 horas TEST (tiempo: 5 minutos)

Más detalles

Estructuras de Edificación: Tema 20 - La pieza recta

Estructuras de Edificación: Tema 20 - La pieza recta Resumen Estructuras de Edificación: Tema 20 - La pieza recta David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de Edificación Segundo

Más detalles

Tema 5 : FLEXIÓN: TENSIONES

Tema 5 : FLEXIÓN: TENSIONES Tema 5 : FLEXIÓN: TENSIONES σ MAX (COMPRESIÓN) G n n σ MAX (TRACCIÓN) Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.Zamora (U.SAL.) 008 5.1.Representar los diagramas de fueras cortantes de momentos

Más detalles

MECÁNICA TÉCNICA TEMA XVIII

MECÁNICA TÉCNICA TEMA XVIII MECÁNICA TÉCNICA TEMA XVIII 1.- Vigas de eje recto En el tema XI se definieron y estudiaron las vigas de alma llena, también se vio que estas vigas las podemos representar por medio de sus ejes que son

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

Montacargas a cremallera de 1000 kg de carga nominal 1. Índice...1. A Cálculos...3

Montacargas a cremallera de 1000 kg de carga nominal 1. Índice...1. A Cálculos...3 Montacargas a cremallera de 1000 kg de carga nominal 1 Índice Índice...1 A Cálculos...3 A.1 Viento durante el servicio. Acción sobre el bastidor inferior...3 A.1.1 Fuerza ejercida por el viento sobre puertas

Más detalles

Energía debida al esfuerzo cortante. J. T. Celigüeta

Energía debida al esfuerzo cortante. J. T. Celigüeta Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =

Más detalles

Determinar los diagramas de esfuerzos en la estructura de la figura. a) Descomposición de la fuerza exterior aplicada en el extremo de la barra BE.

Determinar los diagramas de esfuerzos en la estructura de la figura. a) Descomposición de la fuerza exterior aplicada en el extremo de la barra BE. esistencia de materiales. roblemas resueltos roblema. eterminar los diagramas de esfuerzos en la estructura de la figura. 45 o 600 800 m m m m m esolución: F F H V 600 600 600 600 a) escomposición de la

Más detalles

Asignatura: RESISTENCIA DE MATERIALES (I.T.O.P.) Examen : Enero 2009

Asignatura: RESISTENCIA DE MATERIALES (I.T.O.P.) Examen : Enero 2009 UIVERSIDD DE SLMC Problema 1º signatura: RESISTECI DE MTERILES (I.T.O.P.) Eamen : Enero 009 En la barra indicada en la figura, de sección circular maciza, se pide calcular: 1) Diagrama de esfuerzos de

Más detalles

RESISTENCIA DE MATERIALES II

RESISTENCIA DE MATERIALES II RESISTENCIA DE MATERIALES II CURSO 00- EXAMEN DE JULIO 7-7-0 Fecha de publicación de la preacta: 8 de Julio Fecha de revisión: 6 de Julio a las 0 horas PROBLEMA El apoo B de la estructura de la figura

Más detalles

RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE

RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE RESISTENCIA DE MATERIAES II CURSO 008-09 EXAMEN DE SETIEMBRE -9-009 Fecha de publicación de la preacta: de Octubre Fecha de revisión: 7 de Octubre.- ( puntos) as vigas carril de un puente grúa están fabricadas

Más detalles

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas Teoremas energéticos fundamentales del análisis estructural Aplicación a celosías planas Índice Directos Densidad de energía Complementarios Densidad de energía complementaria Energía elástica (Función

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

Ejercicio resuelto VIGA ALIVIANADA METALICA Año 2014

Ejercicio resuelto VIGA ALIVIANADA METALICA Año 2014 TALLER VERTICAL ESTRUCTURAS VILLAR FAREZ-LOZADA Nivel 1 Ejercicio resuelto VIGA ALIVIANADA METALICA Año 014 EJEMPLO DE CÁLCULO Consideremos tener que cubrir un espacio arquitectónico con una cubierta liviana

Más detalles

1.1. De los momentos de segundo orden y los ejes principales de inercia

1.1. De los momentos de segundo orden y los ejes principales de inercia I 1. ASPECTOS TEÓRICOS 1.1. De los momentos de segundo orden y los ejes principales de inercia Sea una sección plana de área como la de la figura 1 definido cualquier pareja de ejes perpendiculares en

Más detalles

B) Para la viga de dos vanos con rótula en R, cargada como se muestra en la figura 2, se pide:

B) Para la viga de dos vanos con rótula en R, cargada como se muestra en la figura 2, se pide: Resistencia de Materiales, Elasticidad y Plasticidad. Examen ordinario 27 de mayo de 2014 Apellidos.................................... Nombre........................ Nº... Curso 3º Ejercicio 1. (Se recogerá

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura (lsegura@fing.edu.uy) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura

Más detalles

Problema 1 (10 puntos)

Problema 1 (10 puntos) RESISTENCIA DE MATERIALES CURSO 2015-16 Convocatoria de Julio 5/7/2016 echa de publicación de la preacta: 21/7/2016 echa de revisión del examen: 28/7/2016 a las 16:00 Problema 1 (10 puntos) La estructura

Más detalles

ESTABILIDAD II A (6402)

ESTABILIDAD II A (6402) 1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano

Más detalles

Estructuras hiperestáticas.

Estructuras hiperestáticas. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 10 BLOQUE 1. ESTRUCTURAS HIPERESTÁTICAS POR AXIL Estructuras hiperestáticas. Problema 1 Tenemos un pilar formado por una sección rectangular

Más detalles

E.T.S. Ingenieros de Caminos, Canales y Puertos. TEORÍA Tiempo: 1 h.

E.T.S. Ingenieros de Caminos, Canales y Puertos. TEORÍA Tiempo: 1 h. CONVOC. JUNIO TEORÍA DE ESTRUCTURAS 4 JULIO 2014 TEORÍA Tiempo: 1 h. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de la nota total del examen. Ejercicio 1 (2,5 ptos) Establecer la relación que

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Mecánica de Materiales I Tema 3 Torsión en barras Índice de contenido Sección 1 - Deformaciones en un eje circular Tema 3 - Torsión en barras Índice de contenido Sección 2 - Esfuerzos cortantes en barras

Más detalles

INDICE. par de fuerzas aplicado en perpendicular al EJE LONGITUDINAL de la barra. criterio de signos POSITIVO: regla del sacacorchos

INDICE. par de fuerzas aplicado en perpendicular al EJE LONGITUDINAL de la barra. criterio de signos POSITIVO: regla del sacacorchos INDICE 12.1 Introducción. 12.2 Torsión isostática. Tensiones y giros. 12.3 Torsión hiperestática. 12.4 Introducción a la Flexotorsión. 12.5 Epílogo. Torsión libre. par de fuerzas aplicado en perpendicular

Más detalles

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10

TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.

Más detalles

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS

T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

El modelo de barras: cálculo de esfuerzos

El modelo de barras: cálculo de esfuerzos Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras

Más detalles

Resolución de estructuras con el Método de Flexibilidades

Resolución de estructuras con el Método de Flexibilidades Resolución de estructuras con el Método de Flexibilidades pellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica

Más detalles

mol_ibj^p= ab=bu^jbk=

mol_ibj^p= ab=bu^jbk= qblof^=ab=bpqor`qro^p= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk= = `ìêëç=ommulmv= = = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw= = iìáë=_~ μå=_ä òèìéò=e`lif= p~äî~ççê=bëíéîé=séêç =E^plF moþildl= = La

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 14.1.- Se considera un soporte formado por un perfil de acero A-42 IPN 400 apoyado-empotrado, de longitud L = 5 m. Sabiendo

Más detalles

Método de las Fuerzas: Estructura hiperestática con tensor

Método de las Fuerzas: Estructura hiperestática con tensor Método de las Fuerzas: Estructura hiperestática con tensor Determinar los esfuerzos de M Q y N para la siguiente estructura, aplicando el método de las fuerzas. Datos: P = 2 tn q = tn m Ω t = 6 cm 2 E

Más detalles

Estructuras de acero: Problemas Pilares

Estructuras de acero: Problemas Pilares Estructuras de acero: Problemas Pilares Dimensionar un pilar de 4 m de altura mediante un perfil, sabiendo que ha de soportar una carga axial de compresión F de 400 una carga horiontal P de 0, que estos

Más detalles

CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL

CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL Prof. Carlos Navarro Departamento de Mecánica de Medios Continuos y Teoría de Estructuras LAS CONDICIONES DE SUSTENTACIÓN DE UNA ESTRUCTURA LIBERACIÓN DE ESFUERZOS

Más detalles

L=1,85. Cuando el motor está parado, actúa como una carga puntual estática, de valor 95 Kg.

L=1,85. Cuando el motor está parado, actúa como una carga puntual estática, de valor 95 Kg. 34.- Una viga simplemente apoyada de 1,85 m de luz está formada por 2 UPN 120. La viga soporta en su punto medio un motor de las siguientes características: Masa total: 95 Kg. Masa giratoria de 20 Kg,

Más detalles

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por:

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por: PRÁCTICAS DE ELASTICIDAD AÑO ACADÉMICO 2012-201 Prob 1. El estado tensional de un punto de un sólido elástico se indica en la Figura donde las tensiones se epresan en MPa. Se pide: a. Calcular el vector

Más detalles

ESTRUCTURAS METALICAS MEMORIA RAIMUNDO VEGA CARREÑO

ESTRUCTURAS METALICAS MEMORIA RAIMUNDO VEGA CARREÑO ESTRUCTURAS METALICAS MEMORIA RAIMUNDO VEGA CARREÑO ESTRUCTURAS METÁLICAS 1. Geometría. Tenemos una nave industrial de 41 metros de largo por 20 metros de ancho. En este caso hemos optado debido al diseño,

Más detalles

Cátedra Estructuras 3 FAREZ LOZADA LANGER

Cátedra Estructuras 3 FAREZ LOZADA LANGER FACULTAD DE ARQUITECTURA Y URBANISMO UNLP Cátedra Estructuras 3 FAREZ LOZADA LANGER EJERCICIO RESUELTO: Viga Alivianada y viga Reticulada Plana CURSO 2016 Elaboración: NL Tutor: PL Nov 2016 Nivel I EJEMPLO

Más detalles

Herramientas libres para la enseñanza del cálculo de estructuras

Herramientas libres para la enseñanza del cálculo de estructuras Herramientas libres para la enseñanza del cálculo de estructuras Título: Herramientas libres para la enseñanza del cálculo de estructuras. Target: Ciclo Formativo de Grado Superior de Construcciones Metálicas.

Más detalles

La viga de la figura 1, de sección mixta (figura 2), tiene apoyos en A y B y está sometida a una sobrecarga uniforme. Se pide:

La viga de la figura 1, de sección mixta (figura 2), tiene apoyos en A y B y está sometida a una sobrecarga uniforme. Se pide: Resistencia de Materiales, Elasticidad y Plasticidad. Examen ordinario 7 de junio de 016 Apellidos... Nombre... Nº... Ejercicio 1 (Se recogerá a las 10:30 h) a viga de la figura 1, de sección mixta (figura

Más detalles

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.

Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto. Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION

Más detalles

ESTRUCTURAS RETICULADAS

ESTRUCTURAS RETICULADAS ESTRUTURS RETIULS Prof. arlos Navarro epartamento de ecánica de edios ontinuos y Teoría de Estructuras En el cálculo estructuras reticuladas suele despreciarse las deformaciones inducidas por los esfuerzos

Más detalles

Flexión Compuesta. Flexión Esviada.

Flexión Compuesta. Flexión Esviada. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

Departamento de Ingeniería Mecánica Estructuras y Construcciones Industriales 4 IIND. Examen Diciembre 2013

Departamento de Ingeniería Mecánica Estructuras y Construcciones Industriales 4 IIND. Examen Diciembre 2013 Departamento de Ingeniería Mecánica Examen Diciembre 13 Departamento de Ingeniería Mecánica Apellidos y Nombre: Examen Diciembre 13 EJERCICIO 1;.5 PUNTOS a viga de acero la figura EI=378 knm ; EA= 1638

Más detalles

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA?

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA? DEFINICION DE FUERZA AXIAL. Cuando suponemos las fuerzas internas uniformemente distribuidas, se sigue de la estática elemental que la resultante P de las fuerzas internas debe estar aplicadas en el centroide

Más detalles

ÍNDICE I TEORÍA DE LA ELASTICIDAD

ÍNDICE I TEORÍA DE LA ELASTICIDAD TÍTULO DE CAPÍTULO ÍNDICE Prólogo................................................................................... 17 Notaciones y símbolos................................................................

Más detalles

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-

T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

LÍNEAS DE INFLUENCIA. Introducción. Definición de Líneas de Influencia.

LÍNEAS DE INFLUENCIA. Introducción. Definición de Líneas de Influencia. LÍNES DE INFLUENCI Introducción En general los alumnos hasta el momento han estudiado estructuras cuyas cargas actuantes tienen puntos de aplicación fijos o dicho de otro modo son cargas estacionarias.

Más detalles

CAPÍTULO VIII ESFUERZO Y DEFORMACIÓN

CAPÍTULO VIII ESFUERZO Y DEFORMACIÓN CÍTUO VIII ESUERZO Y DEORMCIÓN 8.1. Esfuerzo l aplicar un par de fuerzas a un sólido de área, es posible definir el esfuerzo ingenieril i como: i que se expresa en: Ma, kg/mm, kg/cm, N/m, lbf/in f igura

Más detalles

Ejercicios de repaso

Ejercicios de repaso Ejercicios de repaso Ejercicio 0.1 a) Hallar la resultante del sistema de fuerzas de la figura. (Indicar valor y recta de aplicación) b) Sustituir el sistema dado por dos fuerzas cuyas rectas de acción

Más detalles

E.T.S. Ingenieros de Caminos, Canales y Puertos

E.T.S. Ingenieros de Caminos, Canales y Puertos E.T.S. Ingenieros de aminos, anales y Puertos Universidad de Granada ONVOATORIA JUNIO TEORÍA DE ESTRUTURAS 1 JULIO 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

5.3. Qué se debe saber al terminar este tema. 2. Ensamblar la matriz de rigidez global de una estructura

5.3. Qué se debe saber al terminar este tema. 2. Ensamblar la matriz de rigidez global de una estructura Capítulo 5 Método matricial 5.1. Contenido El concepto de rigidez. Matriz de rigidez de una viga. Método directo de la rigidez. Vector de cargas. Sistemas de coordenadas. Transformación de sistemas de

Más detalles

TEMA 4: ESFUERZOS Y SOLICITACIONES

TEMA 4: ESFUERZOS Y SOLICITACIONES TEMA 4: ESFUERZOS Y SOLICITACIONES ESTRUCTURAS 1 ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ JAVIER LOZANO MOHEDANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos,

Más detalles

Sistemas hiperestáticos

Sistemas hiperestáticos Lección 14 Sistemas hiperestáticos Contenidos 14.1. Método de las fuerzas para el cálculo de sistemas hiperestáticos............................. 180 14.2. Sistemas hiperestáticos sometidos a flexión........

Más detalles

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa.

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa. DINÁMICA La Dinámica es la parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos. Un cuerpo modifica

Más detalles

MEMORIA ESTRUCTURAS METÁLICAS

MEMORIA ESTRUCTURAS METÁLICAS EORIA ESTRUCTURAS ETÁLICAS Javier Sansó Suárez Ana Sánchez Gonzálvez Ingeniería tec. Industrial ecánica DESCRIPCIÓN amos a realizar el cálculo de una estructura metálica de 913 m2 de las siguientes dimensiones:

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

Sistema Estructural de Masa Activa

Sistema Estructural de Masa Activa Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

PROBLEMA 1 (5 puntos)

PROBLEMA 1 (5 puntos) RESISTENI E TERILES EXEN INL / PRUE E EVLUIÓN ONTINU URSO 06-7 -0-07 PROLE (5 puntos) echa de publicación de la preacta: de enero de 07 echa de revisión del examen: 6 de febrero de 07 a las 7:00 La estructura

Más detalles

Tema 6: FLEXIÓN: DEFORMACIONES

Tema 6: FLEXIÓN: DEFORMACIONES Tema 6: Fleión: Deformaciones Tema 6: FLEXÓN: DEFORCONES + Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 1 Tema 6: Fleión: Deformaciones 6.1.- NTRODUCCÓN Las deformaciones ha que limitarlas

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 10.- SOLUCIONES CONSTRUCTIVAS EN CONSTRUCCIONES METALICAS Esta unidad de trabajo la vamos a desarrollar desde un punto de vista

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles