ESTRUCTURAS RETICULADAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURAS RETICULADAS"

Transcripción

1 ESTRUTURS RETIULS Prof. arlos Navarro epartamento de ecánica de edios ontinuos y Teoría de Estructuras

2 En el cálculo estructuras reticuladas suele despreciarse las deformaciones inducidas por los esfuerzos axiles y cortantes. espreciar el primer tipo de esfuerzo equivale a decir que las barras de la estructura ni se acortan ni se alargan. irectriz sin deformar irectriz deformada

3 ONEPTO E NUO EN UN ESTRUTUR FOR POR RRS

4 ESTRUTURS RETIULS INTRSLIONLES

5 ONEPTO E ESTRUTUR INTRSLIONL Los nudos no se desplazan, pero las secciones correspondientes sí giran δ δ P

6 P P

7 LULO E ESTRUTURS INTRSLIONLES a) VIGS ONTINUS q P E F G R R R R R E Viga

8

9

10

11 P q G E F R R R R R E P 4E E F G Ecuaciones: Incógnitas:,, y 4 E ( antioario) ( antioario) ( antioario) E ( antioario) ( antioario) ( antioario)

12 4 4 Viga

13 E E E R R R R R R R R R R R P q R R R R R E E F G P E G F 4E

14 P ) ( ) ( antioario antioario l b l Pab l antiorario l ql antiorario 6 ) ( ) ( 4 ) ( + 4 ) ( 6 l b l Pab ql + + q l l a b P EJEPLO:

15 ql/ ql/ /l /l P Pb/l Pa/l /l /l R R R ql l ql + l Pa l l + Pb l + l

16 b) SPÓRTIOS l + l ( orario) ( orario) ( orario) 4 l ( orario) ( l) ( l) l 5 5

17 c) PÓRTIOS q l X Y ( orario) ( orario) ( orario) l ( orario) l ql l 4 l 6 Y ql ql 0 X ql 0

18 ql/ ql/0 ql/0 ql/ ql /0 ql/0 ql/

19 ESTRUTURS INTRSLIONLES ON ROTULS L/4 L/4 P0 kn L/8 E m m m L P P L L L L 0 kn/m 0 kn 50kN.m E G F 0 kn 6 m m m m m m m m

20 arra arra P P Q Q Q Q Q +Q P

21 P d Pd P

22 Q Q Q Q m L m L m P P0 kn m m m Incógnitas: reacción vertical en reacción vertical en reacción vertical en momento en el empotramiento Ecuaciones de la estática: () Suma de fuerzas verticales nula () Suma de momentos en un punto igual a cero () omentos en la rótula de una de las partes Igual a cero 4 PROLE HIPERESTÁTIO E GRO Ecuación adicional: fleca en igual a fleca en

23 P P L L L L Incógnitas: reacción vertical en reacción vertical en momento en el empotramiento momento en el empotramiento 4 P PL Q Q Q Q Ecuaciones de la estática: () Suma de fuerzas verticales nula () Suma de momentos en un punto igual a cero () omentos en la rótula de una de las partes Igual a cero PROLE HIPERESTÁTIO E GRO Ecuación adicional: fleca en igual a fleca en

24 L L/4 L/4 Incógnitas: L/8 E reacción vertical en reacción orizontal en reacción vertical en reacción orizontal en momento en el empotramiento momento en el empotramiento N Q Q N Q NQ N 6 Ecuaciones de la estática: () Suma de fuerzas verticales nula () Suma de fuerzas orizontales nula () Suma de momentos en un punto igual a cero () omentos en una de las rótulas, de una de las partes de la estructura, igual a cero () omentos en otra de las rótulas, de una de las partes de la estructura, igual a cero PROLE HIPERESTÁTIO E GRO Ecuación adicional: desplazamiento orizontal de nulo 5

25 ESTRUTURS RETIULS TRSLIONLES

26 Veamos con un ejemplo la filosofía que debemos utilizar para calcular estructuras traslacionales. a a * * F F ESTRUTUR REL ESTRUTUR EFOR

27 F Sean y los momentos flectores que aparecen en las secciones en contacto con los nudos ESTRUTUR REL

28 Si prescindimos de todas las cargas que actúan y suponemos que las barras estuviesen conectadas mediante articulaciones (rótulas) F

29 La estructura inicial se a convertido en un mecanismo con un gdl * * El movimiento de este mecanismo viene determinado por un sólo parámetro, como es el desplazamiento **

30 El valor de este parámetro (* ó *) no es conocido a priori, pero si lo supusiéramos conocido (e idéntico al que se produce en la estructura real a ) tendríamos perfectamente determinados los desplazamientos de los nudos de la estructura. a a * * Si, aora, una vez que el mecanismo se a movido de manera que el nudo (y el ) ocupa la posición final que ocuparía en el caso de que estuviésemos considerando la estructura real, no estaríamos añadiendo nuevas coacciones al sistema porque ya se abía movido

31 Pero, claro, en el caso del mecanismo, las secciones en contacto con la rótula que exista en un nudo giran diferente, cuando en la estructura real, las secciones de dos barras coincidentes en un nudo, tendrían que girar lo mismo. Si, aora, colocáramos sobre el mecanismo una vez movido, las cargas que actúan sobre la estructura y, en las secciones en contacto con las rótulas los momentos flectores que, en la realidad, actúan sobre ellas ( en, en * y en *):

32 a a * * F Obtendríamos la estructura deformada!

33 Veamos un ejemplo: educir las leyes de momentos flectores y esfuerzos cortantesy axiles y los movimientos e las secciones y en la estructura de la figura. La sección de las vigas es rectangular de 0 cm de anco y 40 cm de canto y el material (ormigón) tiene un módulo de elasticidad de 0 Gpa. q0 kn/m 8 m 4 m F80 kn E 6 m 6 m m

34 q q0 kn/m q q q 8 m 4 m F80 kn E 6 m 6 m m

35 Podemos simplificar más aún la estructura? q0 kn/m q q0 kn/m q q q F80 kn F80 kn E

36 a * q0 kn/m a q * F80 kn q * a * q0 kn/m q q * F80 kn ( o) ( antiorario) antiorari * *

37 * q0 kn/m q * q a * ( antiorario) * * F80 kn ( antiorario) a a 8 460

38 q0 kn/m q F80 kn 80 kn q E V E Tomando momentos en de las fuerzas y momentos que actúan sobre la barra (sentido antiorario positivo): kn m 0 V 4 + a , 0, kn m a 0, 488 m

39 Ley de momentos flectores q0 kn/m 40 kn.m 0 kn.m F80 kn 0 kn.m E

40 Ley de esfuerzos cortantes q0 kn/m 40 kn 80 kn F80 kn 0 kn E

41 Ley de esfuerzos axiles q0 kn/m F80 kn 60 kn E

42 ovimientos de la sección : El desplazamiento orizontal será 0,488 m, el vertical nulo y el giro: a * , * 6 8 ( antiorario) + 0, rad La sección gira en sentido orario 0,04 rad F80 kn

43 ovimientos de la sección : El desplazamiento orizontal será 0,488 m. El desplazamiento vertical será suma de: a) El obtenido si la sección del dintel no girara: 4 4 q L 0 v, mm b) El de sólido rígido motivado por en giro de la sección del dintel: v , 0 0, 065 m ( orario) , 0 rad v 0, 065 0, 005 0, 05 m El giro de será (suma del de la sección más el causado por la sobrecarga que actúa sobre la ménsula: ( antiorario) 0, 0 0, rad

44 En el pórtico de la figura, todas las barras tienen la misma rigidez kn.m. uando actúan las cargas indicadas, determinar: a) Leyes de esfuerzos en la estructura b) esplazamiento orizontal en P 60 kn P 40 kn q0 kn/m 5 m E,5 m,5 m,5 m,5 m

45 Estructura con un grado de traslacionalidad a a * * a * E

46 a a * * * a E

47 P P * * * * a a * L ( antiorario) + L ( antiorario) ql a 4 L PL + 6 L 6 Ec. * q ( antiorari ( antiorari P L o ) 6 L o ) L P L L 6 Ec. L 6 E L P L ( antiorario) + 6 L a ( antiorario) L L 6 Ec.

48 L PL L antiorario L a ql L antiorario 6 6 ) ( 4 ) ( + + Ec. L P L L o antiorari L L PL o antiorari ) ( ) ( Ec. L a L antiorario L P L L antiorario + ) ( 6 6 ) ( Ec. ecuaciones con cuatro incógnitas! a

49 La ecuación que falta la obtenemos aplicando las ecuaciones de la estática! a * a * q E H V H E V E Suma de momentos en * igual a cero: Suma de momentos en * igual a cero: Junto con: ql + H L 0 + H EL 0 ql H E H ql + ql + 0 Ec. 4

50 Resolviendo el sistema de las cuatro ecuaciones con las 4 incógnitas: a 9,75 kn m,5 kn m 56,5 kn m 0,06 m

51 Ley de momentos flectores 4,75 kn.m,5 kn.m P P 56,5 kn.m q 06,5 kn.m E

52 Ley de esfuerzos cortantes 5 kn P P,5 kn 5 kn q 55 kn 45 kn,5 kn 68,75 kn E

53 Ley de esfuerzos axiles,5 kn P P 45 kn q 5 kn E

54 ESTRUTURS RETIULS TIRNTS

55 P / E t t L

56 P P F F F F.L/ E t t F

57 P F F F F.L/ E t t F ESTO REL ESTO FITIIO Teorema de reciprocidad: r r r F u + P u u ficticio ficticio real

58 r r r F u + P u u ficticio ficticio real r u real r u real r u real F L / E t t r u real F L / E t t r F u F ficticio r + P u r P u r u ficticio ficticio ficticio L E t t F E t L t Sólo es preciso resolver el estado ficticio para obtener la fuerza en el tirante!

59 ESTO FITIIO L L u ficticio r ( ) L L L L L v ficticio + + ( ) ( ) L L L L ficticio ficticio + +

60 Pero como gira: r u ficticio ESTO FITIIO ( L ) ficticio + r u ficticio 6 6 L ( L + ) +

61 t t ficticio ficticio E L u u P F r r + L u ficticio r t t E L L L P F L u ficticio r F>0, luego el tirante trabaja a tracción, como abíamos supuesto

CAPÍTULO 14 ESTRUCTURAS INTRASLACIONALES

CAPÍTULO 14 ESTRUCTURAS INTRASLACIONALES ÍTULO 4 ESTUTUS INTSLIONLES En esistencia de ateriales suele despreciarse las deformación inducida por los esfuerzos axiles y cortantes en estructuras formadas por barras Despreciar el primer tipo de esfuerzo

Más detalles

6. ESTRUCTURAS RETICULADAS PLANAS.

6. ESTRUCTURAS RETICULADAS PLANAS. 6. ESTRUTURS RETIULS LNS. Se califica a una estructura plana de barras de reticulada cuando por estar las barras que confluyen en un mismo nodo empotradas entre sí formando un ángulo constructivo invariable,

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo 1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************ .- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Clasificación estática de las estructuras

Clasificación estática de las estructuras lasificación estática de las estructuras pellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) epartamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica Superior de rquitectura

Más detalles

CARGAS NO APLICADAS EN NUDOS

CARGAS NO APLICADAS EN NUDOS Capítulo 9 Cargas no aplicadas en los nudos 9.1- Cargas en el interior de un tramo Hasta ahora sólo se consideraron casos en que las cargas eteriores están aplicadas sobre los nudos; en el caso que actúen

Más detalles

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las

Más detalles

ESTRUCTURAS ARTICULADAS

ESTRUCTURAS ARTICULADAS ESTRUTURAS ARTIULADAS Prof. arlos Navarro Departamento de Mecánica de Medios ontinuos y Teoría de Estructuras uando necesitemos salvar luces importantes (> 10 ó 15 m), o necesitamos vigas de gran canto,

Más detalles

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas

Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Apellidos, nombre asset Salom, Luisa (lbasset@mes.upv.es) Departamento Centro Mecánica de Medios

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

ANALISIS DE ESTRUCTURAS. Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas.

ANALISIS DE ESTRUCTURAS. Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas. ANALISIS DE ESTRUCTURAS Def: Sistema de miembros unidos entre si y construido para soportar con seguridad las cargas a ella aplicadas. TIPOS DE ESTRUCTURAS Armaduras: estructuras estacionaria concebidas

Más detalles

Pórticos espaciales. J. T. Celigüeta

Pórticos espaciales. J. T. Celigüeta Pórticos espaciales J. T. Celigüeta Pórtico espacial. Definición Estructura reticular. Barras rectas de sección despreciable. Cualquier orientación en el espacio. Barras unidas rígidamente en ambos extremos.

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO

EQUILIBRIO DE UN CUERPO RÍGIDO EQUILIIO DE UN CUEPO ÍGIDO Capítulo III 3.1 CONCEPOS PEVIOS 1. omento de una fuerza respecto a un punto ( O ).- Cantidad vectorial que mide la rotación (giro) o tendencia a la rotación producida por una

Más detalles

Ejercicio nº 4 + 5 : El pórtico simple desplazable. 3 t/m 2 I. 8 m

Ejercicio nº 4 + 5 : El pórtico simple desplazable. 3 t/m 2 I. 8 m Ejercicio nº 4 + 5 : El pórtico simple desplazable t t/m 4 m ecuaciones generales de equilibrio y 6 incógnitas Grado Hiperestático (método de las fuerzas) El problema se puede afrontar en primera aproximación,

Más detalles

EI, A EI, A 2EI, A. 4.5 m. En primer lugar, definimos los nudos y los grados de libertad de la estructura.

EI, A EI, A 2EI, A. 4.5 m. En primer lugar, definimos los nudos y los grados de libertad de la estructura. 1. TEMA 5. MÉTODO MATRICIAL 1.1 Ejercicios resueltos 1. En la cubierta de la figura, determiar el valor de los momentos en los extremos de las barras, así como el momento máximo en ellas. (E=.1 1 11 N/m,

Más detalles

Condiciones de Equilibrio:

Condiciones de Equilibrio: UNIVERSIDD TECNOLÓGIC NCIONL Facultad Regional Rosario UDB Física Cátedra FÍSIC I Capitulo Nº 11: Condiciones de Equilibrio: EQUILIBRIO Y ELSTICIDD Primera condición de equilibrio: Una partícula está en

Más detalles

ESTRUCTURAS I. EJERCICIOS SOBRE DIAGRAMAS DE ESFUERZOS

ESTRUCTURAS I. EJERCICIOS SOBRE DIAGRAMAS DE ESFUERZOS ETS de ARQUITECTURA de MADRID, UNIVERSIDAD POLITÉCNICA DE MADRID ESTRUCTURAS I. EJERCICIOS SOBRE DIAGRAMAS DE ESFUERZOS Planteamiento: JOSÉ L. FERNÁNDEZ CABO Desarrollo: MARÍA LUCÍA CERMEÑO, RUBÉN CONDE

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

TEMA 6 ESTÁTICA. Bibliografía recomendada:

TEMA 6 ESTÁTICA. Bibliografía recomendada: TEMA 6 ESTÁTICA 0 > Introducción. 1 > Equilibrio. Tipos de equilibrio. 2 > Principios fundamentales y ecuaciones cardinales de la Estática. 3 > Estática de sistemas planos. 3.1 > Reacciones en apoyos y

Más detalles

2.13.- MÉTODO DE CROSS: PARTICULARIDADES %)

2.13.- MÉTODO DE CROSS: PARTICULARIDADES %) 2.13.- MÉTODO DE CROSS: PARTICULARIDADES %) & TEORÍA DE ARCOS Y MÉTODO DE CROSS APLICADOS AL CÁLCULO DE ESTRUCTURAS 2.14.- MÉTODO DE CROSS: PARTICULARIDADES &! &" TEORÍA DE ARCOS Y MÉTODO DE CROSS APLICADOS

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

Estructuras de acero Pandeo lateral de vigas

Estructuras de acero Pandeo lateral de vigas Estructuras de acero Pandeo lateral de vigas. oncepto. Al someter una chapa delgada a flexión recta en el plano de maor rigidez, antes de colapsar en la dirección de carga lo hace en la transversal por

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

Resistencia de Materiales

Resistencia de Materiales Guía orientativa de Planificación Semanal 2016-2017 Teoría y ejercicios propuestos Resistencia de Materiales 2º Curso - Grados de Ingenierías Industriales Universidad de Valladolid El presente documento

Más detalles

ESTATICA DE PARTICULAS Y CUERPOS RIGIDOS. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

ESTATICA DE PARTICULAS Y CUERPOS RIGIDOS. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física ESTTI E PRTIULS Y UERPOS RIGIOS ERNRO RENS GVIRI Universidad de ntioquia Instituto de Física 2016 Índice general 6. Estática de partículas y cuerpos rígidos 1 6.1. Introducción..........................................

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

N brd = χ A f yd. siendo:

N brd = χ A f yd. siendo: Documento Básico - C E R O a) debidos al peso propio de las barras de longitudes inferiores a 6 m; b) debidos al viento en las barras de vigas trianguladas; c) debidos a la excentricidad en las barras

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

MECANICA I Carácter: Obligatoria

MECANICA I Carácter: Obligatoria UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA I Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DE CREDITO HT

Más detalles

CÁLCULOS EN ACERO Y FÁBRICA

CÁLCULOS EN ACERO Y FÁBRICA CÁLCULOS EN ACERO Y FÁBRICA Con la entrada del Código Técnico la edificación sufrió un cambio en todos sus niveles, proyecto, construcción y mantenimiento, obteniendo por tanto, todo un conjunto de variaciones

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

Dimensionado de vigas de acero solicitadas a flexión.

Dimensionado de vigas de acero solicitadas a flexión. Dimensionado de vigas de acero solicitadas a flexión. Apellidos nombre Arianna Guardiola Víllora (aguardio@mes.upv.es) Departamento Centro ecánica del edio Continuo Teoría de Estructuras Escuela Técnica

Más detalles

6 Hiperestáticas. Aprender a formular los sistemas de ecuaciones algebraicas que conducen a resolver un problema hiperestático

6 Hiperestáticas. Aprender a formular los sistemas de ecuaciones algebraicas que conducen a resolver un problema hiperestático 6 Hiperestáticas 6.0 Objetivos y contenido Objetivos Contenido Generales: Entender qué es el hiperestatismo, cómo evaluar su grado, cuáles son sus manifestaciones o consecuencias, sus ventajas y sus inconvenientes.

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

T2.2 Estructuras de barras

T2.2 Estructuras de barras l comportamiento lineal de una estructura es limitado Las causas del comportamiento no lineal son: fectos de segundo orden o no linealidades geométricas: P y Pδ aterial no lineal: plastificación Comportamiento

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

Refuerzo de vigas de hormigón mediante recrecido de hormigón armado en un ático de vivienda

Refuerzo de vigas de hormigón mediante recrecido de hormigón armado en un ático de vivienda Refuerzo de vigas de hormigón mediante recrecido de hormigón armado en un ático de vivienda Titulación: Grado de Ingeniería de Edificación Alumno: Veselina Sabinova Kenalieva Director: Inmaculada Tort

Más detalles

SECCIONES COMPUESTAS

SECCIONES COMPUESTAS SCCONS COMPUSTS. Secciones compuestas por distintos materiales Hay casos en la práctica en los que se emplean vigas formadas por dos o más materiales diferentes. Un ejemplo de esto puede ser el de una

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Planteamiento del problema CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN 3.2 SUPERESTRUCTURA FICTICIA

Planteamiento del problema CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN 3.2 SUPERESTRUCTURA FICTICIA CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN En este capítulo se define el problema principal mediante el cual será posible aplicar y desarrollar las diversas teorías y métodos de cálculo señalados

Más detalles

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Trabajo Práctico Cálculo de Vigas. 1 Introducción 1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Como se explicó

Más detalles

Estructuras de acero Métodos de análisis 1

Estructuras de acero Métodos de análisis 1 Estructuras de acero Métodos de análisis 1 1. Introducción La verificación de la resistencia de las secciones, la estabilidad de las barras de la estructura o de los perfiles que las componen, y quizá

Más detalles

Memoria de cálculo de estructura de madera para soporte

Memoria de cálculo de estructura de madera para soporte Manual de señalización y elementos auxiliares de los Caminos Naturales 1 Introducción A-3 2 Normas A-3 3 Materiales A-3 3.1 Madera A-3 3.2 Hormigón A-3 4 Modelo de cálculo A-4 5 Cálculos con ordenador

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real VIGAS EN CELOSÍA.

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real VIGAS EN CELOSÍA. VIGAS EN CELOSÍA. 1. Introducción. Cuando necesitamos salvar luces importantes (a partir de 10-15 m por ejemplo), o necesitamos tener vigas de cantos importantes, puede resultar más económico utilizar

Más detalles

Arcos planos. J. T. Celigüeta

Arcos planos. J. T. Celigüeta Arcos planos J. T. Celigüeta Arcos planos. Definición Directriz curva plana. Sección transversal despreciable. Curvatura pequeña: radio mucho mayor que el canto R>>h Varias condiciones de apoyo en los

Más detalles

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO

UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO. Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE ARQUITECTURA Y URBANISMO DNC GE Cátedra: ESTRUCTURAS NIVEL 3 Taller: VERTICAL III DELALOYE - NICO - CLIVIO : Viga Vierendeel Curso 2008 Elaboró: xx Revisión:

Más detalles

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA Fuerzas conservativas El trabajo realizado por las fuerzas conservativas solo depende de la posición inicial y final del cuerpo

Más detalles

ARRIOSTRAMIENTOS - 1 -

ARRIOSTRAMIENTOS - 1 - 1. DE EDIFICIOS INDUSTRIALES Los arriostramientos se consideran habitualmente elementos secundarios en las estructuras, sin embargo conviene no prescindir de ellos para que el comportamiento del conjunto

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

PUENTES II PRÁCTICA Nº6. PUENTES COLGANTES

PUENTES II PRÁCTICA Nº6. PUENTES COLGANTES PRÁCTICA Nº6. PUENTES COLGANTES Enunciado Se pretende averiguar la geometría de los cables principales de Storebælt durante las fases de construcción y en estado de servicio sabiendo que para peso propio

Más detalles

4.- CONCEPTOS GENERALES

4.- CONCEPTOS GENERALES 4.- CONCETOS GENERLES 1 2 4.1 RINCIIO DE SUEROSICIÓN Dos de las hipótesis de validez de las técnicas y algoritmos que se aplican en análisis estructural son las siguientes: los movimientos de la estructura

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

FISICA II PARA INGENIEROS

FISICA II PARA INGENIEROS FISICA II PARA INGENIEROS INTRODUCCION INGENIERIA La Ingeniería es el conjunto de conocimientos y técnicas científicas aplicadas a la creación, perfeccionamiento e implementación de estructuras (tanto

Más detalles

EQUILIBRIO DE CUERPOS RIGIDOS VINCULOS APOYOS - CONEXIONES

EQUILIBRIO DE CUERPOS RIGIDOS VINCULOS APOYOS - CONEXIONES CURSO ESTRUCTURAS I EQUILIBRIO DE CUERPOS RIGIDOS VINCULOS APOYOS - CONEXIONES Profesor Ayudante : Jing Chang Lou : Cristián Muñoz Díaz EQUILIBRIO DE CUERPOS RIGIDOS CUERPO RIGIDO En mecánica elemental

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores:

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores: TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN Curso 2010/11 Elaborados por los profesores: Luis Bañón Blázquez (PCO) Fco. Borja Varona Moya (PCO) Salvador Esteve Verdú (ASO) PRÓLOGO La

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

RESOLUCION DE ESTRUCTURAS POR EL METODO DE LAS DEFORMACIONES

RESOLUCION DE ESTRUCTURAS POR EL METODO DE LAS DEFORMACIONES Facultad de Ingeniería Universidad Nacional de La Plata ESTRUCTURS III RESOLUCION DE ESTRUCTURS POR EL METODO DE LS DEFORMCIONES utor: Ing. Juan P. Durruty RESOLUCION DE ESTRUCTURS POR EL METODO DE LS

Más detalles

APUNTES CURSO DE APEOS II

APUNTES CURSO DE APEOS II APUNTES CURSO DE APEOS II FORMADOR CÉSAR CANO ALMON Ingeniero de Edificación Barcelona, 15 de marzo de 2013 ÍNDICE CONTENIDO DEL CURSO 1. INTRODUCCIÓN 2. ANÁLISIS DEL MODELO DE CÁLCULO ESTRUCTURAL 3. COMPROBACIONES

Más detalles

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES

Más detalles

Guía software Ftool para cálculo de estructuras. de barras en 2D con cargas en el plano

Guía software Ftool para cálculo de estructuras. de barras en 2D con cargas en el plano Guía software Ftool para cálculo de estructuras de barras en 2D con cargas en el plano Introducción La presente guía tiene por objetivo indicar los pasos a seguir para analizar estructuras de dos dimensiones,

Más detalles

Sólo cuerdas dinámicas

Sólo cuerdas dinámicas Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética

Más detalles

Ficha de Patología de la Edificación

Ficha de Patología de la Edificación 35 1.- GENERALIDADES INTRODUCCIÓN La solicitación flectora (momentos flectores M y o M z ) se produce por las fuerzas perpendiculares a algún eje contenido en la sección y que no lo corten y momentos localizados

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Estática

Pontificia Universidad Católica de Chile Facultad de Física. Estática Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

Análisis de una armadura

Análisis de una armadura Análisis de una armadura Estática M1003 Grupo: 2 Miguel Ángel Ríos Integrantes: Gabriela Gutiérrez Bernal A01373859 Ricardo Medina Moreno A01373521 Luis Bernardo Lazcano Fernández A01373312 Juan Carlos

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo nueve: Pandeo DOS 6. Método omega. General. Este método simplificado utiliza un coeficiente de seguridad establecido en tablas y determina las cargas y tensiones

Más detalles

Escuela Politécnica de Cuenca Unidad Temática 12 Arquitectura Técnica Lección 42 BLOQUE TEMÁTICO 3 UNIDAD TEMÁTICA 12 LECCION 42 PORTICOS METÁLICOS

Escuela Politécnica de Cuenca Unidad Temática 12 Arquitectura Técnica Lección 42 BLOQUE TEMÁTICO 3 UNIDAD TEMÁTICA 12 LECCION 42 PORTICOS METÁLICOS BLOQUE TEMÁTICO 3 UNIDAD TEMÁTICA 12 LECCION 42 PORTICOS METÁLICOS 1 INDICE 12.1 CONCEPTO Y FUNCION 12.1.1. Convenio de signos 12.1.2. Cálculo 12.1.3. Secciones utilizadas y Empalmes 12.2 ORGANIZACIÓN

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero.

EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero. EQUILIBRIO. Un cuerpo está en equilibrio cuando se encuentra en reposo o tiene un movimiento uniforme. Analíticamente se expresa cuando la resultante de las fuerzas que actúan sobre un cuerpo es nula,

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

REV.1 Calidad Medio Ambiente Prevención de Riesgos Laborales Seguridad Industrial Sector de la Electricidad y Telecomunicaciones Soldadura y Tecnologías de Unión Fabricación y Gestión de la Producción

Más detalles

8.- MÉTODOS GENERALES: ANÁLISIS MATRICIAL

8.- MÉTODOS GENERALES: ANÁLISIS MATRICIAL 8.- MÉTODOS GENERALES: ANÁLISIS MATRICIAL 1 8.1 FLEXIBILIDAD Y RIGIDEZ 8.1.1 Concepto de flexibilidad.- a) La ley de Hooke aplicada a una barra de longitud L y sección A que, sometida a un esfuerzo axil

Más detalles

ESTRUCTURAS INTRODUCCIÓN

ESTRUCTURAS INTRODUCCIÓN INTRODUCCIÓN El término estructura puede definirse como armazón, distribución u orden de las diferentes partes de un conjunto. Puede referirse, por ejemplo, a las partes de un ser vivo, al modo en que

Más detalles

Grado en Ingeniería del Automóvil Curso 2016/2017. IME111 Cálculo de estructuras

Grado en Ingeniería del Automóvil Curso 2016/2017. IME111 Cálculo de estructuras Grado en Ingeniería del Automóvil Curso 2016/2017 IME111 Cálculo de estructuras Asignatura: Cálculo de estructuras Carácter: Básica Idioma: Español Modalidad: Presencial Créditos: 6 Curso: Cuarto Semestre:

Más detalles

Módulo 2. Deflexiones en vigas

Módulo 2. Deflexiones en vigas Módulo 2 Deflexiones en vigas Introducción Todos los cuerpos reales se deforman bajo la aplicación de una carga, elástica o plásticamente. Un cuerpo puede ser tan insensible a la deformación que el supuesto

Más detalles

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014 FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación

Más detalles

FILPALCOS ESTRUCTURA PORTANTE CUBIERTA 15 METROS CON AREAS DE SERVICIO

FILPALCOS ESTRUCTURA PORTANTE CUBIERTA 15 METROS CON AREAS DE SERVICIO PETICIONARIO TÉCNICO ESTRUCTURA PORTANTE CUBIERTA 15 METROS CON AREAS AUTOR ASOCIACIÓN DE INVESTIGACIÓN METALÚRGICA DEL NOROESTE Área de Ingeniería TÉCNICO ESTRUCTURA INDICE 1.- ANTECEDENTES y OBJETO...2

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT apítulo 5 Estática de los sistemas de sólidos rígidos 5.1. Introducción. Sistemas de sólidos rígidos Un sistema de sólidos rígidos es un conjunto de sólidos rígidos que interaccionan entre sí y con el

Más detalles

Cinemática del sólido rígido, ejercicios comentados

Cinemática del sólido rígido, ejercicios comentados Ejercicio 10, pag.1 Planteamiento La barra CDE gira con una velocidad angular y acelera con, si la deslizadera desciende verticalmente a una velocidad constante de 0,72m/s. Se pide: a) velocidades y aceleraciones

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

ANÁLISIS MATRICIAL. Rigidez: Fuerza o momento necesario para producir un desplazamiento o rotación unitaria en la dirección de la fuerza aplicada.

ANÁLISIS MATRICIAL. Rigidez: Fuerza o momento necesario para producir un desplazamiento o rotación unitaria en la dirección de la fuerza aplicada. ANÁLISIS MATRICIAL MÉTODO DE LA RIGIDEZ DIRECTA Consiste en describir matemáticamente una estructura continua, por medio de un modelo matemático discreto de múltiples ecuaciones simultaneas, concentrando

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9

Ejemplo nueve. Introducción a las Estructuras - Jorge Bernal. Se pide: Secuencia del estudio: Diseño general. Libro: Capítulo doce - Ejemplo 9 Archivo: ie cap 12 ejem 09 Ejemplo nueve. Se pide: Dimensionar la estructura soporte del tinglado de la figura. Se analizan las solicitaciones actuantes en las correas, cabriadas, vigas y columnas, para

Más detalles

MEMORIA ESTRUCTURAS METÁLICAS

MEMORIA ESTRUCTURAS METÁLICAS EORIA ESTRUCTURAS ETÁLICAS Javier Sansó Suárez Ana Sánchez Gonzálvez Ingeniería tec. Industrial ecánica DESCRIPCIÓN amos a realizar el cálculo de una estructura metálica de 913 m2 de las siguientes dimensiones:

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

(Sol. 5 kn m) (Sol. Ql)

(Sol. 5 kn m) (Sol. Ql) Serie de ejercicios de Estática FUERZA CORTANTE Y MOMENTO FLEXIONANTE 1. La viga de la figura tiene un peso despreciable como las del resto de esta serie y soporta la carga de 96 kg. Dibuje los diagramas

Más detalles

2. ARMADO DE LA VIGA A CORTANTE (CONSIDERE ESTRIBOS Ø 6mm). Comprobación a compresión oblícua ( Comprobación a tracción en el alma (

2. ARMADO DE LA VIGA A CORTANTE (CONSIDERE ESTRIBOS Ø 6mm). Comprobación a compresión oblícua ( Comprobación a tracción en el alma ( EJERCICIO DE CORTANTE Dada la viga: Viga: canto = 70 cm; Ancho = 35 cm Pilar: canto = 30 cm; Ancho = 30 cm Luz: 9 m...sometido A LAS CARGAS (ya mayoradas) QUE SE INDICAN EN EL GRAFICO ADJUNTO, (DESPRECIE

Más detalles

Estructuras Metálicas

Estructuras Metálicas Estructuras Metálicas I. Medios de unión II. Elementos compuestos III. Ejecución de nudos y apoyos IV. Estructuras reticulares (armaduras) V. Naves industriales Estructuras Metálicas I. Medios de unión

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles