Condiciones de Equilibrio:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Condiciones de Equilibrio:"

Transcripción

1 UNIVERSIDD TECNOLÓGIC NCIONL Facultad Regional Rosario UDB Física Cátedra FÍSIC I Capitulo Nº 11: Condiciones de Equilibrio: EQUILIBRIO Y ELSTICIDD Primera condición de equilibrio: Una partícula está en equilibrio -es decir, no tiene aceleración- en un marco de referencia inercial si la suma vectorial de todas las fuerzas que actúan sobre ella es cero. La expresión equivalente para un cuerpo extendido es que el centro de masa del cuerpo tiene aceleración cero cuando la resultante de todas las fuerzas externas que actúan sobre el cuerpo es cero, en términos de vectores y componentes: F=0 F x =0 F y =0 Segunda condición de equilibrio: Un cuerpo rígido en equilibrio no debe tener tendencia a comenzar a girar alrededor de ningún punto, por lo tanto la suma de los momentos debidos a todas las fuerzas externas que actúan sobre el cuerpo debe ser cero. =0 En este capítulo, aplicaremos las dos condiciones de equilibrio a situaciones en las que un cuerpo rígido está en reposo (sin traslación ni rotación). Se dice que tal cuerpo está en equilibrio estático. Sin embargo, las mismas condiciones son válidas para un cuerpo rígido en movimiento traslacional uniforme (sin rotación), como un avión que vuela con rapidez, dirección y altura constantes. Un cuerpo así está en equilibrio pero no estático. Para estar en equilibrio estático, un cuerpo en reposo debe satisfacer ambas condiciones del equilibrio: no tener la tendencia a acelerar ni empezar a girar. Ejemplos: a) Condiciones de equilibrio: Se cumple la Primera Condición: Fuerza total = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse. Se cumple la Segunda Condición: El Momento total alrededor del eje = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse. 1

2 Este cuerpo está en equilibrio Estático b) Condiciones de equilibrio: 2F NO se cumple la Primera Condición: Hay una fuerza neta hacia arriba, así que un cuerpo en reposo empezara a moverse hacia arriba. F r r/2 Se cumple la Segunda Condición: El Momento total alrededor del eje = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse. Este cuerpo tiene la tendencia a acelerar, pero no tiene una tendencia a empezar a girar. c) Condiciones de equilibrio: Se cumple la Primera Condición: Fuerza total = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse como un todo. No se cumple la Segunda Condición: Hay un Momento total en sentido horario alrededor del eje, así que un cuerpo en reposo no tiene la tendencia a empezar a girar en sentido horario. Este cuerpo no tiene la tendencia a acelerar, pero tiene tendencia a empezar a girar. Ejemplo Nº 1: Un tablero de 80 N que tiene una longitud de 12 m está apoyado en dos soportes, cada uno de los cuales dista 1,0 m del extremo del tablero. Se coloca un bloque de 300 N sobre el tablero a 3,0 m de un extremo, como se indica en la Figura 1. Hallar la fuerza ejercida por cada soporte sobre el tablero. = 0 80 N. 5,0 m N. 8,0 m - R B. 10 m = Nm Nm = R B. 10 m R B = 280N 3,0 m P = 80 N P C = 300 N 1,0 m 10 m 1,0 m Figura 1 B = 0-80 N. 5,0 m N. 2,0 m + R. 10 m = 0 R. 10 m = 400 Nm Nm R = 100 N Verificación FY = 0 R + R B - P - P C = N N - 80 N N = 0 2

3 Ejemplo Nº 2: Una tabla uniforme de longitud L = 6,0 m y masa M =90 kg descansa sobre dos caballetes separados entre sí por una distancia d = 2,0 m y equidistantes del centro (Figura 2). Un albañil trata de pararse a 0,80 m del extremo derecho de la tabla. Qué masa máxima puede tener el albañil para que la tabla no gire? 2,0 m 0,80 m El caso límite para que la tabla no gire es que la Reacción en el caballete de la izquierda sea nula. B = 0 m al. g. 1,2 m - M. g. 1,0 m = 0 m al. 1,2 m = M. 1,0 m m al = 90 kg. 1,0 m / 1,2 m m bail = 75 kg Ejemplo Nº 3: Un bloque de 500 g, suspendido de una varilla uniforme de 1,0 N de peso y 1,0 m de longitud. La varilla se cuelga del techo con una cuerda vertical en cada extremo como muestra la Figura 3, quedando horizontal. Calcula la tensión en las cuerdas y B. Siendo = 36,87 o y =53,13 o 6,0 m Figura 2 P al 2,0 m 2,0 m 1,2 m 0,80 m R P R B 0,20 0,60 m 0,20 C D B P V = 1,00 N P B = m. g = 4,9 N Fx = 0 C T D. cos - T C cos = 0 T D. 0,800 - T C. 0,600 = 0 T D = T C. 0,600/ 0,800 T D = 0,750.T C Fy = 0 T D. sen + T C. sen - P = 0 0,750.T C. 0,600 + T C. 0,800 = P 0,750.T C. 0,600 + T C. 0,800 = P 1,25.T C = 4,9 N T C = 3,92 N T Cy = T C. sen = 3,92 N. 0,600 = 2,352 N T D = 2,94 N T Dy = T D. sen = 2,94 N. 0,800 = 2,352 N P B D Figura 3 m= 50 g = 0 T Cy. 0,20 m + T Dy. 0,80 m + 1,0 N. 0,50 m - F B. 1,0 m = 0 2,352 N. 0,20 m + 2,352 N. 0,80 m + 1,0 N. 0,50 m = F B. 1,0 m 2,852 N. m = F B. 1,0 m F B = 2,852 N F = F B = 2,9 N 3

4 Elasticidad El salto BUNGEE utiliza una larga cuerda elástica que se estira hasta que llega a una longitud máxima que es proporcional al peso del saltador. La elasticidad de la cuerda determina la amplitud de las vibraciones resultantes. Si se excede el límite elástico de la cuerda, ésta se romperá. Un cuerpo elástico es aquel que regresa a su forma original después de una deformación. Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. Una colisión elástica no pierde energía. La deformación en la colisión se restaura por completo. En una colisión inelástica se pierde energía. La deformación puede ser permanente. Un resorte elástico Un resorte es un ejemplo de un cuerpo elástico que se puede deformar al estirarse. Una fuerza restauradora, F, actúa en la dirección opuesta al desplazamiento del cuerpo en oscilación. F = -k. x Ley de Hooke Cuando un resorte se estira, hay una fuerza restauradora que es proporcional al desplazamiento. La constante de resorte k es una propiedad del resorte dada por: K = F x La constante de resorte k es una medida de la elasticidad del resorte. Esfuerzo y deformación Esfuerzo: se refiere a la causa de una deformación. Deformación: se refiere al efecto. La fuerza descendente F causa el desplazamiento x. Por tanto: El esfuerzo es la fuerza. La deformación es la elongación. F = -k. x 4

5 Tipos de esfuerzos Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. Un esfuerzo de tracción ocurre cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Esfuerzo y deformación longitudinales Para alambres, varillas y barras, existe un esfuerzo longitudinal F/ que produce un cambio en longitud por unidad de longitud. En tales casos: Esfuerzo = F Deformación = L. L Ejemplo Nº 4: Un alambre de acero de 10,0 m de largo y 2,00 mm de diámetro se une al techo de un extremo y del otro se fija un de 200 N como puede observarse en la Figura 4. Cuál es el esfuerzo aplicado? El área del alambre: =.d 2 /4 = 3, m 2 2 Esfuerzo = F = 200 N = 6, Pa 3, m Figura 4 5

6 Ejemplo Nº 5: Un alambre de acero de 10 m se estira 3,08 mm debido a la carga de 200 N (Ver Figura 4) Cuál es la deformación longitudinal? Dado: L = 10 m; DL = 3,08 mm Deformación = L. = 0,00308 m L 10 m Deformación longitudinal = 3, El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar deformado permanentemente. Si el esfuerzo supera el límite elástico, la longitud final será mayor que los 2,0 m iniciales. Resistencia a la rotura La resistencia a la rotura es el esfuerzo máximo que un cuerpo puede experimentar sin romperse. Si el esfuerzo supera la resistencia a la rotura, la cuerda se rompe? Ejemplo Nº 6: El límite elástico del acero de la barra de la figuras es 2,48 x 10 8 Pa. Cuál es el peso máximo que puede soportar sin superar el límite elástico? (Ver Figura 4) Recuerde: = 3, m 2 Esfuerzo = F = 2, Pa F = (2, Pa) F = (2, Pa)(3, m 2 ) F = 0,78 KN Ejemplo Nº 7: La resistencia a la rotura para el acero es Pa. Cuál es el peso máximo que puede soportar sin romper el alambre? (Ver Figura 4) = 3,14 x 10-6 m 2 Esfuerzo = F = 4, Pa F = (4, Pa). F = (4, Pa). (3, m 2 ) F = 1,54 KN 6

7 El módulo de elasticidad Siempre que el límite elástico no se supere, una deformación elástica (deformación) es directamente proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo). Modulo de elasticidad = Esfuerzo. Deformación Ejemplo Nº 8: En el Ejemplo 4, el esfuerzo aplicado al alambre de acero fue 6,37 x 10 7 Pa y la deformación fue 3,08 x Calcular el módulo de elasticidad para el acero (Ver Figura 4) Modulo de elasticidad = Esfuerzo = 6,37 x 10 7 Pa Deformación 3,08 x 10-4 Módulo = 2,07 x Pa Este módulo de elasticidad longitudinal se llama Módulo de Young (Y) Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young (Y). Modulo de Young = Esfuerzo. Deformación Y = F/. = F. L. L/L. L Unidad: Pa Ejemplo Nº 9: El módulo de Young para el latón es 8,96 x Pa. Un peso de 120 N se une a un alambre de latón de 8,0 m de largo; encuentre el aumento en longitud. El diámetro es 1,50 mm. (Ver Figura 5) Primero calcular el área del alambre: = p. d 2 /4 = p. (1, m) 2 /4 = 1,77 x 10-6 m 2 Y = F/. = F. L. L/L. L L = F. L. Y L = 120 N. 8,0 m. 1,77 x 10-6 m 2. 8,96 x Pa ΔL=0,61 mm Figura 5 7

8 0, 50 m Elasticidad volumétrica No todas las deformaciones son lineales. veces un esfuerzo aplicado F/ resulta en una disminución del volumen. En tales casos, existe un módulo volumétrico B de elasticidad. B = Esfuerzo volumétrico = - F / Deformación volumétrica V/V Las unidades siguen siendo pascales (Pa) pues la deformación es adimensional. El límite elástico: El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar permanentemente deformado La resistencia a la rotura La resistencia a la rotura es el mayor estrés que un cuerpo puede experimentar sin romperse. Problemas Propuestos: 0, 25 m 1) El bloque de la Figura 6 de 30 kg es arrastrada sobre una superficie horizontal con rapidez constante por una fuerza F. El coeficiente de fricción cinética es de 0,35. a) Calcule la magnitud de F. b) Determine el valor de h con el cual el boque apenas comenzará a volcarse. CM h F 2) Dos vigas uniformes idénticas que pesan 260 N cada una están unidas por un extremo con una bisagra sin fricción. Una barra horizontal ligera unida a los puntos medios de las barras mantiene un ángulo de 53 entre las vigas, las cuales cuelgan del techo mediante alambres verticales, formando una "V", como muestra la Figura 7. a) Qué fuerza ejerce la barra horizontal sobre cada viga? b) La barra está sometida a tensión o a compresión? c) Qué fuerza (magnitud y dirección) ejerce la bisagra sobre cada viga? 3) Dos amigos suben un tramo de escalera cargando una caja de 200 kg. La caja mide 1,20 m de longitud y 0,50 m de altura, y el centro de gravedad está en su centro. Las escaleras forman un ángulo de 45 respecto al piso. La caja también se carga inclinada 45, de modo que su base está paralela a la pendiente de las escaleras (como muestra la Figura 8). Si la fuerza que cada persona aplica es vertical, a) Qué magnitud tiene cada fuerza? b) Es mejor ser la persona de: arriba o la de abajo? Figura 6 = 53 o Figura kg 45 o 8 Figura 8

9 4) Una viga uniforme de 250 kg se sostiene con un cable unido al techo, como muestra la Figura 9. El extremo inferior de la viga descansa en el piso. a) Calcule la tensión en el cable. b) Qué coeficiente de fricción estática mínimo debe haber entre la viga y el piso para que la viga permanezca en esta posición? 160 o 5) Un pequeño dado de 12 Kg, sujeta al extremo de un alambre 40 o de aluminio con longitud no estirada de 0,50 m, se gira en un círculo vertical con rapidez angular constante de 120 rpm. El área Figura 9 transversal del alambre es de 0,014 cm 2. Calcula el alargamiento del alambre cuando el dado está: a) En el punto más bajo del círculo; b) En el punto más alto de su trayectoria. Obs.: Módulo de Young del luminio: 0,70 x N/m 2 6) La ley de Hooke para esfuerzos de tensión puede escribirse como Fx = K. x, donde x es el cambio de longitud del objeto respecto de su longitud de equilibrio y k es la constante elástica. Cuánto vale la constante elástica de una varilla de longitud lo, área transversal y módulo de Young Y? 7) Un alambre metálico de 3,50 m de longitud y 0,70 mm de diámetro se sometió a esta prueba: se colgó de él un cuerpo de 20,0 N de peso para tensarlo, y se leyó en una escala la posición del extremo inferior del alambre después de agregar una carga de peso variable, obteniéndose los resultados de la tabla siguiente: Carga agregada Lectura en la escala (N) (cm) 0 3,02 10,0 3,07 20,0 3,12 30,0 3,17 40,0 3,22 50,0 3,27 60,0 3,32 70,0 4,27 a) Calcular el valor del módulo de Young b) El límite proporcional se observó cuando la escala marcaba 3,34 cm. Determinar el esfuerzo en ese punto. 8) Del problema anterior grafique el aumento de longitud en función de la carga agregada. 9) Una varilla de 1,05 m de longitud con peso despreciable Figura 10 está sostenida en sus extremos por alambres y B de igual longitud. El área transversal de es de 2,0 mm 2, y la de B, 4,0 mm 2. El módulo de Young del alambre es de 1,80 x N/m 2 ; el de B es de 1,20 x N/m 2 En qué punto de la varilla debe colgarse una carga P a fin de producir: a) Esfuerzos iguales en y B b) Deformaciones iguales en y B P 1,05 m Figura 10 B 9

10 10) Una barra de longitud L, sección y módulo de Young Y se halla sometida a una tensión F. Siendo E el esfuerzo y D la deformación, deduce la expresión de la energía potencial elástica por unidad de volumen de la barra en función de E y D. 11) El juego de la Figura 11 consiste en pequeños aviones unidos a varillas de acero de 15,0 m de longitud y área transversal de 8,00 cm 2, a) Cuánto se estira la varilla cuando el juego está en reposo? (Suponga que cada avión con dos personas en él, pesa 1900 N en total). b) En movimiento, el juego tiene una rapidez angular máxima de 7,50 rpm. Cuánto se estira la varilla entonces? Obs.: Módulo de Young del cero: 2,00 x N/m 2 12) La resistencia a la compresión de nuestros huesos es importante en la vida diaria. El módulo de Young de los huesos es cerca de 1,4 x Figura 11 N/m 2. Los huesos sólo pueden sufrir un cambio de longitud del 1% antes de romperse, Qué fuerza máxima puede aplicarse a un hueso con área transversal mínima de 3 cm 2? (Esto corresponde aproximadamente a la tibia, en su punto más angosto.) 13) Una varilla de latón de 1,40 m de longitud y área transversal de 2,00 cm 2 se sujeta por un extremo al extremo de una varilla de níquel de longitud L y sección de 1,00 cm 2. La varilla compuesta se somete a fuerzas iguales y opuestas de 4 x 10 4 N en sus extremos. a) Calcula la longitud L de la varilla de níquel si el alargamiento de ambas varillas es el mismo, b) Qué esfuerzo se aplica a cada varilla? Obs.: Módulo de Young del Latón: 9,00 x N/m 2 Módulo de Young del Níquel: 2,10 x N/m 2 14) En el problema anterior verifica que la deformación que sufre la varilla de latón es de 0,22 % y la de níquel 0,19 % 15) Se cuelga una lámpara del extremo de un alambre vertical de aluminio. La lámpara estira el alambre 0,180 mm, y el esfuerzo es proporcional a la deformación. Determina cuánto se habría estirado el alambre a) Si tuviera el doble de longitud? b) Si tuviera la misma longitud pero el doble de diámetro? 16) Una barra con área transversal se somete a fuerzas de F tensión F iguales y opuestas en sus extremos. Considere un plano que atraviesa la barra formando un ángulo con el plano perpendicular a la barra, como puede apreciarse en la Figura 12. Verifica que: a) El esfuerzo de tensión (normal) hay en este plano es Figura 12 igual a F. cos 2 / b) El esfuerzo de corte (tangencial) hay en el plano es igual a F. cos sen / c) Para el esfuerzo de tensión es máximo. F 17) Un contrabandista produce etanol (alcohol etílico) puro durante la noche y lo almacena en un tanque de acero inoxidable cilíndrico de 0,30 m de diámetro con un pistón hermético en la parte superior. El volumen total del tanque es de 250 litros.en un intento por meter un poco más en el tanque, el contrabandista apila 1420 kg de lingotes de plomo sobre el pistón. Qué volumen adicional de etanol puede meter el contrabandista en el tanque? (Suponga que la pared del tanque es perfectamente rígida) 10

11 Obs.: Coeficiente compresibilidad cúbica del alcohol K = 110 x m 2 /N B: Módulo de Volumen RESPUESTS DE LOS PROBLEMS 1. 0,11 KN y 0,36 m N y 130 N N y 1,33 KN 4. 2,7 KN y a) 0,54 cm b) 0,42 cm 6. K. lo/ 7. a) N/m 2 b) 2, N/m 2 9. a) 0,70 metros del punto b) 0,60 metros del punto 10. ½. E. D 11. a) 0,0178 cm b) 0,0168 cm KN 13. a) 1,63 m b) E L = 2, N/m 2 E N = 4, N/m ,22% y 0,19% 15. a) 0,36 mm b) 0,045 mm 16. a) F. cos 2 / b) F. cos sen / 17. 0,050 litros 11

FACULTAD DE INGENIERIA

FACULTAD DE INGENIERIA ASIGNATURA: DOBLE CURSADO GUIA DE PROBLEMAS N 6 ELASTICIDAD 2018 GUIA DE PROBLEMAS Nº 6 PROBLEMA Nº 1 a) Un alambre de teléfono de 120m de largo y de 2,2mm de diámetro se estira debido a una fuerza de

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Departamento de Ciencias y Tecnología Miss Yorma Rivera M. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Torque y Equilibrio Cuando un cuerpo está sometido a una fuerza

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

TAREA VERANIEGA DE FISICA INGENIERIA. **Fecha de entrega máxima Lunes 04 de Marzo o en su primera clase devuelta de vacaciones.

TAREA VERANIEGA DE FISICA INGENIERIA. **Fecha de entrega máxima Lunes 04 de Marzo o en su primera clase devuelta de vacaciones. 1 TAREA VERANIEGA DE FISICA INGENIERIA. **Fecha de entrega máxima Lunes 04 de Marzo o en su primera clase devuelta de vacaciones. Dinámica de Cuerpo Rígido y Estática. 1. En la figura, la cuerda ligera

Más detalles

Unidad 4. Dinámica de la partícula

Unidad 4. Dinámica de la partícula Unidad 4. Dinámica de la partícula Qué es una fuerza? Una influencia externa sobre un cuerpo que causa su aceleración con respecto a un sistema de referencia inercial. La fuerza F se define en función

Más detalles

Definiciones importantes

Definiciones importantes Definiciones importantes Cuerpos rígidos Un cuerpo rígido es un objeto que conserva su forma global, es decir las partículas que componen el cuerpo rígido permanecen en la misma posición relativa entre

Más detalles

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA CPÍTUO 13 - ESTICIDD Presentación PowerPoint de Paul E. Tippens, Profesor de ísica Southern Polytechnic State University PRESENTCION CTUIZD POR: ING RNDO NGUO SCM 013 Capítulo 13. Elasticidad Photo ol.

Más detalles

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD GUI DE PROLEMS PROPUESTOS Nº5: CUERPO RÍGIDO- ELSTICIDD Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas y/o torcas que actúan sobre el cuerpo o sistema

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero?

ELASTICIDAD PREGUNTAS. 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? ELASTICIDAD PREGUNTAS 1. Explique que representa él modulo de rigidez de un sólido. 2. Qué significa él límite elástico de una barra de acero? 3. Dos alambres hechos de metales A y B, sus longitudes y

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

Sólido Rígido. Momento de Inercia 17/11/2013

Sólido Rígido. Momento de Inercia 17/11/2013 Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

PROBLEMAS DE TERCERAS PRUEBAS Edición, Marzo Coordinación- Física I.

PROBLEMAS DE TERCERAS PRUEBAS Edición, Marzo Coordinación- Física I. PROBLEMAS DE TERCERAS PRUEBAS 007-010 Edición, Marzo 013 Coordinación- Física I. Primer Semestre 007 1.- Una bala de masa 30[gr ], se dispara con una rapidez de 300 contra un bloque de madera apernado

Más detalles

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada

Más detalles

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A.

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A. Septiembre 2013. Pregunta 2B.- La velocidad de una partícula que describe un movimiento armónico simple alcanza un valor máximo de 40 cm s 1. El periodo de oscilación es de 2,5 s. Calcule: a) La amplitud

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Este test se recogerá 1h 50m después de ser repartido. El test se calificará sobre5 puntos. Las respuestas correctas puntúan positivamente y las incorrectas negativamente, resultando la calificación (

Más detalles

PRACTICO Nº 1 FUERZAS CONCURRENTES

PRACTICO Nº 1 FUERZAS CONCURRENTES PRACTICO Nº 1 FUERZAS CONCURRENTES 1) Un cuerpo cuya masa es de 2,5 kg se mueve con una aceleración constante de 1,2 mt/sgdo 2, determine cuál es la fuerza necesaria para mover dicho cuerpo 2) Un ascensor

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

4. Una viga es mantenida en la posición mostrada en la figura. 5. Una viga es sometida a la carga F = 400N y es mantenida

4. Una viga es mantenida en la posición mostrada en la figura. 5. Una viga es sometida a la carga F = 400N y es mantenida 1. Los cilindros lisos A y B tienen masas de 100 y 30 kg, respectivamente. (a) calcule todas las fuerzas que actúan sobre A cuando la magnitud de la fuerza P = 2000 N, (b) Calcule el valor máximo de la

Más detalles

CONTENIDO. TIPOS DE FUERZAS Tensión. un cable estirado por fuerzas en sus extremos

CONTENIDO. TIPOS DE FUERZAS Tensión. un cable estirado por fuerzas en sus extremos I. ELASTICIDAD II. MOVIMIENTO OSCILATORIO III. HIDROSTÁTICA IV. TEMPERATURA CALOR V. TERMODINÁMICA ELASTICIDAD INTRODUCCION CONTENIDO Los cuerpos rígidos no se doblan, estiran ni aplastan. Pero el cuerpo

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

Problemas Capítulo Máquina de Atwood.

Problemas Capítulo Máquina de Atwood. Problemas Capítulo 5 5.7 Una gran bola de demolición está sujeta por dos cables de acero ligeros (Fig. 5.42). Si su masa es de 4090 kg, calcule a) la tensión T B en el cable que forma un ángulo de 40 con

Más detalles

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura.

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. 1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. Solución: x C = 1,857 cm; yc= 3,857cm (medidas respecto a la esquina

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Problemas. 1) 4.1. Dibuje un diagrama de cuerpo libre correspondiente a las situaciones ilustradas en la figura 4.19a y b. Descubra un punto donde actúen las fuerzas

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

Ejercicio integrador

Ejercicio integrador Capítulo 3 1 Ejercicio integrador En qué punto del movimiento de un péndulo simple la tensión de la cuerda es mayor? a) Cuando se detiene momentáneamente antes de regresar. b) En el punto más bajo de su

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

PROBLEMAS PROPUESTOS DE ESTÁTICA Y ELASTICIDAD

PROBLEMAS PROPUESTOS DE ESTÁTICA Y ELASTICIDAD PROBLEMAS PROPUESTOS DE ESTÁTICA Y ELASTICIDAD 1. Con la finalidad de sacar un automóvil del lodo en el que se atascó, el conductor estira una soga desde el extremo frontal del automóvil hasta un árbol

Más detalles

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1 GUÍA DE EJERCICIOS Física Aplicada 2 CUERPO RIGIDO 1º cuatrimestre de 2012 1 Modelos en Física Modelos Sólidos Fluidos No se considera su extensión ni orientación Partícula Se considera su extensión y

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

B. REPASO DE MECÁNICA ÍNDICE

B. REPASO DE MECÁNICA ÍNDICE BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

FACULTAD DE INGENIERIA. Física I SEGUNDO SEMESTRE 2018 BÍOINGENIERÍA - ING. ELECTRÓNICA ING. EN AGRIMENSURA GUÍA DE PROBLEMAS N 5: SOLIDO RIGIDO

FACULTAD DE INGENIERIA. Física I SEGUNDO SEMESTRE 2018 BÍOINGENIERÍA - ING. ELECTRÓNICA ING. EN AGRIMENSURA GUÍA DE PROBLEMAS N 5: SOLIDO RIGIDO FCULTD DE INGENIERI Física I ÍOINGENIERÍ - ING. ELECTRÓNIC ING. EN GRIMENSUR GUÍ DE PROLEMS N 5: SOLIDO RIGIDO ÍOINGENIERÍ - ELECTRÓNIC - GRIMENSUR GUÍ DE PROLEMS Nº 5: CUERPO RÍGIDO Problema Nº1: Una

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

1 Después de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. Este es un ejemplo de:

1 Después de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. Este es un ejemplo de: Slide 1 / 43 1 espués de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. ste es un ejemplo de: Primera ley de Newton Segunda Ley de Newton Tercera Ley de Newton Ley de

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

ESTÁTICA DE ESTRUCTURAS Guía # 1

ESTÁTICA DE ESTRUCTURAS Guía # 1 ESTÁTI DE ESTRUTURS Guía # 1 1. Para las siguientes figuras 1, 2 3, determinar los centros de gravedad, respecto al eje correspondiente. igura 1 igura 2 igura 3 2. Descomponga la fuera de 120[kgf] en dos

Más detalles

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM FUERZAS Y LEYES DE NEWTON Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM 1 FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 27 septiembre 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 27 septiembre 2016 2016-Septiembre A. Pregunta 2.- Un cuerpo que se mueve describiendo un movimiento armónico simple a lo largo del eje X presenta, en el instante inicial, una aceleración nula y una velocidad de 5 i cm s

Más detalles

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 24 del 2015 (08h30-10h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 24 del 2015 (08h30-10h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 24 del 2015 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

LAS FUERZAS: ESTÁTICA Y DINÁMICA

LAS FUERZAS: ESTÁTICA Y DINÁMICA LAS FUERZAS: ESTÁTICA Y DINÁMICA DEFINICIONES BÁSICAS FUERZA: es toda causa capaz de provocar una deformación o un cambio en el estado de movimiento de un cuerpo. En el SI se mide en newton (N) aunque

Más detalles

Guía 4: Leyes de Conservación: Energía

Guía 4: Leyes de Conservación: Energía Guía 4: Leyes de Conservación: Energía NOTA : Considere en todos los casos g = 10 m/s² 1) Imagine que se levanta un libro de 1,5 kg desde el suelo para dejarlo sobre un estante situado a 2 m de altura.

Más detalles

Física I. Dinámica de Rotación. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. Dinámica de Rotación. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I Dinámica de Rotación UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TRABAJO Y ENERGÍA EN EL MOVIMIENTO En la unidad anterior se ha estudiado con

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 TERCERA EVALUACIÓN DE FÍSICA A Nombre: Paralelo: PRIMERA PARTE: Preguntas de opción múltiple (3 puntos c/u) 1)

Más detalles

Slide 2 / 43. Slide 1 / 43. Slide 3 / 43. Slide 4 / 43. Slide 5 / 43. Slide 6 / 43. se acelerar. Segunda Ley de Newton. Ley de Gravitación de Newton

Slide 2 / 43. Slide 1 / 43. Slide 3 / 43. Slide 4 / 43. Slide 5 / 43. Slide 6 / 43. se acelerar. Segunda Ley de Newton. Ley de Gravitación de Newton Slide 1 / 43 1 espués de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. ste es un ejemplo de: Slide 2 / 43 2 n la ausencia de una fuerza externa, un objeto en movimiento

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

FISICA II - ELECTROSTATICA

FISICA II - ELECTROSTATICA FISICA II - ELECTROSTATICA Constantes: K = 9 x 10 9 N m 2 / C 2 G = 6,67 x 10-11 N m 2 / Kg 2 m e = 9,11 x 10-31 Kg. m p = 1,67 x 10-27 Kg q e = 1,6 x 10-19 C N A = 6,02 x 10 22 átomos/mol 1) El electrón

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30)

SEGUNDA EVALUACIÓN. FÍSICA Marzo 18 del 2015 (11h30-13h30) SEGUNDA EVALUACIÓN DE FÍSICA Marzo 18 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles

TALLER N 2 - DINÁMICA DE LA PARTÍCULA

TALLER N 2 - DINÁMICA DE LA PARTÍCULA TALLER N 2 - DINÁMICA DE LA PARTÍCULA 1. 2. 3. 4. 5. 6. a) Muestre que el movimiento circular para una partícula donde experimenta una aceleración angular α constante y con condiciones iniciales t = 0

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Taller de Fuerzas MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Una pelota de plástico en un líquido se comporta de acuerdo a su peso y a la

Más detalles

3 Movimiento vibratorio armónico

3 Movimiento vibratorio armónico 3 Movimiento vibratorio armónico Actividades del interior de la unidad. Una partícula que oscila armónicamente inicia su movimiento en un extremo de su trayectoria y tarda 0, s en ir al centro de esta,

Más detalles

DINÁMICA. Es la rama de la mecánica que estudia el movimiento de los cuerpos analizando la causa que lo produce.

DINÁMICA. Es la rama de la mecánica que estudia el movimiento de los cuerpos analizando la causa que lo produce. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES ASIGNATURA: FISICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

DINÁMICA DE SISTEMAS DE PUNTOS.- Sobre un vagón que se mueve a i m/s con respecto a la vía viaja un cañón que dispara una bala de Kg con una velocidad respecto al suelo de (400 i + 00 j) m/s. Si la masa

Más detalles

Compendio de Problemas e Interrogantes III (Aplicaciones de la Segunda Ley de Newton. Diagrama de Cuerpo Libre)

Compendio de Problemas e Interrogantes III (Aplicaciones de la Segunda Ley de Newton. Diagrama de Cuerpo Libre) U.E.P. INSTITUTO EDUCACIONAL ARAGUA MARACAY - ARAGUA Asignatura: Física Prof.: Jesús Sánchez Interrogantes Compendio de Problemas e Interrogantes III (Aplicaciones de la Segunda Ley de Newton. Diagrama

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO GUÍ DE PROLEMS Nº 5: UERPO RÍGIDO PROLEM Nº 1: Un avión cuando aterriza apaga sus motores. El rotor de uno de los motores tiene una rapidez angular inicial de 2000 rad/s en el sentido de giro de las manecillas

Más detalles

1. DINÁMICA. Matías Enrique Puello Chamorro

1. DINÁMICA. Matías Enrique Puello Chamorro Índice 1. DINÁMICA 2 2. DINAMICA 3 2.1. Dinámica...................................................... 3 2.2. Concepto de FUERZA.............................................. 4 2.3. Tipos de fuerza...................................................

Más detalles

Rpta. (a) W = J. (b) W = 600 J. (c) W (neto) = J, V B = 6.98 m/s

Rpta. (a) W = J. (b) W = 600 J. (c) W (neto) = J, V B = 6.98 m/s ENERGÍ 1. Un resorte sin deformación de longitud 20cm es suspendido de un techo. Si en su extremo libre se le suspende un bloque de 1kg de masa se deforma 10 cm. a) Determinar la constante k del resorte.

Más detalles

Mecánica I. Guía 7: Torque, centro de masa y equilibrio Miércoles 13 de junio de Productor vectorial y torque.

Mecánica I. Guía 7: Torque, centro de masa y equilibrio Miércoles 13 de junio de Productor vectorial y torque. Departamento de Física, Facultad de Ciencias, Universidad de Chile Mecánica I Profesor: GONZALO GUTIÉRREZ Ayudantes: HÉCTOR DUARTE, CRISTIAN FARÍAS, GIANINA MENESES Guía 7: Torque, centro de masa y equilibrio

Más detalles

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica. 1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO 2010-11 9.1.- Una viga indeformable de longitud 4 m, de peso despreciable, está suspendida por dos hilos verticales de 3 m de longitud. La viga

Más detalles

AP Física B de PSI Dinámica

AP Física B de PSI Dinámica AP Física B de PSI Dinámica Preguntas de Multiopción 1. Después de disparar una bala de cañón el cañón se mueve en la dirección opuesta de la pelota. Este es un ejemplo de: A. Primera ley de Newton B.

Más detalles

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos Preguntas y problemas propuestos de aplicación de las leyes de Newton 2015-II 1 Leyes de Newton, impulso, la fuerza de gravedad (peso), fuerza elástica, fuerzas disipativas. Leyes de newton o principios

Más detalles

Unidad III. Dinámica

Unidad III. Dinámica Unidad III. Dinámica Ref. Capítulos IV y V. Física Tipler-Mosca, 6a ed. 10 de abril de 2018 1. Introducción La dinámica estudia las causas del movimiento. La estática estudia los cuerpos en equilibrio

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Preguntas de opción múltiple (4 puntos c/u) TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 05 SOLUCIÓN ) Un auto y un camión parten del reposo y aceleran al mismo ritmo. Sin embargo, el auto acelera por

Más detalles

INSTITUTO TECNOLOGICO DE SALTILLO

INSTITUTO TECNOLOGICO DE SALTILLO INSTITUTO TECNOLOGICO DE SALTILLO SEGUNDA LEY DE NEWTON PROBLEMAS COMPLEMENTARIOS 1.- Se muestran 3 bloques de masas m1 = 2 kg. m2 = 3 kg. m3 = 8 kg. Si se supone nulo el roce, calcular la aceleración

Más detalles

F F α. Curso de Preparación Universitaria: Física Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas

F F α. Curso de Preparación Universitaria: Física Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas Curso de Preparación Universitaria: ísica Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas Problema 1: Un cajón de 50 kg está en reposo sobre una superficie plana. Si el coeficiente de

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles