Condiciones de Equilibrio:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Condiciones de Equilibrio:"

Transcripción

1 UNIVERSIDD TECNOLÓGIC NCIONL Facultad Regional Rosario UDB Física Cátedra FÍSIC I Capitulo Nº 11: Condiciones de Equilibrio: EQUILIBRIO Y ELSTICIDD Primera condición de equilibrio: Una partícula está en equilibrio -es decir, no tiene aceleración- en un marco de referencia inercial si la suma vectorial de todas las fuerzas que actúan sobre ella es cero. La expresión equivalente para un cuerpo extendido es que el centro de masa del cuerpo tiene aceleración cero cuando la resultante de todas las fuerzas externas que actúan sobre el cuerpo es cero, en términos de vectores y componentes: F=0 F x =0 F y =0 Segunda condición de equilibrio: Un cuerpo rígido en equilibrio no debe tener tendencia a comenzar a girar alrededor de ningún punto, por lo tanto la suma de los momentos debidos a todas las fuerzas externas que actúan sobre el cuerpo debe ser cero. =0 En este capítulo, aplicaremos las dos condiciones de equilibrio a situaciones en las que un cuerpo rígido está en reposo (sin traslación ni rotación). Se dice que tal cuerpo está en equilibrio estático. Sin embargo, las mismas condiciones son válidas para un cuerpo rígido en movimiento traslacional uniforme (sin rotación), como un avión que vuela con rapidez, dirección y altura constantes. Un cuerpo así está en equilibrio pero no estático. Para estar en equilibrio estático, un cuerpo en reposo debe satisfacer ambas condiciones del equilibrio: no tener la tendencia a acelerar ni empezar a girar. Ejemplos: a) Condiciones de equilibrio: Se cumple la Primera Condición: Fuerza total = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse. Se cumple la Segunda Condición: El Momento total alrededor del eje = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse. 1

2 Este cuerpo está en equilibrio Estático b) Condiciones de equilibrio: 2F NO se cumple la Primera Condición: Hay una fuerza neta hacia arriba, así que un cuerpo en reposo empezara a moverse hacia arriba. F r r/2 Se cumple la Segunda Condición: El Momento total alrededor del eje = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse. Este cuerpo tiene la tendencia a acelerar, pero no tiene una tendencia a empezar a girar. c) Condiciones de equilibrio: Se cumple la Primera Condición: Fuerza total = 0, así que un cuerpo en reposo no tiene la tendencia a empezar a moverse como un todo. No se cumple la Segunda Condición: Hay un Momento total en sentido horario alrededor del eje, así que un cuerpo en reposo no tiene la tendencia a empezar a girar en sentido horario. Este cuerpo no tiene la tendencia a acelerar, pero tiene tendencia a empezar a girar. Ejemplo Nº 1: Un tablero de 80 N que tiene una longitud de 12 m está apoyado en dos soportes, cada uno de los cuales dista 1,0 m del extremo del tablero. Se coloca un bloque de 300 N sobre el tablero a 3,0 m de un extremo, como se indica en la Figura 1. Hallar la fuerza ejercida por cada soporte sobre el tablero. = 0 80 N. 5,0 m N. 8,0 m - R B. 10 m = Nm Nm = R B. 10 m R B = 280N 3,0 m P = 80 N P C = 300 N 1,0 m 10 m 1,0 m Figura 1 B = 0-80 N. 5,0 m N. 2,0 m + R. 10 m = 0 R. 10 m = 400 Nm Nm R = 100 N Verificación FY = 0 R + R B - P - P C = N N - 80 N N = 0 2

3 Ejemplo Nº 2: Una tabla uniforme de longitud L = 6,0 m y masa M =90 kg descansa sobre dos caballetes separados entre sí por una distancia d = 2,0 m y equidistantes del centro (Figura 2). Un albañil trata de pararse a 0,80 m del extremo derecho de la tabla. Qué masa máxima puede tener el albañil para que la tabla no gire? 2,0 m 0,80 m El caso límite para que la tabla no gire es que la Reacción en el caballete de la izquierda sea nula. B = 0 m al. g. 1,2 m - M. g. 1,0 m = 0 m al. 1,2 m = M. 1,0 m m al = 90 kg. 1,0 m / 1,2 m m bail = 75 kg Ejemplo Nº 3: Un bloque de 500 g, suspendido de una varilla uniforme de 1,0 N de peso y 1,0 m de longitud. La varilla se cuelga del techo con una cuerda vertical en cada extremo como muestra la Figura 3, quedando horizontal. Calcula la tensión en las cuerdas y B. Siendo = 36,87 o y =53,13 o 6,0 m Figura 2 P al 2,0 m 2,0 m 1,2 m 0,80 m R P R B 0,20 0,60 m 0,20 C D B P V = 1,00 N P B = m. g = 4,9 N Fx = 0 C T D. cos - T C cos = 0 T D. 0,800 - T C. 0,600 = 0 T D = T C. 0,600/ 0,800 T D = 0,750.T C Fy = 0 T D. sen + T C. sen - P = 0 0,750.T C. 0,600 + T C. 0,800 = P 0,750.T C. 0,600 + T C. 0,800 = P 1,25.T C = 4,9 N T C = 3,92 N T Cy = T C. sen = 3,92 N. 0,600 = 2,352 N T D = 2,94 N T Dy = T D. sen = 2,94 N. 0,800 = 2,352 N P B D Figura 3 m= 50 g = 0 T Cy. 0,20 m + T Dy. 0,80 m + 1,0 N. 0,50 m - F B. 1,0 m = 0 2,352 N. 0,20 m + 2,352 N. 0,80 m + 1,0 N. 0,50 m = F B. 1,0 m 2,852 N. m = F B. 1,0 m F B = 2,852 N F = F B = 2,9 N 3

4 Elasticidad El salto BUNGEE utiliza una larga cuerda elástica que se estira hasta que llega a una longitud máxima que es proporcional al peso del saltador. La elasticidad de la cuerda determina la amplitud de las vibraciones resultantes. Si se excede el límite elástico de la cuerda, ésta se romperá. Un cuerpo elástico es aquel que regresa a su forma original después de una deformación. Un cuerpo inelástico es aquel que no regresa a su forma original después de una deformación. Una colisión elástica no pierde energía. La deformación en la colisión se restaura por completo. En una colisión inelástica se pierde energía. La deformación puede ser permanente. Un resorte elástico Un resorte es un ejemplo de un cuerpo elástico que se puede deformar al estirarse. Una fuerza restauradora, F, actúa en la dirección opuesta al desplazamiento del cuerpo en oscilación. F = -k. x Ley de Hooke Cuando un resorte se estira, hay una fuerza restauradora que es proporcional al desplazamiento. La constante de resorte k es una propiedad del resorte dada por: K = F x La constante de resorte k es una medida de la elasticidad del resorte. Esfuerzo y deformación Esfuerzo: se refiere a la causa de una deformación. Deformación: se refiere al efecto. La fuerza descendente F causa el desplazamiento x. Por tanto: El esfuerzo es la fuerza. La deformación es la elongación. F = -k. x 4

5 Tipos de esfuerzos Un esfuerzo de compresión ocurre cuando fuerzas iguales y opuestas se dirigen una hacia la otra. Un esfuerzo de tracción ocurre cuando fuerzas iguales y opuestas se dirigen alejándose mutuamente. Esfuerzo y deformación longitudinales Para alambres, varillas y barras, existe un esfuerzo longitudinal F/ que produce un cambio en longitud por unidad de longitud. En tales casos: Esfuerzo = F Deformación = L. L Ejemplo Nº 4: Un alambre de acero de 10,0 m de largo y 2,00 mm de diámetro se une al techo de un extremo y del otro se fija un de 200 N como puede observarse en la Figura 4. Cuál es el esfuerzo aplicado? El área del alambre: =.d 2 /4 = 3, m 2 2 Esfuerzo = F = 200 N = 6, Pa 3, m Figura 4 5

6 Ejemplo Nº 5: Un alambre de acero de 10 m se estira 3,08 mm debido a la carga de 200 N (Ver Figura 4) Cuál es la deformación longitudinal? Dado: L = 10 m; DL = 3,08 mm Deformación = L. = 0,00308 m L 10 m Deformación longitudinal = 3, El límite elástico El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar deformado permanentemente. Si el esfuerzo supera el límite elástico, la longitud final será mayor que los 2,0 m iniciales. Resistencia a la rotura La resistencia a la rotura es el esfuerzo máximo que un cuerpo puede experimentar sin romperse. Si el esfuerzo supera la resistencia a la rotura, la cuerda se rompe? Ejemplo Nº 6: El límite elástico del acero de la barra de la figuras es 2,48 x 10 8 Pa. Cuál es el peso máximo que puede soportar sin superar el límite elástico? (Ver Figura 4) Recuerde: = 3, m 2 Esfuerzo = F = 2, Pa F = (2, Pa) F = (2, Pa)(3, m 2 ) F = 0,78 KN Ejemplo Nº 7: La resistencia a la rotura para el acero es Pa. Cuál es el peso máximo que puede soportar sin romper el alambre? (Ver Figura 4) = 3,14 x 10-6 m 2 Esfuerzo = F = 4, Pa F = (4, Pa). F = (4, Pa). (3, m 2 ) F = 1,54 KN 6

7 El módulo de elasticidad Siempre que el límite elástico no se supere, una deformación elástica (deformación) es directamente proporcional a la magnitud de la fuerza aplicada por unidad de área (esfuerzo). Modulo de elasticidad = Esfuerzo. Deformación Ejemplo Nº 8: En el Ejemplo 4, el esfuerzo aplicado al alambre de acero fue 6,37 x 10 7 Pa y la deformación fue 3,08 x Calcular el módulo de elasticidad para el acero (Ver Figura 4) Modulo de elasticidad = Esfuerzo = 6,37 x 10 7 Pa Deformación 3,08 x 10-4 Módulo = 2,07 x Pa Este módulo de elasticidad longitudinal se llama Módulo de Young (Y) Módulo de Young Para materiales cuya longitud es mucho mayor que el ancho o espesor, se tiene preocupación por el módulo longitudinal de elasticidad, o módulo de Young (Y). Modulo de Young = Esfuerzo. Deformación Y = F/. = F. L. L/L. L Unidad: Pa Ejemplo Nº 9: El módulo de Young para el latón es 8,96 x Pa. Un peso de 120 N se une a un alambre de latón de 8,0 m de largo; encuentre el aumento en longitud. El diámetro es 1,50 mm. (Ver Figura 5) Primero calcular el área del alambre: = p. d 2 /4 = p. (1, m) 2 /4 = 1,77 x 10-6 m 2 Y = F/. = F. L. L/L. L L = F. L. Y L = 120 N. 8,0 m. 1,77 x 10-6 m 2. 8,96 x Pa ΔL=0,61 mm Figura 5 7

8 0, 50 m Elasticidad volumétrica No todas las deformaciones son lineales. veces un esfuerzo aplicado F/ resulta en una disminución del volumen. En tales casos, existe un módulo volumétrico B de elasticidad. B = Esfuerzo volumétrico = - F / Deformación volumétrica V/V Las unidades siguen siendo pascales (Pa) pues la deformación es adimensional. El límite elástico: El límite elástico es el esfuerzo máximo que un cuerpo puede experimentar sin quedar permanentemente deformado La resistencia a la rotura La resistencia a la rotura es el mayor estrés que un cuerpo puede experimentar sin romperse. Problemas Propuestos: 0, 25 m 1) El bloque de la Figura 6 de 30 kg es arrastrada sobre una superficie horizontal con rapidez constante por una fuerza F. El coeficiente de fricción cinética es de 0,35. a) Calcule la magnitud de F. b) Determine el valor de h con el cual el boque apenas comenzará a volcarse. CM h F 2) Dos vigas uniformes idénticas que pesan 260 N cada una están unidas por un extremo con una bisagra sin fricción. Una barra horizontal ligera unida a los puntos medios de las barras mantiene un ángulo de 53 entre las vigas, las cuales cuelgan del techo mediante alambres verticales, formando una "V", como muestra la Figura 7. a) Qué fuerza ejerce la barra horizontal sobre cada viga? b) La barra está sometida a tensión o a compresión? c) Qué fuerza (magnitud y dirección) ejerce la bisagra sobre cada viga? 3) Dos amigos suben un tramo de escalera cargando una caja de 200 kg. La caja mide 1,20 m de longitud y 0,50 m de altura, y el centro de gravedad está en su centro. Las escaleras forman un ángulo de 45 respecto al piso. La caja también se carga inclinada 45, de modo que su base está paralela a la pendiente de las escaleras (como muestra la Figura 8). Si la fuerza que cada persona aplica es vertical, a) Qué magnitud tiene cada fuerza? b) Es mejor ser la persona de: arriba o la de abajo? Figura 6 = 53 o Figura kg 45 o 8 Figura 8

9 4) Una viga uniforme de 250 kg se sostiene con un cable unido al techo, como muestra la Figura 9. El extremo inferior de la viga descansa en el piso. a) Calcule la tensión en el cable. b) Qué coeficiente de fricción estática mínimo debe haber entre la viga y el piso para que la viga permanezca en esta posición? 160 o 5) Un pequeño dado de 12 Kg, sujeta al extremo de un alambre 40 o de aluminio con longitud no estirada de 0,50 m, se gira en un círculo vertical con rapidez angular constante de 120 rpm. El área Figura 9 transversal del alambre es de 0,014 cm 2. Calcula el alargamiento del alambre cuando el dado está: a) En el punto más bajo del círculo; b) En el punto más alto de su trayectoria. Obs.: Módulo de Young del luminio: 0,70 x N/m 2 6) La ley de Hooke para esfuerzos de tensión puede escribirse como Fx = K. x, donde x es el cambio de longitud del objeto respecto de su longitud de equilibrio y k es la constante elástica. Cuánto vale la constante elástica de una varilla de longitud lo, área transversal y módulo de Young Y? 7) Un alambre metálico de 3,50 m de longitud y 0,70 mm de diámetro se sometió a esta prueba: se colgó de él un cuerpo de 20,0 N de peso para tensarlo, y se leyó en una escala la posición del extremo inferior del alambre después de agregar una carga de peso variable, obteniéndose los resultados de la tabla siguiente: Carga agregada Lectura en la escala (N) (cm) 0 3,02 10,0 3,07 20,0 3,12 30,0 3,17 40,0 3,22 50,0 3,27 60,0 3,32 70,0 4,27 a) Calcular el valor del módulo de Young b) El límite proporcional se observó cuando la escala marcaba 3,34 cm. Determinar el esfuerzo en ese punto. 8) Del problema anterior grafique el aumento de longitud en función de la carga agregada. 9) Una varilla de 1,05 m de longitud con peso despreciable Figura 10 está sostenida en sus extremos por alambres y B de igual longitud. El área transversal de es de 2,0 mm 2, y la de B, 4,0 mm 2. El módulo de Young del alambre es de 1,80 x N/m 2 ; el de B es de 1,20 x N/m 2 En qué punto de la varilla debe colgarse una carga P a fin de producir: a) Esfuerzos iguales en y B b) Deformaciones iguales en y B P 1,05 m Figura 10 B 9

10 10) Una barra de longitud L, sección y módulo de Young Y se halla sometida a una tensión F. Siendo E el esfuerzo y D la deformación, deduce la expresión de la energía potencial elástica por unidad de volumen de la barra en función de E y D. 11) El juego de la Figura 11 consiste en pequeños aviones unidos a varillas de acero de 15,0 m de longitud y área transversal de 8,00 cm 2, a) Cuánto se estira la varilla cuando el juego está en reposo? (Suponga que cada avión con dos personas en él, pesa 1900 N en total). b) En movimiento, el juego tiene una rapidez angular máxima de 7,50 rpm. Cuánto se estira la varilla entonces? Obs.: Módulo de Young del cero: 2,00 x N/m 2 12) La resistencia a la compresión de nuestros huesos es importante en la vida diaria. El módulo de Young de los huesos es cerca de 1,4 x Figura 11 N/m 2. Los huesos sólo pueden sufrir un cambio de longitud del 1% antes de romperse, Qué fuerza máxima puede aplicarse a un hueso con área transversal mínima de 3 cm 2? (Esto corresponde aproximadamente a la tibia, en su punto más angosto.) 13) Una varilla de latón de 1,40 m de longitud y área transversal de 2,00 cm 2 se sujeta por un extremo al extremo de una varilla de níquel de longitud L y sección de 1,00 cm 2. La varilla compuesta se somete a fuerzas iguales y opuestas de 4 x 10 4 N en sus extremos. a) Calcula la longitud L de la varilla de níquel si el alargamiento de ambas varillas es el mismo, b) Qué esfuerzo se aplica a cada varilla? Obs.: Módulo de Young del Latón: 9,00 x N/m 2 Módulo de Young del Níquel: 2,10 x N/m 2 14) En el problema anterior verifica que la deformación que sufre la varilla de latón es de 0,22 % y la de níquel 0,19 % 15) Se cuelga una lámpara del extremo de un alambre vertical de aluminio. La lámpara estira el alambre 0,180 mm, y el esfuerzo es proporcional a la deformación. Determina cuánto se habría estirado el alambre a) Si tuviera el doble de longitud? b) Si tuviera la misma longitud pero el doble de diámetro? 16) Una barra con área transversal se somete a fuerzas de F tensión F iguales y opuestas en sus extremos. Considere un plano que atraviesa la barra formando un ángulo con el plano perpendicular a la barra, como puede apreciarse en la Figura 12. Verifica que: a) El esfuerzo de tensión (normal) hay en este plano es Figura 12 igual a F. cos 2 / b) El esfuerzo de corte (tangencial) hay en el plano es igual a F. cos sen / c) Para el esfuerzo de tensión es máximo. F 17) Un contrabandista produce etanol (alcohol etílico) puro durante la noche y lo almacena en un tanque de acero inoxidable cilíndrico de 0,30 m de diámetro con un pistón hermético en la parte superior. El volumen total del tanque es de 250 litros.en un intento por meter un poco más en el tanque, el contrabandista apila 1420 kg de lingotes de plomo sobre el pistón. Qué volumen adicional de etanol puede meter el contrabandista en el tanque? (Suponga que la pared del tanque es perfectamente rígida) 10

11 Obs.: Coeficiente compresibilidad cúbica del alcohol K = 110 x m 2 /N B: Módulo de Volumen RESPUESTS DE LOS PROBLEMS 1. 0,11 KN y 0,36 m N y 130 N N y 1,33 KN 4. 2,7 KN y a) 0,54 cm b) 0,42 cm 6. K. lo/ 7. a) N/m 2 b) 2, N/m 2 9. a) 0,70 metros del punto b) 0,60 metros del punto 10. ½. E. D 11. a) 0,0178 cm b) 0,0168 cm KN 13. a) 1,63 m b) E L = 2, N/m 2 E N = 4, N/m ,22% y 0,19% 15. a) 0,36 mm b) 0,045 mm 16. a) F. cos 2 / b) F. cos sen / 17. 0,050 litros 11

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA

10/03/2013 CAPÍTULO 13 - ELASTICIDAD. Capítulo 13. Elasticidad OBJETIVOS ING ARNALDO ANGULO ASCAMA CPÍTUO 13 - ESTICIDD Presentación PowerPoint de Paul E. Tippens, Profesor de ísica Southern Polytechnic State University PRESENTCION CTUIZD POR: ING RNDO NGUO SCM 013 Capítulo 13. Elasticidad Photo ol.

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

TERCERA LEY DE NEWTON

TERCERA LEY DE NEWTON ESTATICA DEFINICIÓN.- Es parte de la Mecánica Clásica que tiene por objeto estudiar las condiciones para los cuerpos se encuentren en equilibrio. Equilibrio.- se dice que un cuerpo se encuentra en equilibrio

Más detalles

Sólo cuerdas dinámicas

Sólo cuerdas dinámicas Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

F 0 + F 1 C) ( F 0 + F 1 )/2 D) F 0 E) 0 F 0 M fig. 18 F 1 6. Un avión y un auto deportivo están moviéndose con MRU, en la misma dirección. Respecto de las fuerzas que se ejercen sobre estos cuerpos es

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)

EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30) EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:

Más detalles

TEMA 7. ESTÁTICA Y ELASTICIDAD OBJETIVOS

TEMA 7. ESTÁTICA Y ELASTICIDAD OBJETIVOS OBJETIVOS Comprender el concepto de equilibrio estático de un sólido rígido. Expresar adecuadamente las condiciones de equilibrio estático de un sólido rígido. Determinar las características de las ligaduras

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile.

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. 1. De acuerdo con la leyenda, un caballo aprendió las leyes de Newton. Cuando se le pidió

Más detalles

FISICA II PARA INGENIEROS

FISICA II PARA INGENIEROS FISICA II PARA INGENIEROS INTRODUCCION INGENIERIA La Ingeniería es el conjunto de conocimientos y técnicas científicas aplicadas a la creación, perfeccionamiento e implementación de estructuras (tanto

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ NOMBRE APELLIDO PATERNO APELLIDO MATERNO

Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ NOMBRE APELLIDO PATERNO APELLIDO MATERNO TEMARIO-GUÍA SEMESTRAL FISICA N L: Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ 2016. NOMBRE APELLIDO PATERNO APELLIDO MATERNO A.- TEMARIO Fecha asignatura Contenido 22/06 Física

Más detalles

CALCULAR EL MODULO DE ELASTICIDAD DE UN RESORTE, AL CUAL SE LE APLICA UN ESFUERZO DE 600 N Y SE DEFORMA 20CM. RESP: K= 3000 N/mts

CALCULAR EL MODULO DE ELASTICIDAD DE UN RESORTE, AL CUAL SE LE APLICA UN ESFUERZO DE 600 N Y SE DEFORMA 20CM. RESP: K= 3000 N/mts EJERCICIOS DE ELASTICIDAD. 1.- cuando una masa de 500 g cuelga de un resorte, éste se alarga 3 cm.? Cual es la constante elástica?: R.- 1.63 N/M 2.- Cuál es el incremento del alargamiento en el resorte

Más detalles

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en

Más detalles

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias 90 CAPíTULO 3 Equilibrio de una partícula PROBL EMAS 3-1. Determine las magnitudes de l 2 necesarias para que la partícula P esté en equilibrio. 3-3. Determine la magnitud el ángulo 8 de } necesarios para

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012 TERCERA EVALUACIÓN DE Física del Nivel Cero A Abril 20 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 25 preguntas de opción múltiple

Más detalles

Equilibrio y Movimiento de los objetos

Equilibrio y Movimiento de los objetos Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento

Más detalles

LAS FUERZAS Y LAS MÁQUINAS

LAS FUERZAS Y LAS MÁQUINAS FICHA 1 ACTIVIDADES DE 1 ara qué se utiliza el dinamómetro. 2 ara los dinamómetros A y B indica: a) Cuál es el valor mínimo y el máximo que pueden medir? Cuál es su precisión? Cuál es el valor de la fuerza

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Física para Ciencias: Trabajo y Energía

Física para Ciencias: Trabajo y Energía Física para Ciencias: Trabajo y Energía Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Trabajo (W) En la Física la palabra trabajo se le da un significado muy específico: El trabajo (W) efectuado

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 3 para el curso Mecánica I. Pág. 1 de 9 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 3 - Curso: Mecánica I Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

Departamento de Física TALLER DE MECÁNICA

Departamento de Física TALLER DE MECÁNICA TALLER DE MECÁNICA 1. Usted esta de pie sobre un asiento de una silla, y luego salta de ella. Durante el tiempo que usted esta en el aire y cae al piso, la Tierra hacia arriba con usted, (a) con una aceleración

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

GUÍA Nº4: Sistema de partículas

GUÍA Nº4: Sistema de partículas Junio - 014 GUÍA Nº4: Sistema de partículas PROBLEMA 1: Tres partículas inicialmente ocupan las posiciones determinadas por los extremos de un triángulo equilátero, tal como se muestra en la figura. a)

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

TEMAS SELECTOS DE FÍSICA I

TEMAS SELECTOS DE FÍSICA I TEMAS SELECTOS DE FÍSICA I Mtro. Pedro Sánchez Santiago TEMAS Origen de una fuerza Vectores Cuerpos en equilibrio Momentos de fuerzas Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico).

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico). DINÁMICA La Dinámica es la parte de la Física que estudia las fuerzas. 1. FUERZAS Qué son? Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES

DEPARTAMENTO DE ELECTROMECANICA INGENIERIA ELECTROMECANICA 1 TRABAJO PRACTICO Nº 2 SISTEMA DE FUERZAS EQUIVALENTES DEPRTMENTO DE ELECTROMECNIC INGENIERI ELECTROMECNIC 1 EJERCICIO Nº1 TRJO PRCTICO Nº 2 SISTEM DE FUERZS EQUIVLENTES Si el peso ubicado en el punto tiene un valor de 20 KN, determine el valor de la carga

Más detalles

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 1 / 144 2 Una fuerza realiza 30000 J de trabajo

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

Física: Momento de Inercia y Aceleración Angular

Física: Momento de Inercia y Aceleración Angular Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

4.5. Si el peso del bloque de la figura 4.19(a) es de 80 N, Cuáles son las tensiones en las cuerdas A y B?

4.5. Si el peso del bloque de la figura 4.19(a) es de 80 N, Cuáles son las tensiones en las cuerdas A y B? SERIE DE PROBLEMAS No.2 Sección 4.5 Diagramas de cuerpo libre. 4.1. Dibuje un diagrama de cuerpo libre correspondiente a las situaciones ilustradas en la figura 4.19(a) y (b): Descubra un punto donde actúen

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009 Movimiento Parabólico 1. Un cañón antitanques está ubicado en el borde de una meseta a una altura de 60 m. sobre la llanura que la rodea, como se observa en la figura. La cuadrilla del cañón avista un

Más detalles

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL 1.- Un helicóptero contra incendios transporta un recipiente para agua de 620kg en el extremo de un cable de 20m de largo, al volar de regreso de un incendio

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda

Más detalles

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 1) Dos fuerzas F1 y F2 actúan sobre un pequeño cuerpo; F1 es vertical hacia abajo y vale F1=8,0 N, mientras que F2 es horizontal hacia la derecha y vale

Más detalles

GUÍA DE PROBLEMAS N 4

GUÍA DE PROBLEMAS N 4 GUIA DE PROBLEMAS DE FISICA I 2 S. 2016 UNSJ FACULTAD DE INGENIERA GUÍA DE PROBLEMAS N 4 IMPULSO Y CANTIDAD DE MOVIMENTO INGENIERÍA ELÉCTRICA INGENIERÍA ELECTROMECÁNICA INGENIERÍA MECÁNICA PROBLEMA N 1-

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Práctica 1 Estática en el plano 1.1. Objetivos conceptuales Comprobar experimentalmente las ecuaciones del equilibrio de la partícula y del sólido rígido en el plano. 1.2. Conceptos básicos Un sistema

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

Si cada elefante pesa en promedio 3800 kg y se considera que su peso se reparte uniformemente sobre la plataforma:

Si cada elefante pesa en promedio 3800 kg y se considera que su peso se reparte uniformemente sobre la plataforma: Considerar los siguientes datos para un acero: Límite elástico = 345 MPa Módulo de Young = 207 GPa Tenacidad a fractura = 90 MPa Tensión de rotura = 517 MPa Deformación bajo carga máxima = 20% Factor de

Más detalles

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011 Instituto de Profesores rtigas Segundo parcial Física 1 1º 1º 7 de octubre 0 1. Dos meteoritos y chocan en el espacio. El meteorito tiene masa 1,5 10 1 Kg y el meteorito tiene masa, 10 1 Kg. ntes del impacto,

Más detalles

Slide 2 / 144. Slide 1 / 144. Slide 3 / 144. Slide 4 / 144. Slide 5 / 144. Slide 6 / 144

Slide 2 / 144. Slide 1 / 144. Slide 3 / 144. Slide 4 / 144. Slide 5 / 144. Slide 6 / 144 Slide 1 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 2 / 144 2 Una fuerza realiza 30000

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

8. Ensayos con materiales

8. Ensayos con materiales 8. Ensayos con materiales Los materiales de interés tecnológico se someten a una variedad de ensayos para conocer sus propiedades. Se simulan las condiciones de trabajo real y su estudia su aplicación.

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

Segunda y Tercera Ley de Newton. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Segunda y Tercera Ley de Newton. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Segunda y Tercera Ley de Newton Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret NASA El transbordador espacial Endeavor despega para una misión de 11 días

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS 1. Una grúa móvil levanta una carga de madera que pesa W = 25 kn. El peso del mástil ABC y El peso combinado de la camioneta y el conductor son los indicados

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles