Determinar los diagramas de esfuerzos en la estructura de la figura. a) Descomposición de la fuerza exterior aplicada en el extremo de la barra BE.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Determinar los diagramas de esfuerzos en la estructura de la figura. a) Descomposición de la fuerza exterior aplicada en el extremo de la barra BE."

Transcripción

1 esistencia de materiales. roblemas resueltos roblema. eterminar los diagramas de esfuerzos en la estructura de la figura. 45 o m m m m m esolución: F F H V a) escomposición de la fuerza eterior aplicada en el etremo de la barra. b) álculo de las reacciones. jes globales m V H V omamos momentos respecto al punto : 00 c 0 V V = -, Suma de fuerzas verticales y horizontales: FV 0 V 600 V V F H H

2 iagramas de esfuerzos c) álculo de momentos en los tramos y. ramo: ramo : 00 ( ) V 0 00 m ( ) V 600( ) m m iagramas m m m + 00 m quilibrio del nudo / 900

3 4 esistencia de materiales. roblemas resueltos roblema. eterminar los diagramas de esfuerzos en la viga de la figura, apoyada en los etremos y sometida a una carga repartida triangular. m 6 m esolución: a) álculo de la reacciones. esultante de la carga 6 Q m 4 m m

4 iagramas de esfuerzos 5 b) álculo de los esfuerzos de sección. Sección situada a una distancia del apoyo : : d q d : d d q = 6 m m 00 - d

5 6 esistencia de materiales. roblemas resueltos c) iagramas d) unto de má 695 m 0 0,46 m má,46, m

6 iagramas de esfuerzos 7 roblema. eterminar los diagramas de esfuerzos del pórtico inclinado de la figura m 45 m m esolución: ara el cálculo de las reacciones, planteamos las ecuaciones de la estática H V F F V H V H

7 8 esistencia de materiales. roblemas resueltos por tanto, V 00 y descomponiendo cada reacción en las direcciones de las barras, iagrama iagrama iagrama

8 iagramas de esfuerzos = m = m étodo alternativo para hallar las reacciones: resolución gráfica. ara que las tres fuerzas estén en equilibrio, sus líneas de acción deben cruzarse en punto O (ya que 0 0 ). partir de la línea de acción vertical de, se obtiene O. F 00 // O 400 F // O

9 0 esistencia de materiales. roblemas resueltos roblema.4 eterminar los diagramas de esfuerzos en la viga de la figura. p = ml 000 a = m = 6 m b = m esolución: álculo de las reacciones: F V : : iagrama de momentos flectores: ramo : m ramo : m 6000 m ramo : m iagrama de esfuerzos cortantes. ramo :

10 iagramas de esfuerzos ramo : ramo : a = m = 6 m b = m ( m ) ( ) l diagrama de momentos flectores pasa por un mínimo relativo en el punto, donde la tangente es horizontal, o sea: 0 5,5 m 0 : = -408 m

11 esistencia de materiales. roblemas resueltos roblema.5 n la viga en voladizo de la figura, calcular las reacciones en el empotramiento y dibujar los diagramas de esfuerzos cortantes y de momentos flectores en toda la viga. 4 K 5 K/m 0,5m m m m esolución: a) eacciones en el empotramiento. omenzaremos por buscar el sistema de fuerzas que ejerce el empotramiento, dibujamos el diagrama de sólido libre y obligamos al equilibrio. Sumando fuerzas y tomando momentos obtenemos: 4 K 5 K/m 4 K 0 K F 0.5m m m F 0.5m m F 4 K eacciones que ejerce el empotramiento sobre la viga. 40,5 0 K m

12 iagramas de esfuerzos b) iagramas 4 K 5 K/m 0,5 0,5 m m - + ramo : = 0 = 0 ramo : 5 K m K 0 0 K

13 4 esistencia de materiales. roblemas resueltos ramo : 0 K m 0 K m 5 K m 0 K 0 K 0 K ramo : 0 4,5 K m 5 K m K m K 4 K 4 K stos diagramas se han obtenido tomando el origen de las en el etremo, de la derecha, porque en este caso, es más cómodo. Si se determinan los diagramas tomando el origen de las en el etremo de la izquierda, tal como se hace habitualmente, el diagrama de momentos flectores,, sale idéntico; pero el diagrama de esfuerzos cortantes sale opuesto (igual, pero de signo cambiado).

14 6 esistencia de materiales. roblemas resueltos roblema. enemos una barra rígida que está suspendida por dos cables de igual diámetro 4 mm, y cuyos módulos de elasticidad son: =. 0 5 a y = a. a longitud de la barra es de 600 mm y la de los cables 00 mm. Se considera despreciable el peso propio de la barra. icha barra está sometida a una carga puntual =500. alcular la posición de la fuerza para que los puntos y tengan el mismo descenso. 4 mm 4 mm 00 mm = mm esolución: ibujamos el diagrama de sólido libre y obligamos el equilibrio. demás imponemos la igualdad de deformaciones. =500 F V 0 0 ( ) 0

15 sfuerzo normal ey de Hooke : S S e la ecuación de los momentos obtenemos : 50 mm 0 ) 500( ) (

16 8 esistencia de materiales. roblemas resueltos roblema. n la barra esquematizada en la figura adjunta los etremos y están empotrados. eterminar las tensiones en ambas secciones, cuyas superficies son: a =40 cm y b =80 cm. Hallar también el diagrama de esfuerzos ailes. atos: = 0 5 a. m a =40 cm m b =80 cm m 5 esolución: F 0 V + = 5 = cuación de deformación l tramo está comprimido, por tanto es un esfuerzo de compresión, y el tramo está traccionado, por lo que es un esfuerzo de tracción. l estar los dos etremos, y, empotrados la variación total de longitud es 0; y el acortamiento del tramo superior es igual al alargamiento del tramo inferior: plicando la ley de Hooke: F a b b

17 sfuerzo normal 9 m m esolviendo las ecuaciones, tenemos m álculo de las tensiones. ramo : mm 6.5 a (O.) ramo : mm.5 a (O.) ramo : mm 5.65 a (.) iagrama de esfuerzos normales:

18 0 esistencia de materiales. roblemas resueltos roblema. a) as dos barras de la figura articuladas en sus etremos, de acero, de cm de diámetro y de.5 m de longitud, soportan un peso =5 K. alcular el descenso del punto, siendo =0º. atos: =, 0 5 a. b) esolver para =0º. esolución: a) ara =0º: quilibrio del punto el equilibrio del punto se obtiene sen sen Sea ( ) el descenso del punto, entonces el alargamiento de la barra,, será pudiendo considerarse el triángulo rectángulo en. quí es. omo por otra sen parte:, se tiene que: sen sen.0, , mm b) ara =0º:

19 sfuerzo normal e acuerdo con la estática de los sistemas rígidos, descomponiendo la fuerza en las direcciones de las barras, se encontrarían, para los esfuerzos en las barras y para las reacciones, valores infinitamente grandes. a solución evidentemente es inaceptable, ya que ni las barras ni los apoyos resistirían. fin de hacer desaparecer la aparente imposibilidad basta con considerar los alargamientos de las barras que toman direcciones no alineadas. sto demuestra la necesidad de tener en cuenta las deformaciones en este caso. oniendo tg (para ángulos pequeños) el alargamiento de las barras vale sta última igualdad proviene de la epresión: a a a a a a ara a<<, pueden despreciarse las potencias de a y, por tanto, queda a a. l esfuerzo normal en una de las barras es: or otra parte, del equilibrio del punto se deduce sen esulta

20 esistencia de materiales. roblemas resueltos plicando los datos numéricos del problema: , mm ,049 rad,4º , /mm 4

Problema 2.1. Resolución: Dibujamos el diagrama de sólido libre y obligamos el equilibrio. Además imponemos la igualdad de deformaciones.

Problema 2.1. Resolución: Dibujamos el diagrama de sólido libre y obligamos el equilibrio. Además imponemos la igualdad de deformaciones. 6 esistenci de mteriles. roblems resueltos roblem. Tenemos un brr rígid que está suspendid por dos cbles de igul diámetro 4 mm, y cuyos módulos de elsticidd son: =. 0 M y =0.7 0 M. longitud de l brr es

Más detalles

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR

TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura

Más detalles

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS

ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de

Más detalles

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.

Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo

Más detalles

ESTRUCTURAS C151 Aeronáutica - Materiales - Mecánica Electromecánica

ESTRUCTURAS C151 Aeronáutica - Materiales - Mecánica Electromecánica EJEMLOS EJEMLOS E M-N-Q: EJEMLO 1 RG ISTRIUI 0.01 200 200 1.5 0.5 untos característicos para determinar el corte Qy 1.5 unto de corte nulo unto de máimo momento 0.5 untos característicos para determinar

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1 Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A

Más detalles

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn

400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

Teoría de Estructuras En la celosía de la figura, calcular los esfuerzos en las barras AB y AC. 10 kn

Teoría de Estructuras En la celosía de la figura, calcular los esfuerzos en las barras AB y AC. 10 kn 1. n la celosía de la figura, calcular los esfuerzos en las barras y 3 º Triangulos de lado 3 m 15 kn 1 kn Solución: -barra 17,32 kn tracción arra 17,32 kn compresión 2. alcular los esfuerzos en todas

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO PROBLEMAS DE RESISTENCIA DE MATERIALES I GRUPOS M1 YT1 CURSO 2010-11 9.1.- Una viga indeformable de longitud 4 m, de peso despreciable, está suspendida por dos hilos verticales de 3 m de longitud. La viga

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE

RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE RESISTENCIA DE MATERIAES II CURSO 008-09 EXAMEN DE SETIEMBRE -9-009 Fecha de publicación de la preacta: de Octubre Fecha de revisión: 7 de Octubre.- ( puntos) as vigas carril de un puente grúa están fabricadas

Más detalles

Problemas de la Lección 6: Flexión. Tensiones

Problemas de la Lección 6: Flexión. Tensiones : Flexión. Tensiones Problema 1: Para las siguientes vigas hallar los diagramas de esfuerzos cortantes y momentos flectores. Resolver cada caso para los siguientes datos (según convenga) P = 3000 kg ;

Más detalles

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO

PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran

Más detalles

Prácticas de Resistencia 12-13

Prácticas de Resistencia 12-13 Prácticas de Resistencia 12-13 1) Calcular las reacciones en los apoyos de la viga de la figura 1 para los siguientes dos casos de la carga actuante: parábola de 2º grado con tangente horizontal en C;

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 9.1.- Dos hilos metálicos, uno de acero y otro de aluminio, se cuelgan independientemente en posición vertical. Hallar la longitud

Más detalles

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas

Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre

Más detalles

El esfuerzo axil. Contenidos

El esfuerzo axil. Contenidos Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos

Más detalles

TEMA 11: ESTRUCTURA DE BARRAS

TEMA 11: ESTRUCTURA DE BARRAS TEMA 11: ESTRUCTURA DE BARRAS ESTRUCTURAS 1 ENRIQUE DE JUSTO MOSCARDÓ ANTONIO DELGADO TRUJILLOh ANTONIA FERNÁNDEZ SERRANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos, Teoría

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS IIND 4.2 ESTRUCTURS EJERCICIOS ROUESTOS 1. a figura representa una estructura constituida por barras unidas entre sí y al suelo (plano horizontal XOZ) mediante rótulas. a Y 2 1 a) Comprobar si dicha estructura

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos:

< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos: Viga continua con múltiples patologías 1/5 Figura 1 Viga continua con multiples patologías Problema de viga continua Vamos a calcular todos los esfuerzos, reacciones y curvaturas, y a dibujar la deformada

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan a continuación dos pruebas: OPCIÓN A y OPCIÓN B, cada una de ellas con un ejercicio y varias cuestiones. Se ha de elegir una prueba entera, no pudiendo,

Más detalles

**********************************************************************

********************************************************************** 9.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la siguiente estructura, acotando los valores más característicos: 3 m m 4 m m 30 1000 kg 000 kg

Más detalles

CAPÍTULO VIII ESFUERZO Y DEFORMACIÓN

CAPÍTULO VIII ESFUERZO Y DEFORMACIÓN CÍTUO VIII ESUERZO Y DEORMCIÓN 8.1. Esfuerzo l aplicar un par de fuerzas a un sólido de área, es posible definir el esfuerzo ingenieril i como: i que se expresa en: Ma, kg/mm, kg/cm, N/m, lbf/in f igura

Más detalles

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm

Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos

Más detalles

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo

1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo 1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.

Más detalles

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch

MECANICA APLICADA I. EXAMEN FINAL PRIMER EJERCICIO TIEMPO: Deducir a partir de las siguientes ecuaciones y = αch MENI PLI I. EXMEN FINL. 07-06-99. PIME EJEIIO TIEMPO: 50 x x x 1. educir a partir de las siguientes ecuaciones y = αch, ch sh = 1 α α α las expresiones de la longitud y la tensión de la catenaria ( puntos)..

Más detalles

Práctico 3: Esfuerzo axial

Práctico 3: Esfuerzo axial ráctico 3: Esfuerzo axial Ejercicio 1: La gura muestra una barra restringida de desplazarse en su extremo izquierdo y sometido a tres cargas a lo largo de su longitud. La barra es un hierro redondo de

Más detalles

PROBLEMA 1 (10 puntos)

PROBLEMA 1 (10 puntos) RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:

Más detalles

Tema 5 TRACCIÓN-COMPRESIÓN

Tema 5 TRACCIÓN-COMPRESIÓN Tema 5 TRACCIÓN-COMPRESIÓN Problema 5.1 Obtenga el descenso del centro de gravedad de la barra, de longitud L, de la figura sometida a su propio peso y a la fuerza que se indica. El peso específico es

Más detalles

a porta Colección de Problemas Muestra de Nuestros Materiales: Muestra de Nuestros Materiales

a porta Colección de Problemas Muestra de Nuestros Materiales: Muestra de Nuestros Materiales uestra de Nuestros ateriales 1 uestra de Nuestros ateriales: olección de roblemas opyright 006. sociación Todos los derechos reservados. No está permitida la reproducción total o parcial de este documento,

Más detalles

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico

ESTABILIDAD II A Ejercicios No Resueltos: SOLICITACION AXIL en régimen elástico A continuación, ejercicios no resueltos para los alumnos de la materia Estabilidad II A, los mismos fueron extraídos del libro: Resistencia de Materiales. Autor: Luis Ortiz Berrocal. Ejercicio n 1: Calcular

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. APIULO 1 OMPOSIION Y DESOMPOSIION DE VEORES Problema 1.2 SEARS ZEMANSKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

APUNTES DE CLASE: PORTICOS

APUNTES DE CLASE: PORTICOS Introducción: Los pórticos están conformados por elementos conectados entre si, que interactúan para distribuir los esfuerzos y dar rigidez al sistema. El sistema compuesto por dintel parante funciona

Más detalles

Práctico 10: Desplazamientos en vigas isostáticas

Práctico 10: Desplazamientos en vigas isostáticas Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud

Más detalles

Tema 9: SOLICITACIONES COMBINADAS

Tema 9: SOLICITACIONES COMBINADAS Tema 9: SOLIITIONES OMINDS V M T N x L M V Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 2008 9.1.-En la viga de la figura calcular por el Teorema de los Trabajos Virtuales: 1)

Más detalles

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por:

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por: PRÁCTICAS DE ELASTICIDAD AÑO ACADÉMICO 2012-201 Prob 1. El estado tensional de un punto de un sólido elástico se indica en la Figura donde las tensiones se epresan en MPa. Se pide: a. Calcular el vector

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

B) Para la viga de dos vanos con rótula en R, cargada como se muestra en la figura 2, se pide:

B) Para la viga de dos vanos con rótula en R, cargada como se muestra en la figura 2, se pide: Resistencia de Materiales, Elasticidad y Plasticidad. Examen ordinario 27 de mayo de 2014 Apellidos.................................... Nombre........................ Nº... Curso 3º Ejercicio 1. (Se recogerá

Más detalles

PROBLEMAS DE MECÁNICA

PROBLEMAS DE MECÁNICA PROLEMS DE MECÁNIC CLCULO VECTORIL 1. Dados los vectores a = 12 i 5 j + 9 k y b = 3 i + 7 k, calcular: a) Su producto escalar a. b. Sol: 99 b) Su producto vectorial a x b. Sol: -35 i - 67 j + 15 k 2. Dados

Más detalles

CAPÍTULO IX FUERZA CORTANTE Y MOMENTO FLECTOR EN VIGAS. i) Cargas concentradas. Son fuerzas aplicadas en puntos determinados de la viga.

CAPÍTULO IX FUERZA CORTANTE Y MOMENTO FLECTOR EN VIGAS. i) Cargas concentradas. Son fuerzas aplicadas en puntos determinados de la viga. Resistencia de ateriales. Capítulo IX. Esfuerzo cortante momento flector. Tipos de vigas CÍTUO IX FUERZ CORTNTE Y OENTO FECTOR EN IGS Eisten varias formas de ejercer fuerzas sobre una viga. i) Cargas concentradas.

Más detalles

Las ecuaciones del equilibrio se aplican a los pasadores de las uniones. En cada nudo se consideran las fuerzas

Las ecuaciones del equilibrio se aplican a los pasadores de las uniones. En cada nudo se consideran las fuerzas ísica. UT. rmaduras Pilar ceituno antero 5. rmaduras 5.1.- efinición de armadura Una estructura de barras unidas por sus etremos de manera que constituan una unidad rígida recibe el nombre de armadura.

Más detalles

CARGAS NO APLICADAS EN NUDOS

CARGAS NO APLICADAS EN NUDOS Capítulo 9 Cargas no aplicadas en los nudos 9.1- Cargas en el interior de un tramo Hasta ahora sólo se consideraron casos en que las cargas eteriores están aplicadas sobre los nudos; en el caso que actúen

Más detalles

Mecánica de Materiales I

Mecánica de Materiales I Tema 5 - Defleión en Vigas Mecánica de Materiales I Tema 5 Defleión en vigas Tema 5 - Defleión en vigas Sección - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este

Más detalles

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS

ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes

Más detalles

Práctico 3: Esfuerzo axial

Práctico 3: Esfuerzo axial ráctico 3: Esfuerzo axial Ejercicio : La Figura muestra una barra restringida de desplazarse en su extremo izquierdo y sometido a tres cargas a lo largo de su longitud. La barra es un hierro redondo de

Más detalles

Estructuras hiperestáticas.

Estructuras hiperestáticas. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 10 BLOQUE 1. ESTRUCTURAS HIPERESTÁTICAS POR AXIL Estructuras hiperestáticas. Problema 1 Tenemos un pilar formado por una sección rectangular

Más detalles

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA?

CUANTOS TIPOS DE APOYO, NUDOS O SOPORTES SE PUEDEN IDENTIFICAR O CONSTRUIR UNA ESTRUCTURA? DEFINICION DE FUERZA AXIAL. Cuando suponemos las fuerzas internas uniformemente distribuidas, se sigue de la estática elemental que la resultante P de las fuerzas internas debe estar aplicadas en el centroide

Más detalles

Flexión Compuesta. Flexión Esviada.

Flexión Compuesta. Flexión Esviada. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada

Más detalles

RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS. Mohamed Hamdy Doweidar

RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS. Mohamed Hamdy Doweidar RESISTENCIA DE MATERIALES PROBLEMAS RESUELTOS Mohamed Hamdy Doweidar Diseño Portada e impresión.- [ stylo@stylodigital.com ] impreso en España / printed in Spain Depósito Legal: Z-1541-017 ISBN: 978-84-1685-8-8

Más detalles

TEMA 3: PROBLEMAS RESUELTOS DE LÍNEAS DE INFLUENCIA

TEMA 3: PROBLEMAS RESUELTOS DE LÍNEAS DE INFLUENCIA Problemas Líneas de nfluencia TM 3: PROBLMS RSULTOS LÍNS NLUN 3.1. ada la celosía de la figura, dibujar las líneas de influencia de las barras B, y. B Barra B: B Barra : B Barra : B 1 Teoría de structuras

Más detalles

Tema 6.3 FLEXIÓN HIPERESTÁTICA

Tema 6.3 FLEXIÓN HIPERESTÁTICA Tema 6.3 Nota: A continuación se muestra el sistema de coordenadas de todos los problemas donde se definen las condiciones de contorno. Problema 6.3.1 Una viga de 12 m de longitud está construida con una

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º CURSO 2012/2013 Hoja 1

MECANICA DE MEDIOS CONTINUOS 2º CURSO 2012/2013 Hoja 1 MECANICA DE MEDIOS CONTINUOS 2º CURSO 2012/2013 Hoja 1 1.- a chapa rectangular ABCD de la F1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto

Más detalles

PROBLEMAS DE AMPLIACIÓN DE RESISTENCIA DE MATERIALES MÓDULO 4. TEMAS 8 y 9 CURSO

PROBLEMAS DE AMPLIACIÓN DE RESISTENCIA DE MATERIALES MÓDULO 4. TEMAS 8 y 9 CURSO ROBLEMAS DE AMLIACIÓN DE RESISTENCIA DE MATERIALES MÓDULO 4. TEMAS 8 y 9 CURSO 2015-16 4.1.- La transición de la figura se φ 8mm utiliza para conectar la barra rectangular de la izquierda a la circular

Más detalles

Vigas Hiperestáticas

Vigas Hiperestáticas Vigas Hiperestáticas A.J.M.Checa November 11, 7 En el tipo de vigas que vamos a analizar en esta sección, el número de incógnitas es mayor que el número de ecuaciones. Por tanto, hemos

Más detalles

Curso: RESISTENCIA DE MATERIALES 1

Curso: RESISTENCIA DE MATERIALES 1 Curso: RESISTENCIA DE MATERIALES 1 Módulo 3: TEORÍA DE VIGAS Luis Segura (lsegura@fing.edu.uy) º Semestre - 015 Universidad de la República - Uruguay Módulo 3 Teoría de vigas º Semestre 015 Luis Segura

Más detalles

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial

UNIVERSIDAD DIEGO PORTALES Facultad de Ingeniería Departamento de Ingeniería Industrial ASIGNATURA: RESISTENCIA DE MATERIALES GUÍA N 1: ESFUERZOS Y DEFORMACIONES NORMALES 1.- Sabiendo que la fuerza en la barra articulada AB es 27 kn (tensión), hallar (a) el diámetro d del pasador para el

Más detalles

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas

Teoremas energéticos fundamentales del análisis estructural. Aplicación a celosías planas Teoremas energéticos fundamentales del análisis estructural Aplicación a celosías planas Índice Directos Densidad de energía Complementarios Densidad de energía complementaria Energía elástica (Función

Más detalles

Prácticas Complementarias de Resistencia 12-13

Prácticas Complementarias de Resistencia 12-13 Prácticas Complementarias de Resistencia 12-13 1) Dibujar sendos croquis con las reacciones acotadas en magnitud y sentido para las vigas de la figura 1: Figura 1 2) Calcular las reacciones del muro y

Más detalles

T P Nº 8: TENSION DE CORTE SIMPLE

T P Nº 8: TENSION DE CORTE SIMPLE ESTATICA Y RESISTENCIA DE MATERIALES (QUIMICA Y MINAS) T P Nº 8: TENSION DE CORTE SIMPLE 1) Un puntal S de acero que sirve como riostra a un malacate marino transmite una fuerza P de compresión de 54 kn

Más detalles

Y ahora qué? INDICE Introducción Comparación de desplazamientos (viga conjugada) Vigas continuas Pórticos y cuadros.

Y ahora qué? INDICE Introducción Comparación de desplazamientos (viga conjugada) Vigas continuas Pórticos y cuadros. Y ahora qué? INDICE 10.1 Introducción. 10.2 Comparación de desplazamientos (viga conjugada). 10.3 Vigas continuas. 10.4 Pórticos y cuadros. PROBLEMAS ESTATICAMENTE DETERMINADOS: pueden resolverse sólo

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Práctica 2 Estructuras articuladas 2.1. Objetivos conceptuales Profundizar en el estudio de la Estática mediante el análisis de una estructura articulada. 2.2. Fundamento teórico Se llama estructura articulada,

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Práctica 2 Estructuras articuladas 2.1. Objetivos conceptuales Profundizar en el estudio de la Estática mediante el análisis de una estructura articulada. 2.2. Fundamento teórico Se llama estructura articulada,

Más detalles

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************

Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************ .- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIDAD III ESTÁTICA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIDAD III ESTÁTICA UIVESIDD CIL DE IGEIEI CE CIL DE ESUDIS GEELES MDLIDD SBI ESÁIC DE L PÍCUL UIDD III ESÁIC r..b) El peso del objeto es 5, determine la tensión en las cuerdas. 7 5 La componente e de la fuerza resultante

Más detalles

Análisis de Tensiones.

Análisis de Tensiones. RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 8 Análisis de Tensiones. Problema 1 Se tiene una estructura perteneciente a un graderío que soporta una carga de 1 tonelada en el punto

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 03 Nombre... La figura muestra un manipulador paralelo horizontal plano, que consta de una plataforma en forma de triángulo equilátero de lado l, cuya masa m se halla

Más detalles

Capítulo 2 Estática Página 1

Capítulo 2 Estática Página 1 apítulo 2 Estática Página 1. Problemas para el apítulo 2 PROLEM 1 ados los vectores: = 5 unidades; = 10 unidades; = 2 unidades; = 8 unidades. Sumar usando la regla del paralelogramo haciendo uso de una

Más detalles

Ejercicio resuelto VIGA ALIVIANADA METALICA Año 2014

Ejercicio resuelto VIGA ALIVIANADA METALICA Año 2014 TALLER VERTICAL ESTRUCTURAS VILLAR FAREZ-LOZADA Nivel 1 Ejercicio resuelto VIGA ALIVIANADA METALICA Año 014 EJEMPLO DE CÁLCULO Consideremos tener que cubrir un espacio arquitectónico con una cubierta liviana

Más detalles

Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales

Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales pellidos, nombre Basset Salom, Luisa (lbasset@mes.upv.es) Departamento entro Mecánica

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S

Unidad Resistencia de Materiales. Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S Unidad Resistencia de Materiales Curso Resistencia de Materiales Aplicada AÑO 2011 A P U N T E S MÓDULO III: FLEXIÓN INTRODUCCION En los capítulos anteriores las fuerzas internas eran conocidas o constantes

Más detalles

********************************************************************** En primer lugar hallaremos la excentricidad de la carga:

********************************************************************** En primer lugar hallaremos la excentricidad de la carga: 31.- Calcular la flecha máima la σ máima que resultan con el modelo de soporte esbelto sometido a carga ecéntrica. E =,1 10 6 kg/cm m. P=10000 kg. M=5000 kgm Sección pn 0 soldados a tope en las alas **********************************************************************

Más detalles

EQUILIBRIO DE LOS SISTEMAS DE FUERZAS

EQUILIBRIO DE LOS SISTEMAS DE FUERZAS Serie de Estática EQUILIRIO DE LOS SISTEMS DE FUERZS 1. Es el movimiento de la Tierra (considerando únicamente la rotación y la traslación) una manifestación del equilibrio del sistema de fuerzas externas

Más detalles

Cálculo de deformaciones. Método energético

Cálculo de deformaciones. Método energético álculo de deformaciones. Método energético N K xil puro N d N N L L L d L L Trabajo externo (W): n el gráfico de la derecha, es el realizado por la carga N conforme varía su valor desde cero hasta el máximo

Más detalles

PROBLEMA 1 (5 puntos)

PROBLEMA 1 (5 puntos) RESISTENI E TERILES EXEN INL / PRUE E EVLUIÓN ONTINU URSO 06-7 -0-07 PROLE (5 puntos) echa de publicación de la preacta: de enero de 07 echa de revisión del examen: 6 de febrero de 07 a las 7:00 La estructura

Más detalles

Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 ISIC VOLUMEN I. MECNIC ROLEMS DE L ISIC DE MRCELO LONSO EDWRD J. INN La física es una ciencia fundamental que tiene profunda influencia en todas las otras ciencias. or consiguiente, no solo los estudiantes

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)

TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA. PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.

Más detalles

TEMA 3: ENLACES Y EQUILIBRIO

TEMA 3: ENLACES Y EQUILIBRIO TEMA 3: ENLACES Y EQUILIBRIO ESTRUCTURAS I ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ PURIFICACIÓN ALARCÓN RAMÍREZ Departamento de Mecánica de Medios Continuos, Teoría de Estructuras e Ingeniería

Más detalles

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min

60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en

Más detalles

UT2 ELEMENTOS CURVOS 2A Ecuacion de Wilson-Quereau

UT2 ELEMENTOS CURVOS 2A Ecuacion de Wilson-Quereau cuacion de Wilson-Quereau Unidad temática tica lementos urvos a Flexión Forma aproximada. cuación n de Wilson. rte 1. Forma aproximada. cuación de Wilson n la figura. La sección cd gira con respecto a

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x

EJERCICIOS RESUELTOS. x + ; a = 1; b = 1. x x x. x x B7_9 //9 : Página EJERIIOS RESUELTOS alcula las funciones primitivas, que toman el valor b cuando a, de las funciones f definidas por: f() + 7; a ; b. 7 f() + ; a ; b. F ( ) ( + 7 ) d + 7 + c omo debe

Más detalles

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES

IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES IIND 4.1 TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES EJERCICIOS PROPUESTOS Hoja 6 Norma EA-95 1. a) En la viga continua isostática de la figura, representar las siguientes líneas de influencia,

Más detalles

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N)

TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) 1. A) Dadas las siguientes vigas, clasificarlas según su sustentación en: empotradas, simplemente apoyadas, en voladizo, continuas, con articulaciones,

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 8: EJEMPLOS SOBRE ESTÁTICA DEL CUERPO RÍGIDO Diego Luis Aristizábal R., Roberto Restrepo A.,

Más detalles

Resistencia de Materiales TRACCIÓN Y COMPRESIÓN

Resistencia de Materiales TRACCIÓN Y COMPRESIÓN Resistencia de Materiales TRCCIÓN Y COMRESIÓN Resistencia de Materiales TRCCIÓN Y COMRESIÓN Introducción. Tracción y compresión. Tensiones y alargamientos. Deformaciones de piezas de peso no despreciable.

Más detalles

Cátedra Estructuras 3 FAREZ LOZADA LANGER

Cátedra Estructuras 3 FAREZ LOZADA LANGER FACULTAD DE ARQUITECTURA Y URBANISMO UNLP Cátedra Estructuras 3 FAREZ LOZADA LANGER EJERCICIO RESUELTO: Viga Alivianada y viga Reticulada Plana CURSO 2016 Elaboración: NL Tutor: PL Nov 2016 Nivel I EJEMPLO

Más detalles

Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.)

Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.) Tema 6: FLEXÓN: DEFORONES + Problemas resueltos Prof.: Jaime Santo Domingo Santillana P.S.-Zamora (U.SL.) - 008 6..-La viga de la figura es una PE-60 está sometida a la carga concentrada indicada de 0

Más detalles

PROBLEMA 1. PROBLEMA DE DINÁMICA

PROBLEMA 1. PROBLEMA DE DINÁMICA ROBLEMA. ROBLEMA DE DIÁMICA Tres bloques A, B y C de 30, 0 y 0 kg respectivamente, se encuentran juntos sobre una superficie horizontal con un coeficiente de rozamiento de 0 4. a) Qué fuerza,, hay que

Más detalles

8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica.

8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica. . eterminar los esfuerzos en todas las barras de la celosía de la figura cuando en el punto hay una carga horizontal de 0kN eterminar además las componentes horizontal y vertical del desplazamiento de

Más detalles

4. Una viga es mantenida en la posición mostrada en la figura. 5. Una viga es sometida a la carga F = 400N y es mantenida

4. Una viga es mantenida en la posición mostrada en la figura. 5. Una viga es sometida a la carga F = 400N y es mantenida 1. Los cilindros lisos A y B tienen masas de 100 y 30 kg, respectivamente. (a) calcule todas las fuerzas que actúan sobre A cuando la magnitud de la fuerza P = 2000 N, (b) Calcule el valor máximo de la

Más detalles

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.

Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada. Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,

Más detalles

Hoja 5: cortantes y momentos

Hoja 5: cortantes y momentos Cátedra de Matemática Matemática Facultad de Arquitectura Universidad de la República 2013 Primer semestre Hoja 5: cortantes y momentos Versión: 28/04/2013 Ejercicio 1 La pieza de la figura tiene una longitud

Más detalles

**********************************************************************

********************************************************************** .4.- En la viga: a) Para la solución de construirla con tablones, se han elegido éstos finalmente con dimensiones 7 x 9 cm. Se trata ahora de mantenerlos unidos mediante pernos de mm. adm 800 kg/cm, dispuestos

Más detalles