PROBLEMA 1. PROBLEMA DE DINÁMICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMA 1. PROBLEMA DE DINÁMICA"

Transcripción

1 ROBLEMA. ROBLEMA DE DIÁMICA Tres bloques A, B y C de 30, 0 y 0 kg respectivamente, se encuentran juntos sobre una superficie horizontal con un coeficiente de rozamiento de 0 4. a) Qué fuerza,, hay que aplicar al bloque A para que el conjunto adquiera una aceleración constante de 3 m/s? b) Calcula la fuerza, AB, que el bloque A ejerce sobre el B, y la BC, que el bloque B ejerce sobre el bloque C. c) Calcula la fuerza, BA, que el bloque B ejerce sobre el A, y la CB, que el bloque C ejerce sobre el bloque B. SOLUCIÓ: a) Aplicando la ecuación fundamental de la dinámica, y teniendo en cuanta que las fuerzas que actúan a favor del movimiento se toman con signo positivo y las que se oponen al movimiento de toman con signo negativo: a Σ Σm m A RA + m B RB + m C RC RA µ.m A.g RB µ.m B.g RC µ.m AC g '6 78'4 39' 3 45' b) Separamos el bloque A y resolvemos sólo con el B y C: Σ AB RB RC AB 78'4 39' a 3 Σm m B + m C os quedamos sólo con el bloque C: AB 07'6 Σ BC RC BC 39' a 3 m m 0 C BC 69'

2 c) Aplicando el tercer principio de la dinámica, acción y reacción, la fuerza que el bloque B ejerce sobre el bloque A será simultánea, de igual módulo y sentido opuesto a la que el bloque A ejerce sobre el B: BA AB 07 6 or la misma razón: CB BC 69 Comprobemos los resultados, aplicando la ecuación fundamental sólo al bloque B, si las fuerzas son correctas el bloque se moverá con una aceleración de 3 m/s. Sobre el bloque B actúan tres fuerzas: La que el bloque A hace sobre él, AB, que le hace moverse, la que el bloque C hace sobre él, CB, que lo frena, y la fuerza de rozamiento, RB, que también lo frena. a Σ Σm AB m CB B RB 07'6 69' 78'4 3 m/s 0 ROBLEMA. UERZA CETRÍETA Se hace girar, en una circunferencia vertical, un cuerpo de kg, atado a una cuerda de 45 m. a) Calcular la velocidad mínima de éste en el punto superior () para que la cuerda esté tensa. b) Cuál será la tensión de la cuerda en los puntos:,, 3, 4 y 5. SOLUCIÓ: a) Arriba (), la velocidad mínima coincide con la tensión mínima ( T 0 ), la única fuerza que apunta hacia el centro es el peso, en rojo en el dibujo, y éste es la fuerza centrípeta: v m.g m v g.r R v 9'8.'45 4'9 m / s b) Aplicando el principio de conservación de la energía, ya que no hay pérdidas por rozamiento, calculamos la velocidad en el punto () para poner hallar la fuerza centrípeta. Con ésta y la componente normal del peso calculamos la tensión: unto : h R R.sen sen m (altura de respecto a )

3 m.v + m.g.h m.v v v +.g.h v 4'9 +.9'8.0'77 6' 7 m / s La fuerza centrípeta es la suma de la tensión y la componente normal del peso (medimos ángulos respecto al radio): T + mg.cos c > T cos > T 7 v m R 6' 7 '45 c unto 3: h 3 45 m, v m/s, c T 3 + mg.cos c3 > T cos > T 58 8 unto 4: h m, v m/s, c T 4 + mg.cos c4 > T cos > T unto 5: h m, v m/s, c5 98 T 5 + mg.cos c5 > T cos > T '08 unto : T + mg c > T > T 0 (condición que impusimos al principio para calcular v ) odemos encontrar una fórmula para realizar los cálculos para cualquier ángulo? Midiendo los ángulos respecto a OX (ver dibujo): h R( sen) v c c gr + gh mg(3.sen) mg.sen T c c 3mg( sen) La solución es: T 3.m.g.( sen ) ara el punto (): T ( sen 35) 7 ara un punto situado en 30º: T (-sen 30) 9 4

4 ROBLEMA 3. RELATIVIDAD DEL OBSERVADOR Una masa de 0 kg cuelga del techo de un vagón suspendida de una cuerda que forma un ángulo 60º con la vertical. Dentro del vagón se encuentra un observador O' y fuera, en reposo sobre la superficie terrestre, un observador O. a) Dibuja el diagrama de fuerzas que corresponde a cada observador. b) Calcula la aceleración con que se mueve el vagón, y la tensión de la cuerda. a) El observador O ve al objeto en reposo respecto a él, por lo que piensa que no tiene aceleración y en consecuencia la suma de las fuerza que actúan sobre éste se anulan, por lo que se imagina una fuerza, (llamada fuerza de inercia), que compensa a la tensión y al peso de forma que: T El observador O, que está fuera del vagón ve la realidad y es que el objeto se mueve hacia la derecha con una aceleración, a, que es la misma con la que se mueve el vagón a la que el objeto está unido. Sólo ve lo que hay, el y la T. Sabe que esta aceleración es causada la componente horizontal de la tensión de la cuerda. b) El cuerpo ni baja ni sube, por lo que la fuerza hacia abajo () se compensa con la fuerza hacia arriba (T y ): mg 0.9'8 T y T.cos mg T 96 cos cos 60 El objeto tiene una aceleración horizontal (a), causada por una fuerza horizontal que es (T x ): Tx T.sen 96.sen 60 a 6'97 m m m 0

5 ROBLEMA 4. OCOS DATOS, MUCHO RAZOAMIETO Sobre un plano inclinado 30º se tiene un cuerpo. Calcular la aceleración que hay que dar al plano inclinado, y en qué sentido, para que el cuerpo no descienda. Las únicas fuerzas que actúan sobre el cuerpo son su peso,, y la normal del plano,. La resultante de éstas es, que debe ser horizontal para que el cuerpo adquiera una aceleración horizontal hacia la derecha y no descienda (ni ascienda) por el plano. Al plano debemos imprimirle la misma aceleración (módulo, dirección y sentido) para que se mueva solidariamente con el cuerpo. Si descomponemos, la componente y debe ser igual y opuesta al peso,, para que se anulen entre sí, y la componente x será la fuerza,, que actúa sobre el cuerpo y le produce la aceleración horizontal, a, que es la que buscamos. x tg mg.tg y mg.tg a g.tg 9'8.tg 30 5'658 m/s m m ROBLEMA 5. UO DE ROZAMIETO Sobre un sólido en reposo de masa 5 kg se aplica una fuerza,, de 00 formando un ángulo de 30º con la horizontal, sabiendo que el coeficiente de rozamiento dinámico es μ 0. a) Calcule la velocidad que habrá adquirido cuando se haya recorrido 0 m bajo la acción de esta fuerza. b) Si en un momento determinado cesa la fuerza, Qué recorrido realizará el cuerpo hasta pararse de nuevo. Las fuerzas reales aplicadas al sólido son: la fuerza, el peso, la fuerza de rozamiento R y la normal. La componente vertical de la resultante se debe anular (el cuerpo se mueve por el plano horizontal) R + y + 0 fuerzas hacia arriba igual a fuerzas hacia abajo +.sen+ m.g 00.sen '8 99 y a

6 La componente horizontal de la resultante provoca una aceleración a, hacia la derecha. Recordando que las fuerzas que vayan a favor del movimiento se ponen positivas y las que se oponen al movimiento se ponen negativas: a Σ.cos μ. 00.cos 30 0'.99 m m m 5 x R 3'36 m/s Con la aceleración ya podemos calcular la velocidad: v.a.e.3'36.0 6'34 m b) Si cesa la fuerza, las fuerzas reales aplicadas al sólido son: el peso, la fuerza de rozamiento R y la normal. La componente vertical de la resultante se debe anular: + 0 m.g 5.9'8 49 La fuerza de rozamiento (que siempre es negativa) es ahora la única fuerza horizontal: R μ. 0'.49 9'8 Σ R 9'8 a '96 m/s m m 5 El espacio que recorre hasta detenerse es: v vo 0 6'34 v vo +.a.e e 68'6 m.a.( '96) ROBLEMA 6. RESOLVER OR BALACES DE EERGÍA Colocamos un cuerpo de 4 kg sobre un plano inclinado 5º que tiene m de longitud, después de descender por éste recorre 5 m por un plano horizontal hasta que se encuentra con un muelle cuya constante elástica es 000 /m al que comprime. a) Calcular cuánto se comprime el muelle si el coeficiente de rozamiento entre el cuerpo y los planos es 0. b) Si vuelve a ser despedido por el muelle qué distancia recorrerá por el plano inclinado hasta detenerse? c) Repetir el problema suponiendo que por el plano horizontal recorre 8 metros antes de encontrarse con el muelle. a) Balance de energía: R La energía final es igual a la energía inicial menos la que pierde por el camino. La energía potencial elástica es igual a la energía potencial gravitatoria inicial menos el trabajo de rozamiento. μ.mg.cos 0'.4.9'8.cos 5 7'8 ; μ.mg 8'6 R R

7 Balance de energía: Epg WR WR Epe m.g.h R.e R.(e + x) k.x 4.9'8.(.sen5) 7 '8. 8'6.(5 + x).000.x x 0'34 m Si no estamos atentos nos comemos la x en el W R y ponemos R.5 en vez de R.(5+x) b) Balance de energía: La energía potencial elástica menos el trabajo de rozamiento es igual a la energía potencial gravitatoria. Epe WR WR Epg k.x R.(e + x) R.e m.g.h.000.0'34 8'6.5'34 7 '8.e 4.9'8.(e.sen5) e 0'5 m c) Si recorre 8 m por el plano horizontal antes de encontrarse con el muelle, repetimos las operaciones del apartado a y obtenemos que comprimirá al muelle: x 0 6 m Si repetimos las operaciones del apartado b nos sale e negativo, lo que nos indica que al ser lanzado por el muelle el cuerpo se detiene antes de alcanzar al plano inclinado. Cuánto recorre por el plano horizontal, al despegarse del muelle, hasta detenerse? Epe WR 0 k.x R.(e + x) '6 8'6.(e + 0'6) 0 e 3'65 m ROBLEMA 7. CAMO GRAVITATORIO Tenemos tres masas puntuales m 300 kg, m 00 kg y m 3 00 kg, situadas en los puntos: (0,0), (0,80) y 3 ( 0,0) expresados en metros. Calcular el campo gravitatorio, g, creado por éstas en el punto 0 (0,40). El campo creado por una serie de masas puntuales en un punto es igual a la suma de los campos creados por cada una de ellas en dicho punto. g Σg i Campo creado por m : G.m 6' Módulo: g '005.0 kg r 44'7 40 Ángulo: arctg 63'43º 0 g ( 63 43º) (4 47.0, ) /kg 0 3

8 Campo creado por m : G.m 6' g 8'33.0 r arctg 90º 0 g (90º) (0, ) /kg Campo creado por m 3 : kg G.m3 6' g 3 3'33.0 kg r3 44' arctg 6'56º 0 g ( 6 56º) ( 49.0, 98.0 ) /kg El campo total es igual a la suma de los tres campos calculados: g ( 98.0, ) ( 50 3º) /kg Si en el punto 0 colocamos una masa de 000 kg cuál sería la fuerza inicial a la que estaría sometida? (no se considera el campo gravitatorio terrestre). m.g , en la dirección 50 3º

FICHA 5_1. LEYES DE NEWTON.

FICHA 5_1. LEYES DE NEWTON. 1. Si un cuerpo observamos que se mueve con velocidad constante, podemos asegurar que sobre él no actúan fuerzas? Explicación. No. Si un cuerpo se mueve con velocidad constante, lo que sabemos es que su

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica. 1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9

Más detalles

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N DINÁMICA 1. Sobre una masa de 2Kg actúan tres fuerzas tal como se muestra en la figura. Si la aceleración del bloque es a = -20i m/s 2, determinar: a) La fuerza F 3. Rpta. (-120i-110j)N b) La fuerza resultante

Más detalles

BLOQUE 2. DINÁMICA Y ENERGÍA.

BLOQUE 2. DINÁMICA Y ENERGÍA. BLOQUE 2. DINÁMICA Y ENERGÍA. Dinámica básica. Fuerzas y leyes de Newton. 1. Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. 2. Calcular la masa de

Más detalles

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato Unidad 3: Dinámica 3.1 Fuerza o interacción: Características de las fuerzas. Carácter vectorial. Efectos dinámico y elástico de una fuerza. Ley de Hooke. Dinamómetros. Tipos de fuerzas: a distancia, por

Más detalles

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4

Más detalles

Ejercicios de Física 4º de ESO

Ejercicios de Física 4º de ESO Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R

Más detalles

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h? UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Más detalles

DINÁMICA DE LA PARTÍCULA

DINÁMICA DE LA PARTÍCULA DINÁMICA DE LA PARTÍCULA ÍNDICE 1. Introducción 2. Leyes de Newton 3. Principio de conservación del momento lineal 4. Tipos y ejemplos de fuerzas 5. Diagrama de fuerzas 6. Equilibrio de una partícula 7.

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

ACTIVIDADES RECAPITULACIÓN 1: CINEMÁTICA Y DINÁMICA

ACTIVIDADES RECAPITULACIÓN 1: CINEMÁTICA Y DINÁMICA ACTIVIDADES RECAPITULACIÓN 1: CINEMÁTICA Y DINÁMICA A-1. a) e = - 40 + 32t t 2 (m) v = de/dt = 32 2t (m/s) Si v= 0 m/s 0 = 32-2t t = 32/2 = 16 s b) distancia recorrida = Δe = e 16 e 0 + e 20 e 16 = 216

Más detalles

20 [kg] Fuerza friccional = 20 N 60 [kg] 3. Resultado: Resultado:2 m/s 2

20 [kg] Fuerza friccional = 20 N 60 [kg] 3. Resultado: Resultado:2 m/s 2 1. 1. (OI febrero 01) Dos bloques situados sobre una superficie horizontal lisa (rozamiento despreciable) son empujados hacia la derecha por una fuerza. La fuerza que el bloque de mayor masa ejerce sobre

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios de energía

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios de energía 1(5) 1.- Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. 2.- A qué altura debe

Más detalles

Energía: Cuestiones Curso 2010/11

Energía: Cuestiones Curso 2010/11 Física 1º Bachillerato Energía: Cuestiones Curso 2010/11 01SA 1. a) Qué trabajo se realiza al sostener un cuerpo durante un tiempo t? b) Qué trabajo realiza la fuerza peso de un cuerpo si éste se desplaza

Más detalles

EJERCICIOS TRABAJO,POTENCIA Y ENERGÍA.

EJERCICIOS TRABAJO,POTENCIA Y ENERGÍA. EJERCICIOS TRABAJO,POTENCIA Y ENERGÍA. 1. Un objeto se desplaza una distancia de 20 m, al actuar sobre él una fuerza de 14 N. Calcule el trabajo realizado sobre el objeto cuando la fuerza: a) Tiene el

Más detalles

BOLETÍN EJERCICIOS TEMA 2 FUERZAS

BOLETÍN EJERCICIOS TEMA 2 FUERZAS BOLETÍN EJERCICIOS TEMA 2 FUERZAS 1. Al aplicar una fuerza de 20 N sobre un cuerpo adquiere una aceleración de 4 m/s 2. Halla la masa del cuerpo. Qué aceleración adquirirá si se aplica una fuerza de 100

Más detalles

1- Determina el módulo y dirección de la resultante de los siguientes

1- Determina el módulo y dirección de la resultante de los siguientes PROBLEMAS DE DINÁMICA 1- Determina el módulo y dirección de la resultante de los siguientes r sistemas r r de r fuerzas: r r r r r r r r r r r a) F 1 = 3i + 2j ; F 2 = i + 4j ; F 3 = i 5j b) F 1 = 3i +

Más detalles

Física y Química. A = 7 u. B = 5 u

Física y Química. A = 7 u. B = 5 u Introducción Cálculo con Vectores [a] Vectores con la misma dirección y con el mismo sentido El módulo del vector resultante será la suma de los módulos de los vectores participantes. La dirección y el

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS

TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS TRABAJO Y ENERGÍA. CUESTIONES Y PROBLEMAS 1.- a.- Un hombre rema en un bote contra corriente, de manera que se encuentra en reposo respecto a la orilla. Realiza trabajo? b.- Se realiza trabajo cuando se

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS 1. Una partícula que se mueve en el plano X, Y un desplazamiento r= 2i + 3j mientras que por ella actúa una fuerza constante F= 5i + 2j.Calcular el trabajo realizado. 2. Un bloque

Más detalles

LAS FUERZAS. DINÁMICA DE LA PARTÍCULA

LAS FUERZAS. DINÁMICA DE LA PARTÍCULA LAS FUERZAS. DINÁMICA DE LA PARTÍCULA ÍNDICE 1. Introducción 2. Leyes de Newton 3. Tipos y ejemplos de fuerzas 4. Diagrama de fuerzas 5. Equilibrio de una partícula BIBLIOGRAFÍA: Caps. 4 y 5 del Tipler

Más detalles

B. REPASO DE MECÁNICA ÍNDICE

B. REPASO DE MECÁNICA ÍNDICE BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

UNIVERSIDAD DE GRANADA PRUEBA DE ACCESO A LA UNIVERSIDAD TERRITORIO DEL MINISTERIO DE EDUCACIÓN CURSO

UNIVERSIDAD DE GRANADA PRUEBA DE ACCESO A LA UNIVERSIDAD TERRITORIO DEL MINISTERIO DE EDUCACIÓN CURSO UNIVERSIDAD DE GRANADA PRUEBA DE ACCESO A LA UNIVERSIDAD TERRITORIO DEL INISTERIO DE EDUCACIÓN CURSO 00-0 FÍSICA Instrucciones: a) Duración: hora y 30 minutos. b) Debe desarrollar tres problemas y dos

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad SOLUCIOES DE FIAL DE UIDAD DE LA UIDAD 5. Sabiendo que las masas del Sol y de la Tierra son,99 0 30 kg y 5,98 0 4 kg, respectivamente, y que la distancia entre la Tierra

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

DINÁMICA DE SISTEMAS DE PUNTOS.- Sobre un vagón que se mueve a i m/s con respecto a la vía viaja un cañón que dispara una bala de Kg con una velocidad respecto al suelo de (400 i + 00 j) m/s. Si la masa

Más detalles

v v at 0 10 a 5 a 2m s

v v at 0 10 a 5 a 2m s . Una furgoneta transporta en su interior un péndulo que cuelga del techo. Calcular el ángulo que forma el péndulo con la ertical en función de la aceleración de la furgoneta. I T P a Cuando se muee con

Más detalles

=2,5 i +4,33 j N ; F 2

=2,5 i +4,33 j N ; F 2 Dinámica. 1. Calcula la aceleración de un cuerpo de 0 5 kg de masa sobre el que actúan las siguientes fuerzas: F 1 = 5 j ; F 2 = 2 i ; F 3 =4 i 6 j Sol: a=4 i 2 j 2. Descomponer en sus componentes las

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

DINÁMICA DEL PUNTO Solución: Solución: Solución: Solución: Solución: Solución:

DINÁMICA DEL PUNTO Solución: Solución: Solución: Solución: Solución: Solución: DINÁMICA DEL PUNTO 1.- Se aplica una fuerza constante de 25 N a un cuerpo de 5 Kg, inicialmente en reposo. Qué velocidad alcanzará y qué espacio habrá recorrido al cabo de 10 segundos? Solución: v = 50

Más detalles

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Serway, física, volumen 1, tercera edición. Un niño se desliza desdeel reposo, por una resbaladilla

Más detalles

Ejercicio de Física 20/5/03 Seminario de Física y Química

Ejercicio de Física 20/5/03 Seminario de Física y Química Ejercicio de Física 20/5/03 Seminario de Física y Química Colegio Claret Nombre: Curso: 1ºC,nº: 1. a) Un bloque de 2 kg de masa está unido a un muelle (de K=150N/m) comprimido una longitud de 20 cm. Si

Más detalles

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO 5. DINÁMICA FORMULARIO 5.1) Una grúa de puente, cuyo peso es P = 2x10 4 N, tiene un tramo de L = 26 m. El cable, al que se cuelga la carga se encuentra a una distancia l = 10 m de uno de los rieles. Determinar

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

PROBLEMAS DE DINÁMICA

PROBLEMAS DE DINÁMICA PROBLEMAS DE DINÁMICA 1.- Un bloque de 450 kg de masa se encuentra en reposo sobre un plano horizontal, cuando comienzan a actuar sobre él las fuerzas F 1 = 7000 N ( en dirección horizontal) y F 2 = 4000

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA 1

DEPARTAMENTO DE FÍSICA Y QUÍMICA 1 Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Viernes, 3 de diciembre de 2010 Nombre y Apellidos JRC 1 Resuelve los siguientes apartados: a) Se tiene una fuerza

Más detalles

GUÍA DE PROBLEMAS PROPUESTOS N 3: TRABAJO Y ENERGÍA

GUÍA DE PROBLEMAS PROPUESTOS N 3: TRABAJO Y ENERGÍA Premisa de Trabajo: GUÍA DE PROBLEMAS PROPUESTOS N 3: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas que actúan sobre el cuerpo o sistema de cuerpos en estudio, la identificación

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Guía Nº 5: Trabajo y Energía

Guía Nº 5: Trabajo y Energía Guía Nº 5: Trabajo y Energía Ejercicio 1. Un hombre debe mover 15 m una caja de 20 kg realizando una fuerza de 40 N. Si la caja se encuentra apoyada sobre el suelo. Calcule el trabajo que realiza el hombre

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia

Más detalles

PROBLEMAS DE TRABAJO Y ENERGÍA

PROBLEMAS DE TRABAJO Y ENERGÍA 1 PROBLEMAS DE TRABAJO Y ENERGÍA 1- Una caja de 10 kg descansa sobre una superficie horizontal. El coeficiente de rozamiento entre la caja y la superficie es 0,4. Una fuerza horizontal impulsa la caja

Más detalles

Rpta. (a) W = J. (b) W = 600 J. (c) W (neto) = J, V B = 6.98 m/s

Rpta. (a) W = J. (b) W = 600 J. (c) W (neto) = J, V B = 6.98 m/s ENERGÍ 1. Un resorte sin deformación de longitud 20cm es suspendido de un techo. Si en su extremo libre se le suspende un bloque de 1kg de masa se deforma 10 cm. a) Determinar la constante k del resorte.

Más detalles

P B. = 1,89 m/s Un cuerpo de masa m se encuentra suspendido de un hilo. Se desvía éste de la vertical un ángulo φ

P B. = 1,89 m/s Un cuerpo de masa m se encuentra suspendido de un hilo. Se desvía éste de la vertical un ángulo φ UNIVERSIDD DE OVIEDO Escuela olitécnica de Ingeniería de Gijón urso 3-4 Sabiendo que los bloques y llegan al suelo un segundo después de que el sistema en reposo se abandone a sí mismo, dedúzcanse los

Más detalles

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO 1. Una persona arrastra una maleta ejerciendo una fuerza de 400 N que forma un ángulo de 30 o con la horizontal. Determina el valor numérico de las componentes

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Numericamente idénticas, pero conceptualmente distintas en Mecánica Clásica. Numérica y conceptualmente distintas en Relatividad General.

Numericamente idénticas, pero conceptualmente distintas en Mecánica Clásica. Numérica y conceptualmente distintas en Relatividad General. FUNDAMENTOS FÍSICOS DE LA INGENIERÍA. CURSO 22/23. PRIMERO INGENIERO DE TELECOMUNICACIÓN. PRIMERA PRUEBA DE SOBRENOTA: MECÁNICA SOLUCIÓN DETALLADA. Las masas inerte y gravitatoria son: Numérica y conceptualmente

Más detalles

Trabajo y Energía 30º. Viento

Trabajo y Energía 30º. Viento Física y Química TEM 7 º de achillerato Trabajo y Energía.- Un barco y su tripulación se desplazan de una isla hasta otra que dista Km en línea recta. Sabiendo que la fuerza del viento sobre las velas

Más detalles

INSTITUCION EDUCATIVA NACIONAL LOPERENA DINAMICA PROBLEMAS DE APLICACIÓN DE LAS LEYES DE NEWTON

INSTITUCION EDUCATIVA NACIONAL LOPERENA DINAMICA PROBLEMAS DE APLICACIÓN DE LAS LEYES DE NEWTON INSTITUCION EDUCATIVA NACIONAL LOPERENA DINAICA PROBLEAS DE APLICACIÓN DE LAS LEYES DE NEWTON NOTA: de los problemas dados a continuación recomiendo escoger CUATRO de ellos y desarrollar detalladamente,

Más detalles

3.- LAS FUERZAS (DINÁMICA DE LA PARTÍCULA)

3.- LAS FUERZAS (DINÁMICA DE LA PARTÍCULA) 3.- LAS FUERZAS (DINÁMICA DE LA PARTÍCULA) 1) Clasifica los siguientes cuerpos como elásticos, rígidos o plásticos para una fuerza que puedas hacer con tus manos: a) Muelle e) Taco de madera b) Bloque

Más detalles

PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO-

PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO- PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO- ) Di si las siguientes frases o igualdades son V o F y razona tu respuesta: a) La velocidad angular depende del radio en un m. c. u. b) La velocidad

Más detalles

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva. Tipler Mosca.

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva. Tipler Mosca. Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Tipler Mosca. Quinta edición Un objeto se somete a una única fuerza Fx que varía con la posición

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema). Examen de Física-, Ingeniería Química Examen final. Enero de 205 Problemas (Dos puntos por problema). Problema : La posición de una partícula móvil en el plano Oxy viene dada por : x(t) = 2 t 2 y(t) =

Más detalles

R = = 14 = 3.74

R = = 14 = 3.74 CUESTIONES 1. Dado el sistema de fuerzas F 1 i - k, F j + k, F 3 i + j a) Determinar el módulo de la resultante y su dirección expresada utilizando los cosenos directores (0.3). b) Calcular el momento

Más detalles

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

Física 4º E.S.O. 2014/15

Física 4º E.S.O. 2014/15 Física 4º E.S.O. 2014/15 TEMA 5: Dinámica Ficha número 9 1.- Un automóvil de 800 kg que se desplaza con una velocidad de 72 km/h frena y se detiene en 8 s. Despreciando la fuerza de rozamiento, calcula:

Más detalles

50 1,58 5 1,58 66,52m. v v g(t 1) 34,2m s. p p 1 34,2 3 25,8 4 v v 10,8m s

50 1,58 5 1,58 66,52m. v v g(t 1) 34,2m s. p p 1 34,2 3 25,8 4 v v 10,8m s . Desde una altura de m se deja caer un cuerpo de 3 kg. Un segundo más tarde se lanza desde el suelo y en la misma ertical otro cuerpo de kg con una elocidad de 5 m/s. alcular a qué altura chocan, que

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 4.- DINÁMICA DE LA PARTÍCULA 4 Dinámica de

Más detalles

Cinemática. Nombre y Apellidos:

Cinemática. Nombre y Apellidos: Cinemática Nombre y Apellidos: 1. Dadas las fuerzas (, 4), (3, ) y (5, ), calcula la fuerza resultante y su módulo (analíticamente y gráficamente) ( puntos) La fuerza resultante se calcula sumando cada

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

PRIMER PARCIAL - Física 1 4 de mayo de 2010

PRIMER PARCIAL - Física 1 4 de mayo de 2010 PRIMR PARCIAL - Física 1 4 de mayo de 2010 g= 9,8 m/s 2 Cada pregunta tiene sólo una respuesta correcta. Cada respuesta correcta suma 4 puntos. Las respuestas incorrectas restan, a lo sumo, 1 punto. l

Más detalles

Respuesta correcta: c)

Respuesta correcta: c) PRIMER EXAMEN PARCIAL DE FÍSICA I 04/11/016 MODELO 1 1.- La posición de una partícula que se mueve en línea recta está definida por la relación x=t -6t -15t+40, donde x se expresa en metros y t en segundos.

Más detalles

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg.

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. Ejercicios de física: cinemática y dinámica 1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. 2º Calcular la masa de un cuerpo que aumenta

Más detalles

PRACTICO Nº 1 FUERZAS CONCURRENTES

PRACTICO Nº 1 FUERZAS CONCURRENTES PRACTICO Nº 1 FUERZAS CONCURRENTES 1) Un cuerpo cuya masa es de 2,5 kg se mueve con una aceleración constante de 1,2 mt/sgdo 2, determine cuál es la fuerza necesaria para mover dicho cuerpo 2) Un ascensor

Más detalles

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014 Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00

Más detalles

METODOS DE ENERGIA Problema #1 Problema #2 PROBLEMA #3

METODOS DE ENERGIA Problema #1 Problema #2 PROBLEMA #3 METODOS DE ENERGIA Problema #1 El mecanismo mostrado se utiliza para probar la resistencia de un bloque al impacto, lanzándolo desde un extremo al otro. El resorte de la izquierda se comprime hasta que

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

INSTITUTO TECNOLOGICO DE SALTILLO

INSTITUTO TECNOLOGICO DE SALTILLO INSTITUTO TECNOLOGICO DE SALTILLO SEGUNDA LEY DE NEWTON PROBLEMAS COMPLEMENTARIOS 1.- Se muestran 3 bloques de masas m1 = 2 kg. m2 = 3 kg. m3 = 8 kg. Si se supone nulo el roce, calcular la aceleración

Más detalles

Guía 5. Leyes de Conservación

Guía 5. Leyes de Conservación I. Energía mecánica Guía 5. Leyes de Conservación 1) Un bloque de 44.5 Kg resbala desde el punto más alto de un plano inclinado de 1,5 m de largo y 0,9 m de altura. Un hombre lo sostiene con un hilo paralelamente

Más detalles

4º E.S.O. FÍSICA Y QUÍMICA 8. LAS FUERZAS. Dpto. de Física y Química. R. Artacho

4º E.S.O. FÍSICA Y QUÍMICA 8. LAS FUERZAS. Dpto. de Física y Química. R. Artacho 4º E.S.O. FÍSICA Y QUÍMICA 8. LAS FUERZAS R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Fuerzas que actúan sobre los cuerpos 2. Leyes de Newton de la dinámica 3. Las fuerzas y el movimiento

Más detalles

W F e m g h 500 9,8 t t t 50 Potencia practica 2450 Rendimiento= 100 = 100 = 82% Potencia teorica 3000

W F e m g h 500 9,8 t t t 50 Potencia practica 2450 Rendimiento= 100 = 100 = 82% Potencia teorica 3000 TEMA TRABAJO, POTENIA Y ENERGÍA. Un cuerpo de 5 kg se deja caer desde una altura de 0 metros. alcula el trabajo realizado por el peso del cuerpo. W=F e = P h=m g h=5 9,8 0=470 J. Sobre un cuerpo de 0 kg

Más detalles

60t t 2,25s 0S(t 1) g(t 1) 5t 60t 55 2

60t t 2,25s 0S(t 1) g(t 1) 5t 60t 55 2 0. Una partícula (4 unidades de masa) choca con un núcleo de carbono ( u) que está en reposo, y se desía 4 hacia la derecha respecto de la trayectoria original. El núcleo de carbono se muee siguiendo una

Más detalles

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.

Más detalles

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa.

DINÁMICA. Un cuerpo modifica su velocidad si sobre él se ejerce una acción externa. DINÁMICA La Dinámica es la parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos. Un cuerpo modifica

Más detalles

E1.3: Energía mecánica

E1.3: Energía mecánica I.E.S. ARQUITECTO PEDRO GUMIEL Física y Química BA1 E1.3: Energía mecánica 1. Se deja caer verticalmente una piedra de kg desde 50 m de altura. Calcula: a) Su energía mecánica en el punto inicial. En el

Más detalles

Guía 4: Leyes de Conservación: Energía

Guía 4: Leyes de Conservación: Energía Guía 4: Leyes de Conservación: Energía NOTA : Considere en todos los casos g = 10 m/s² 1) Imagine que se levanta un libro de 1,5 kg desde el suelo para dejarlo sobre un estante situado a 2 m de altura.

Más detalles

50 1,58 5 1,58 66,52m. p p 1 34,2 3 25,8 4 v v 10,8m s 0Y FY TODO TODO

50 1,58 5 1,58 66,52m. p p 1 34,2 3 25,8 4 v v 10,8m s 0Y FY TODO TODO . Desde una altura de m se deja caer un cuerpo de 3 kg. Un segundo más tarde se lanza desde el suelo y en la misma ertical otro cuerpo de kg con una elocidad de 5 m/s. Calcular a qué altura chocan, que

Más detalles

Unidad 4. Dinámica de la partícula

Unidad 4. Dinámica de la partícula Unidad 4. Dinámica de la partícula Qué es una fuerza? Una influencia externa sobre un cuerpo que causa su aceleración con respecto a un sistema de referencia inercial. La fuerza F se define en función

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 5 Dinámica práctica EJECICIOS OUESTOS 5.1 epite el ejercicio resuelto 2 suponiendo que: a) F forma un ángulo de 37 por debajo de la horizontal. b) Tiene algún efecto sobre la aceleración el cambio en la

Más detalles

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 5 : Dinámica

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 5 : Dinámica Tema 5 : Dinámica Esquema de trabajo: 1. Concepto de Fuerza Tipos de fuerzas Efectos producidos por las fuerzas Carácter vectorial de las fuerzas Unidad de medida Fuerza resultante Fuerza de rozamiento

Más detalles

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (TEMA 9)

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (TEMA 9) I..S. Padre Manjón. Dpto de ísica y Química. ísica y Química º Bachillerato LGUS JCICIS SULTS D TBJ Y GÍ (TM 9) Un bloque de 5 kg se desliza por una superficie horizontal lisa con una velocidad de 4 m/s

Más detalles

a) Las fuerzas que intervienen en el movimiento de este cuerpo son las siguientes:

a) Las fuerzas que intervienen en el movimiento de este cuerpo son las siguientes: 1.- Sobre un cuerpo de 2 kg de masa en reposo en una superficie horizontal, aplicamos una fuerza de 30 N, formando un ángulo de 32º con la horizontal. Si el coeficiente de rozamiento es de 0,5: a) Realiza

Más detalles

Fuerza de rozamiento en un plano inclinado

Fuerza de rozamiento en un plano inclinado Fuerza de rozamiento en un plano inclinado En esta página analizamos detalladamente un problema muy común en un curso de Física cuya solución no se suele presentar de forma completa. Un bloque de masa

Más detalles