Técnico Profesional FÍSICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Técnico Profesional FÍSICA"

Transcripción

1 Programa Técnico Profesional FÍSICA Dinámica II: ley de gravitación y fuerza de roce Nº Ejercicios PSU GUÍA CURSOS ANUALES Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 m s Un grupo de científicos necesita poner en órbita entre la Tierra y la Luna un satélite de MC comunicaciones, por lo que quedará sujeto a la acción de las fuerzas de atracción gravitacional de ambos cuerpos. Para hacerlo, estudian tres posibles posiciones, P 1, P 2 y P 3, las que se muestran en la siguiente fi gura (P 2 es punto medio entre la Tierra y la Luna). Tierra P 1 P 2 P 3 Luna Por otra parte, los científi cos saben que la magnitud de la fuerza de atracción gravitacional entre dos cuerpos de masas m 1 y m 2, separados una distancia d, está definida por la expresión F = G m 1 m 2 d 2 en donde G es una constante llamada constante de gravitación universal. Si se sabe que, dependiendo de la posición en la que sea puesto el satélite, las fuerzas de atracción de la Tierra y la Luna sobre el cuerpo pueden llegar a equilibrarse, en cuál(es) de los puntos mostrados en la fi gura se podría poner el satélite para que esto suceda? GUICTC017TC32-A16V1 I) P 1 II) P 2 III) P 3 A) Solo I B) Solo II C) Solo III D) Solo I y II E) Solo II y III Cpech 1

2 FÍSICA 2. Con respecto a la fuerza de roce, es correcto afi rmar que MC I) para un mismo cuerpo apoyado sobre una superfi cie rugosa, la fuerza de roce cinético es mayor que la fuerza de roce estático. II) el roce estático posee una magnitud variable, mientras que el roce cinético posee una magnitud constante. III) el roce estático posee un valor máximo. A) Solo I B) Solo II C) Solo III D) Solo I y III E) Solo II y III 3. Sobre un cuerpo P, que se mueve sobre una superfi cie horizontal rugosa, se aplica una fuerza de MC magnitud F, paralela a la superficie, produciéndole una aceleración Q bajo la acción de una fuerza de roce cinético R. Si se aumenta al doble la fuerza aplicada, entonces es correcto afi rmar que la fuerza de roce cinético A) aumenta al cuádruple. B) aumenta al doble. C) se mantiene igual. D) disminuye a la mitad. E) disminuye a la cuarta parte. 4. Sobre un resorte de constante de rigidez K se aplica una fuerza de magnitud F, produciéndose MC una deformación X. Si se aumenta la magnitud de la fuerza al doble, entonces es correcto afi rmar que la deformación del resorte A) se reduce a la cuarta parte. B) se reduce a la mitad. C) se mantiene igual. D) se duplica. E) se cuadruplica. 5. Se quiere empujar un objeto de 500 [kg] de modo que se mueva con velocidad constante sobre MC una superfi cie horizontal. Si el coeficiente de roce cinético entre la superfi cie y el objeto es 0,3, cuál debe ser el módulo de la fuerza paralela a la superfi cie que se debe ejercer sobre el objeto? A) 50 [N] B) 100 [N] C) 150 [N] D) [N] E) [N] 2 Cpech

3 GUÍA 6. La siguiente fi gura muestra dos bloques, A y B, unidos mediante una cuerda inextensible que MC pasa por una polea, ambas de masa despreciable. El bloque B descansa sobre una superficie horizontal rugosa, encontrándose el conjunto en reposo. B A Si el bloque B tiene un peso de 700 [N] y el coefi ciente de roce estático entre el bloque y la superfi cie es 0,25, cuál debe ser la masa del bloque A para que el sistema esté a punto de moverse? A) 1,75 [kg] B) 3,50 [kg] C) 17,50 [kg] D) 35,00 [kg] E) 175,00 [kg] 7. Sobre un plano horizontal se empuja un cuerpo de 10 [N] de peso con una fuerza constante, MC paralela al plano y cuyo módulo es 4 [N]. Si el cuerpo mantiene una rapidez constante de 5 m s, cuál es el coefi ciente de roce entre el plano y el cuerpo? A) 0,20 B) 0,25 C) 0,30 D) 0,40 E) 0,50 8. Un bloque de 100 [kg], que se encuentra sobre una superfi cie horizontal, es empujado con una MC fuerza de 80 [N] paralela a la superficie. Si el bloque permanece en reposo y el coefi ciente de roce estático entre el bloque y la superfi cie es 0,12, cuál es el módulo de la fuerza de roce que actúa sobre el cuerpo? A) 0 [N] D) 80 [N] B) 40 [N] E) 120 [N] C) 60 [N] 9. Respecto de las características de los coeficientes de roce estático ( s ) y cinético ( k ), entre dos MC materiales determinados, es correcto mencionar que I) s siempre tiene un valor mayor que k. II) las unidades para expresar s y k son el newton y la dina. III) el valor de k aumenta al incrementarse la rapidez con la que desliza una superfi cie sobre la otra. A) Solo I D) Solo I y III B) Solo II E) I, II y III C) Solo I y II Cpech 3

4 FÍSICA Enunciado para las preguntas 10 y 11 A un cuerpo de masa 3 [kg], que se encuentra sobre una superfi cie horizontal rugosa, se le aplica una fuerza F mediante una cuerda inextensible que pasa por dos poleas simples, todas de masa despreciable, tal como lo muestra la fi gura. f roce m = 3 [kg] s = 0,7 k = 0,6 F Considerando un eje positivo hacia la derecha, que las poleas no presentan roce, y la información contenida en la imagen, conteste las siguientes preguntas. 10. Cuál es el valor de la fuerza F necesaria para que el bloque esté a punto de moverse? MC A) 10 [N] D) 18 [N] B) 12 [N] E) 21 [N] C) 15 [N] 11. Si el bloque se encuentra en movimiento, cuál es el módulo de la aceleración que experimentará MC al aplicar una fuerza F de módulo 19 [N]? A) 1 3 B) 2 3 C) 3 4 m s 2 D) 4 3 m s 2 E) 3 2 m s La fuerza de atracción gravitacional inicial entre dos cuerpos de masas m 1 y m 2 es F. Si ahora la MC distancia entre los cuerpos disminuye a la mitad, la fuerza de atracción entre ellos es A) 4F B) 2F C) F D) F 2 E) F 4 m s 2 m s 2 4 Cpech

5 GUÍA 13. Un cuerpo de masa 10 [kg] se mueve sobre una superfi cie horizontal, bajo la acción de una fuerza MC externa F y un coefi ciente de roce de 0,5, tal como lo muestra la fi gura. f roce m = 10 [kg] F x = 0,5 Considerando el sistema de referencia dado en la figura, cuál es el módulo de la aceleración y el tipo de movimiento que experimenta el cuerpo, si la fuerza F aplicada es de 55 [N]? A) 0,5 m s 2, MRUA B) 0,5 m s 2, MRUR C) 0,5 m s 2, MRUA D) 0,5 m s 2, MRU E) 0,5 m s 2, MRUR 14. La ley de Hooke se puede expresar como F = -k.x. Considerando que en la expresión anterior F MTP es la fuerza elástica, k es la constante de rigidez del cuerpo elástico y x es la deformación experimentada por dicho cuerpo, es correcto afi rmar que I) al aumentar al doble la fuerza elástica, disminuye a la mitad la constante de rigidez. II) al aumentar al doble la fuerza elástica, aumenta al doble la deformación. III) si la deformación del resorte es nula, en el resorte no actúa la fuerza elástica. A) Solo I B) Solo II C) Solo III D) Solo II y III E) I, II y III Cpech 5

6 FÍSICA Encabezado para las preguntas 15, 16 y 17 La fi gura muestra tres situaciones, A, B y C, en donde aparecen Alberto y una mesa de 10 [kg] sobre una superfi cie horizontal rugosa. En A, Alberto no tiene contacto con la mesa. En B, Alberto empuja la mesa, sin lograr moverla. En C, Alberto logra arrastrar la mesa sobre el suelo, tirando de ella. Si los coefi cientes de roce estático y cinético entre la mesa y el suelo son s = 0,8 y k = 0,6, conteste las siguientes preguntas. v = 0 m s v A B C 15. Considerando la situación A, es decir, cuando Alberto no tiene contacto con la mesa y esta se MTP encuentra en reposo, cuál(es) de las siguientes afi rmaciones es (son) correcta(s)? I) La fuerza de roce cinético sobre la mesa es nula. II) La magnitud del peso de la mesa es 10 [N]. III) La magnitud de la fuerza de roce estático sobre la mesa es 80 [N]. A) Solo I B) Solo II C) Solo III D) Solo I y III E) I, II y III 16. Considerando la situación B, en donde Alberto empuja la mesa sin lograr moverla, si empuja MTP ejerciendo una fuerza de 50 [N], paralela a la superfi cie, cuál es la magnitud de la fuerza de roce que actúa sobre la mesa? A) 0 [N] B) 20 [N] C) 50 [N] D) 60 [N] E) 80 [N] 17. Si ahora consideramos la situación C, en donde Alberto arrastra la mesa sobre el suelo, y sabiendo MTP que aplica una fuerza horizontal constante de 60 [N] para hacerlo, cuál es el valor de la fuerza de roce que actúa sobre una sola de las cuatro patas de la mesa? A) 5 [N] B) 15 [N] C) 20 [N] D) 30 [N] E) 60 [N] 6 Cpech

7 GUÍA 18. Si la fuerza de atracción gravitacional entre la Tierra y la Luna es F, cuál(es) de las siguientes MC proposiciones permitiría(n) disminuir dicha fuerza a la mitad? I) Duplicar la masa de la Tierra y aumentar la distancia entre la Tierra y la Luna al doble. II) Disminuir la distancia entre la Tierra y la Luna a la mitad. III) Aumentar al doble la distancia entre la Tierra y la Luna, disminuir la masa de la Tierra a la mitad y aumentar la masa de la Luna al doble. Es (son) correcta(s) A) solo I. D) solo II y III. B) solo II. E) I, II y III. C) solo I y II. 19. Respecto de la fuerza de roce que actúa sobre una caja que es arrastrada sobre una superfi cie MTP horizontal, es correcto afi rmar que depende de I) el material con el que está hecha la caja. II) el material de la superficie sobre la que se encuentra la caja. III) el peso de la caja. A) Solo I D) Solo II y III B) Solo II E) I, II y III C) Solo III 20. En el sistema de la fi gura el bloque resbala con aceleración constante por la superfi cie horizontal MTP rugosa sobre la que se encuentra, producto del peso del cilindro que cuelga de la polea sin roce. M W H S R Considerando que W, H, M, S y R son los módulos de las fuerzas: normal, peso del bloque, roce, tensión y peso del cilindro, respectivamente, es correcto afi rmar que I) S = R II) R > M III) H = W A) Solo I D) Solo II y III B) Solo II E) I, II y III C) Solo I y III Cpech 7

8 FÍSICA Tabla de corrección Ítem Alternativa Habilidad 1 Comprensión 2 Reconocimiento 3 Comprensión 4 Aplicación 5 Aplicación 6 Aplicación 7 Aplicación 8 Aplicación 9 Reconocimiento 10 Aplicación 11 Aplicación 12 Aplicación 13 ASE 14 ASE 15 Comprensión 16 Aplicación 17 Aplicación 18 ASE 19 Comprensión 20 ASE 8 Cpech

9 GUÍA Resumen de contenidos La ley de la gravitación universal La ley de gravitación de Newton expresa que dos cuerpos de masas m 1 y m 2, separados una distancia r, se atraen con una fuerza cuya magnitud está dada por F = G m 1 m 2 r 2 En donde G es una constante llamada constante de gravitación universal, y cuyo valor en el Sistema -11 Internacional es: G = 6,67 10 N m2. kg 2 Todos los cuerpos en el universo interactúan debido a las fuerzas de gravedad. Así, por ejemplo, los planetas se mantienen girando alrededor del Sol, y la Luna alrededor de la Tierra, debido a las fuerzas de atracción gravitacional entre ellos. Ley de gravitación universal de Newton Luna g r TL Fuerza elástica Los cuerpos elásticos son aquellos que se deforman visiblemente ante la acción de una fuerza, pero que vuelven a su forma original cuando dicha fuerza deja de actuar; los resortes y elásticos son cuerpos de este tipo. La fuerza elástica (F e ) es una fuerza que aparece en los cuerpos elásticos cuando se deforman; es una fuerza de reacción a la fuerza que deforma el cuerpo, y es proporcional a la deformación producida. Se expresa mediante la ley de Hooke. Cpech 9

10 FÍSICA Ley de Hooke F e = k x Posición de equilibrio El signo " " indica que la fuerza elástica siempre es contraria a la deformación producida. x (deformación) F e Cuerpo que se cuelga del resorte y lo deforma Peso (fuerza deformadora) Gráfico de fuerza elástica versus deformación F e x (deformación) Fuerza de roce Fuerza que actúa entre superficies en contacto, oponiéndose a que una deslice sobre la otra. Características Se opone al movimiento entre superficies en contacto. Es proporcional a la fuerza normal que ejerce la superficie sobre el cuerpo. Depende del material de las superficies en contacto. Se calcula como: f roce = N Donde es el coeficiente de roce y N es el valor de la fuerza normal que actúa sobre el cuerpo. La fuerza de roce puede ser de dos tipos: roce estático o roce cinético. 10 Cpech

11 GUÍA Roce estático Actúa cuando las superficies en contacto permanecen en reposo una respecto de la otra. Características Es una fuerza de reacción. Es una fuerza de módulo variable. Posee un valor máximo, que se calcula como: f s = s N Donde s es el coeficiente de roce estático y N es el valor de la fuerza normal que actúa sobre el cuerpo. Ejemplo: cuerpo en reposo F Su DCL es F roce N F Roce cinético Actúa cuando existe movimiento relativo entre las superficies en contacto. Características No es una fuerza de reacción. Es una fuerza de módulo constante. Posee un valor único, que se calcula como: f k = k N Donde k es el coeficiente de roce cinético y N es el valor de la fuerza normal que actúa sobre el cuerpo. Ejemplo: cuerpo en movimiento P f k = cte. F 2 > F 1 f k = cte. F 1 f k F 2 f k Observación Para un mismo cuerpo sobre una determinada superficie, la fuerza de roce cinético siempre es menor que la fuerza de roce estático máxima. Cpech 11

12 FÍSICA b A c Glosario Ley científica: Una ley es una afi rmación o proposición que describe una relación constante entre factores o variables que inciden en un fenómeno observable en la naturaleza, y que ha resultado ser cierta cada vez que alguien la ha sometido a prueba bajo determinadas condiciones. A veces está relación puede expresarse de forma matemática. Por ejemplo, la ley de gravitación universal de Newton. Fuerza de reacción: Fuerza de igual magnitud y dirección, pero de sentido opuesto, con que un cuerpo responde a la fuerza ejercida por otro cuerpo sobre él. Normal: Línea recta perpendicular a otra recta o a un plano. Estático: Que permanece en un mismo estado. Cinético: Perteneciente o relativo al movimiento. Movimiento relativo: Movimiento cuya percepción no es absoluta, sino que es discutible y susceptible de ser puesta en cuestión. Por ejemplo, para dos superfi cies en contacto, si solo se hace deslizar una de ellas sobre la otra, manteniendo la segunda en reposo, cada una de las superficies experimenta movimiento relativo respecto de la otra. Registro de propiedad intelectual de Cpech. Prohibida su reproducción total o parcial. 12 Cpech

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1 Convenio Nº Guía práctica Ley de gravitación y fuerza de roce Ejercicios PSU Para esta guía considere que la agnitud de la aceleración de gravedad (g) es 10 s 2. 1. Un grupo de científicos necesita poner

Más detalles

FS-6 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Fuerza y movimiento II

FS-6 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Fuerza y movimiento II FS-6 Ciencias Plan Común Física 2009 Fuerza y movimiento II Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.

Más detalles

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T 1 Ciencias Básicas Física Prograa Estándar Intensivo Cuaderno Estrategias y Ejercitación Dináica II: ley de gravitación, fuerza de roce CUACES007CB82-A16V1 Estrategias? PSU Pregunta PSU 1. Respecto de

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta

Más detalles

1. El cuerpo de la figura se desplaza 2 [m] en 3 [s], debido a la acción de las fuerzas que actúan sobre él. F 3 F 1

1. El cuerpo de la figura se desplaza 2 [m] en 3 [s], debido a la acción de las fuerzas que actúan sobre él. F 3 F 1 1 Ciencias Básicas Física Programa Estándar Intensivo Cuaderno Estrategias y Ejercitación Energía I: trabajo y potencia mecánica CUACES009CB82-A16V1 Estrategias? PSU Pregunta PSU 1. El cuerpo de la figura

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

Física 2008 Fuerza de roce Fuerza elástica Torque

Física 2008 Fuerza de roce Fuerza elástica Torque Taller Nº 4 Plan de Ejercitación Física 2008 Fuerza de roce Fuerza elástica Torque Plan de Ejercitación Introducción: Para el año académico 2008, el programa de los cursos regulares considera 30 clases.

Más detalles

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Mecánica II: movimiento circunferencial uniforme

Ejercicios PSU. Programa Electivo Ciencias Básicas Física. GUÍA PRÁCTICA Mecánica II: movimiento circunferencial uniforme Nº GUÍA PRÁCTICA Mecánica II: movimiento circunferencial uniforme Ejercicios PSU 1. Un niño en su bicicleta observa que la rueda gira tres vueltas en un segundo, de forma constante. Si el radio de esta

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

LAS FUERZAS: ESTÁTICA Y DINÁMICA

LAS FUERZAS: ESTÁTICA Y DINÁMICA LAS FUERZAS: ESTÁTICA Y DINÁMICA DEFINICIONES BÁSICAS FUERZA: es toda causa capaz de provocar una deformación o un cambio en el estado de movimiento de un cuerpo. En el SI se mide en newton (N) aunque

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

FS-10 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía II

FS-10 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía II FS-10 Ciencias Plan Común Física 009 Trabajo y energía II Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.

Más detalles

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4.

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. TALLER DE DINÁMICA 1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. Respuestas: (T1 =37 N; T2=88 N; T 3 =77 N; T4=139

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco.

Dinámica. Antecedentes. Antecedentes. Primera Ley de Kepler. Segunda Ley de Kepler. Los griegos hicieron modelos del sistema solar. Aristarco. Antecedentes Dinámica Los griegos hicieron modelos del sistema solar. Aristarco Tolomeo Antecedentes La Europa medieval hizo sus contribuciones. Copérnico Primera Ley de Kepler Los planetas se mueven en

Más detalles

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n).

Es el estudio de la geometría a través de técnicas análisis matemático y el álgebra. y = mx + n. La recta intersecta al eje Y en el punto (0, n). Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Ecuación de la recta GEOMETRÍA ANALÍTICA Qué es? Es el estudio de la geometría a través de técnicas del análisis matemático el álgebra.

Más detalles

Guía de ejercicios Introducción a la lesyes de Newton

Guía de ejercicios Introducción a la lesyes de Newton Guía de ejercicios Introducción a la lesyes de Newton Departamento de Ciencia Profesor David Valenzuela Unidad: II Dinámica Curso: 2 Medio NOMBRE: Para esta guía considere g = 10 m/s 2 1. Un auto de 500

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

Física: Roce y Resortes: Ley de Hooke

Física: Roce y Resortes: Ley de Hooke Física: Roce y Resortes: Ley de Hooke Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Equilibrio En equilibrio la aceleración a de todos los cuerpos en el sistema es nula. T N T m 1 m 2 f F g =

Más detalles

F 0 + F 1 C) ( F 0 + F 1 )/2 D) F 0 E) 0 F 0 M fig. 18 F 1 6. Un avión y un auto deportivo están moviéndose con MRU, en la misma dirección. Respecto de las fuerzas que se ejercen sobre estos cuerpos es

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N DINÁMICA 1. Sobre una masa de 2Kg actúan tres fuerzas tal como se muestra en la figura. Si la aceleración del bloque es a = -20i m/s 2, determinar: a) La fuerza F 3. Rpta. (-120i-110j)N b) La fuerza resultante

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

TEMA 7 Y 8 : LAS FUERZAS

TEMA 7 Y 8 : LAS FUERZAS TEMA 7 Y 8 : LAS FUERZAS (Corresponde a contenidos de los temas 7 y 8 del libro) 1.- LAS FUERZAS Y SUS EQUILIBRIOS Definimos fuerza como toda acción capaz de modificar el estado de reposo o de movimiento

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

BOLETÍN EJERCICIOS TEMA 2 FUERZAS

BOLETÍN EJERCICIOS TEMA 2 FUERZAS BOLETÍN EJERCICIOS TEMA 2 FUERZAS 1. Al aplicar una fuerza de 20 N sobre un cuerpo adquiere una aceleración de 4 m/s 2. Halla la masa del cuerpo. Qué aceleración adquirirá si se aplica una fuerza de 100

Más detalles

FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015

FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015 UNSL ENJPP 5 AÑO B1 Y B2 FÍSICA I: FUERZA EN 1D GUÍA DE PROBLEMAS 2015 1. Un ascensor de 1500 kg se mueve hacia arriba y hacia abajo sostenido por un cable. Calcula la tensión en el cable para los siguientes

Más detalles

Física para Ciencias: Dinámica: Equilibrio

Física para Ciencias: Dinámica: Equilibrio Física para Ciencias: Dinámica: Equilibrio Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Equilibrio En equilibrio la aceleración a de todos los cuerpos en el sistema es nula. T N T m 1 m 2 f F

Más detalles

GUÍA CURSOS ANUALES. Ciencias Plan Común. Física. Energía I: Trabajo y potencia GUICANCBFSA03009V3

GUÍA CURSOS ANUALES. Ciencias Plan Común. Física. Energía I: Trabajo y potencia GUICANCBFSA03009V3 GUÍA CURSOS ANUALES Ciencias Plan Común Física Energía I: Trabajo y potencia GUICANCBFSA03009V3 GUÍA CURSOS ANUALES Introducción: Física La presente guía tiene por objetivo proporcionarte distintas instancias

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física P1. Un disco de radio R y masa M rueda sin resbalar sobre una superficie horizontal rugosa, tirado hacia la derecha por una cuerda ideal que se mantiene paralela al plano. La tensión de la cuerda es T

Más detalles

1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. Figura Nº 2. FiguraNº 1. FiguraNº 3 FiguraNº 4

1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. Figura Nº 2. FiguraNº 1. FiguraNº 3 FiguraNº 4 1 1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. FiguraNº 1 Figura Nº 2 FiguraNº 3 FiguraNº 4 2. Una bolsa de cemento de 325 N de peso cuelga de tres

Más detalles

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N E J E R C I C I O S D E LAS L E Y E S D E N E W T O N A.- Instrucciones.- En el paréntesis a la izquierda de cada aseveración escriba la letra que corresponda a la respuesta correcta. 01.-( ) A la parte

Más detalles

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS I PROFESOR: ING. JORGE A. MONTAÑO PISFIL I. MECÁNICA

Más detalles

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS?

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS? EQUIVALENCIAS 1 kgf = 9.8 N 1 kp = 1 kgf 1 kp = 9.8 N 1 dina = 1x10-5 N 1 lbf = 4.44 N 1 pdl = 0.1382 N Kgf = kilogramos fuerza kp = kilopondio N = Newton dina = dina lbf = libra fuerza pdl = poundal CONVERSIONES:

Más detalles

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A:

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: DOCENTE: ING. ALEXANDER CABALLERO FECHA DE ENTREGA:

Más detalles

F F α. Curso de Preparación Universitaria: Física Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas

F F α. Curso de Preparación Universitaria: Física Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas Curso de Preparación Universitaria: ísica Guía de Problemas N o 4: Dinámica: Rozamiento, fuerzas elásticas Problema 1: Un cajón de 50 kg está en reposo sobre una superficie plana. Si el coeficiente de

Más detalles

Unidad 3: Dinámica. Programa analítico

Unidad 3: Dinámica. Programa analítico Unidad 3: Dinámica Programa analítico Principios de la dinámica: inercia, masa, acción y reacción. Unidad de masa (SIMELA). Masa y Peso de un cuerpo. Efecto de una fuerza aplicada a una masa. Relación

Más detalles

Tema 4. El movimiento Eje temático: Física.

Tema 4. El movimiento Eje temático: Física. Tema 4. El movimiento Eje temático: Física. El movimiento El calor - La Tierra y su entorno Contenido: Principios de Newton, Fuerzas de gravedad, Fuerzas de roce; Torque. Nivel: 2º Medio Los principios

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

1. Respecto a las características del movimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que

1. Respecto a las características del movimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que Conenio Nº Guía práctica Moimientos erticales Ejercicios PSU 1. Respecto a las características del moimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que A) la elocidad del cuerpo

Más detalles

MAGNITUDES FÍSICA. Todo aquello que se pueda medir, es decir, cuantificar. MAGNITUD FÍSICA. Longitud Masa Volumen Temperatura.

MAGNITUDES FÍSICA. Todo aquello que se pueda medir, es decir, cuantificar. MAGNITUD FÍSICA. Longitud Masa Volumen Temperatura. MAGNITUDES FÍSICA MAGNITUD FÍSICA Todo aquello que se pueda medir, es decir, cuantificar. Longitud Masa Volumen Temperatura Velocidad Fuerza SON MAGNITUDES FÍSICAS? Alegría Miedo Enfado MAGNITUDES FÍSICAS

Más detalles

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación C U R S O: FÍSICA MENCIÓN MATERIAL: FM-14 ENERGÍA II ENERGÍA CINÉTICA, POTENCIAL GRAVITATORIA Y MECÁNICA Aunque no existe una definición formal de energía, a este nivel la podemos entender simplemente

Más detalles

Nombre: Curso: Introducción

Nombre: Curso: Introducción 1 Nombre: Curso: Introducción El primer pensador que para explicar el movimiento de los cuerpos usa el concepto de fuerza fue Aristóteles (s III A. C A.), él reconocía tres tipos de movimientos observables

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm.

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. 2.- Una fuerza actúa sobre un cuerpo que tiene una masa de 5 Kg, la velocidad

Más detalles

Ejercicios Dinámica. R. Tovar.

Ejercicios Dinámica. R. Tovar. Ejercicios Dinámica. R. Tovar. 1.- La figura muestra a un hombre que tira de una cuerda y arrastra un bloque m 1 = 5 [kg] con una aceleración de 2 [m/s 2 ]. Sobre m 1 yace otro bloque más pequeño m 2 =

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

Calculo las velocidades iniciales en equis y en Y multiplicando por seno o por coseno.

Calculo las velocidades iniciales en equis y en Y multiplicando por seno o por coseno. TIRO OBLICUO Cuando uno tira una cosa en forma inclinada tiene un tiro oblicuo. Ahora el vector velocidad forma un ángulo alfa con el eje x. ( Angulo de lanzamiento ). Para resolver los problemas uso el

Más detalles

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica.

GRADO EN INGENIERIA INFORMATICA FÍSICA HOJA 1. Conceptos de cinemática y dinámica. 1. Un objeto experimenta una aceleración de 3 m/s cuando sobre él actúa una fuerza uniforme F 0. a) Cuál es su aceleración si la fuerza se duplica? b) Un segundo objeto experimenta una aceleración de 9

Más detalles

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes.

Fricción. Fricción estática y cinética. Si las superficies en contacto presentan o no movimiento relativo, las fuerzas friccionales son diferentes. Fricción. Cuando dos superficies se tocan se ejercen fuerzas entre ellas. La fuente primordial de estas fuerzas superficiales o de contacto es la atracción o repulsión eléctrica entre las partículas cargadas

Más detalles

INSTITUTO TECNOLOGICO DE SALTILLO

INSTITUTO TECNOLOGICO DE SALTILLO INSTITUTO TECNOLOGICO DE SALTILLO SEGUNDA LEY DE NEWTON PROBLEMAS COMPLEMENTARIOS 1.- Se muestran 3 bloques de masas m1 = 2 kg. m2 = 3 kg. m3 = 8 kg. Si se supone nulo el roce, calcular la aceleración

Más detalles

3ª, 4ª, 5ª y 6ª Oportunidad

3ª, 4ª, 5ª y 6ª Oportunidad Universidad Autónoma de Nuevo León Preparatoria 23 Unidad de aprendizaje: FÍSICA 2 Portafolio de Física 2 Valor del Portafolio: 40 puntos 3ª, 4ª, 5ª y 6ª Oportunidad Período: Agosto Diciembre 2016 Coordinador:

Más detalles

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos Preguntas y problemas propuestos de aplicación de las leyes de Newton 2015-II 1 Leyes de Newton, impulso, la fuerza de gravedad (peso), fuerza elástica, fuerzas disipativas. Leyes de newton o principios

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección.

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección. LA MASA de un objeto es una medida de su inercia. Se le llama inercia a la tendencia de un objeto en reposo a permanecer en este estado, y de un objeto en movimiento a continuarlo sin cambiar su velocidad.

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

La fuerza es una cantidad vectorial y por esta razón tiene magnitud dirección y sentido. DINÁMICA LEYES DEL MOVIMIENTO

La fuerza es una cantidad vectorial y por esta razón tiene magnitud dirección y sentido. DINÁMICA LEYES DEL MOVIMIENTO DINÁMICA LEYES DEL MOVIMIENTO La Dinámica clásica estudia todas las relaciones que existen entre los cuerpos en movimiento y las posibles causas que lo producen, o dicho de otra manera estudia las fuerzas

Más detalles

Situación de Aprendizaje

Situación de Aprendizaje Dirección General del Bachillerato Centro de Estudios de Bachillerato 1/4 Maestro Moisés Sáenz Garza Unidad de Aprendizaje Curricular (UAC): Física I Situación de Aprendizaje Elaboro: Enrique Galindo Chávez

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Ondas I: ondas y sus características Nº Ejercicios PSU 1. Dentro de las características de las ondas mecánicas se afirma que MC I) en su propagación existe transmisión

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Código FS-09. Guía Cur sos Anuales. Física Trabajo y energía I. Plan COMÚN

Código FS-09. Guía Cur sos Anuales. Física Trabajo y energía I. Plan COMÚN Código FS-09 Guía Cur sos Anuales Física 2005 Trabajo y energía I Plan COMÚN Ciencias Plan Común Introducción A través de la ejecución de la presente guía el alumno deberá desarrollar y aplicar los siguientes

Más detalles

Física IA (Prof. Sergio Vera) Dinámica 2do.2015

Física IA (Prof. Sergio Vera) Dinámica 2do.2015 1-Un arma acelera un proyectil de 5.0 kg desde el reposo hasta una rapidez de 4.0 10 3 m/s. La fuerza neta que acelera el proyectil es 4.9 10 5 N. Cuánto tiempo le requiere al proyectil alcanzar esa rapidez?

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 10 DE 2014 SOLUCIÓN TEMA 1 (8 puntos) Una persona corre

Más detalles

F= 2 N. La punta de la flecha define el sentido.

F= 2 N. La punta de la flecha define el sentido. DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.

Más detalles

Respecto a los conceptos de velocidad y rapidez media, es correcto afirmar que

Respecto a los conceptos de velocidad y rapidez media, es correcto afirmar que Nº Guía práctica Movimiento II: movimientos con velocidad constante Física Estándar Anual Ejercicios PSU 1. 2. Respecto a los conceptos de velocidad y rapidez media, es correcto afirmar que I) II) III)

Más detalles

W=! F! d cos θ TRABAJO Y ENERGÍA. Las fuerzas al actuar sobre un cuerpo producen cambios en su velocidad; por lo tanto, transfieren energía

W=! F! d cos θ TRABAJO Y ENERGÍA. Las fuerzas al actuar sobre un cuerpo producen cambios en su velocidad; por lo tanto, transfieren energía TRABAJO Y ENERGÍA El trabajo mecánico (w) es una magnitud escalar, que nos da una medida de la energía transferida a un cuerpo Las fuerzas al actuar sobre un cuerpo producen cambios en su velocidad; por

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

Cuáles son las componentes de la tercera

Cuáles son las componentes de la tercera Curso de Preparación Universitaria: Física Guía de Problemas N o 3: Dinámica: Leyes de Newton Problema 1: Tres fuerzas actúan sobre un objeto que se mueve en una línea recta con velocidad constante. Si

Más detalles

GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I

GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I 1. Calcular la aceleración (en m/s 2 ), si: m = 5 kg, F 1

Más detalles

Física para Ciencias: Dinámica

Física para Ciencias: Dinámica Física para Ciencias: Dinámica Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Método para resolver problemas Dibujar un diagrama sencillo del sistema y predecir la respuesta. Realizar un diagrama

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta?

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta? 1. Una persona de masa 70 kg se encuentra sobre una báscula en el interior de un ascensor soportado por un cable. Cuál de las siguientes indicaciones de la báscula es correcta?. a) La indicación es independiente

Más detalles

PORTAFOLIO DE SEGUNDA OPORTUNIDAD FISICA 2

PORTAFOLIO DE SEGUNDA OPORTUNIDAD FISICA 2 NOMBRE: GRUPO: 1. Realiza la siguiente suma de vectores: F1= 45 N a 70 F2= 21 N a 215 2. Realiza la siguiente suma de vectores: F1= 78 N a 356 F2= 69 N a 149 F3= 25 N a 248 3. Un auto de 18,000 N que parte

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio

Más detalles

LEYES DE NEWTON. Antecedentes sobre el movimiento: Cuando una fuerza actúa sobre un cuerpo, este se pondrá en movimiento

LEYES DE NEWTON. Antecedentes sobre el movimiento: Cuando una fuerza actúa sobre un cuerpo, este se pondrá en movimiento LEYES DE NEWTON Antecedentes sobre el movimiento: Cuando una fuerza actúa sobre un cuerpo, este se pondrá en movimiento ARISTÓTELES 384-322 A.C. Cuando termina la acción de la fuerza, el cuerpo vuelve

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 12 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 12 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 12 Mayo 2014 Fuerzas La fuerza se puede definir como una magnitud vectorial capaz de deformar los cuerpos (efecto estático) y modificar su velocidad (o ponerlos

Más detalles

Ejercicios de Física 4º de ESO

Ejercicios de Física 4º de ESO Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R

Más detalles

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Taller de Fuerzas MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Una pelota de plástico en un líquido se comporta de acuerdo a su peso y a la

Más detalles

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS Fuerza que ejerce el cenicero sobre el libro (Fuerza Normal): N 1 Fuerza que ejerce la mesa sobre el libro (Fuerza Normal): N 2 Fuerza de atracción que ejerce el planeta tierra sobre el libro (Peso del

Más detalles

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles