Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de Termodinámica General

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de Termodinámica General"

Transcripción

1 Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de ermodinámica General rofesores: Alicia González y Alberto Martínez M. Semestre º 01 Unidad III. Equilibrio termodinámico y transformaciones termodinámicas Equilibrio termodinámico De mecánica sabemos que un sistema está en equilibrio mecánico cuando la resultante de las fuerzas exteriores ejercidas sobre el sistema es igual a cero. Es evidente que éste es un concepto maoscópico, ya que supone al sistema como un todo y no hace mención ninguna a las moléculas del sistema. or otro lado, se dice que un sistema está en equilibrio químico, cuando estando en equilibrio mecánico no tiende espontáneamente a experimentar cambio en su estructura interna, como puede ser una reacción química, una difusión o disolución. Anteriormente estudiamos el equilibrio térmico y decíamos que un cuerpo está en equilibrio térmico cuando tiene la misma temperatura que el ambiente y que si el sistema está provisto de una pared adiabática, estará en equilibrio térmico si tiene la misma temperatura en toda su extensión. Es obvio que éste es otro concepto maoscópico. or otro lado, también es cierto que un sistema puede estar sometido a otras acciones exteriores, como pueden ser campos eléctricos y magnéticos, efectos de capilaridad y tensión superficial, etc. ues bien, diremos que un sistema está en equilibrio termodinámico cuando está simultáneamente en equilibrio mecánico, químico, térmico y además, en equilibrio con todos los otros efectos exteriores que puedan actuar sobre él. Así, por ejemplo, si un sistema que no está sometido a efectos eléctricos, magnéticos, ni de tensión superficial, ni de capilaridad, decimos que está en equilibrio termodinámico si está simultáneamente en equilibrio mecánico, térmico y químico. De la definición se desprende que un sistema en equilibrio termodinámico no tenderá espontáneamente a cambiar su estado de equilibrio y la única manera para que lo pueda cambiar es que se modifiquen las condiciones externas. Ecuación de estado El estado de un sistema queda definido por las variables de estado. eamos con un ejemplo que es lo que esto significa: Supongamos entonces una masa m fija de un gas encerrado en un cilindro. Si fijamos, por ejemplo, la presión en un valor determinado y hacemos que el volumen tome un valor dado, nos encontramos que hay un solo valor de la temperatura para el cual el gas está en equilibrio. Cosa 1 Universidad de Carabobo rofesores: Alicia González y Alberto Martínez M.

2 similar sucede si fijamos el volumen y la temperatura, es decir, que en estas condiciones solo existe un valor de la presión para el cual el gas está en equilibrio termodinámico. Estos ejemplos nos dicen que para una masa de gas dado hay solo dos funciones de estado que son independientes, cosa que implica que debe existir una relación funcional de las funciones de estado que priva de su independencia a una de ellas. Cualquier ecuación que relacione la presión, la temperatura y el volumen específico de una sustancia se denomina ecuación de estado. Las relaciones de propiedades que comprenden a otras pertenecientes a una sustancia que se halla en estados de equilibrio, también se conocen como ecuaciones de estado. Ecuación de estado de gas ideal Los gases son sustancias que se caracterizan porque sus moléculas se mantienen en desorden, dotadas de alta energía y separadas por grandes distancias donde la interacción intermolecular es casi nula. Los gases no poseen volumen ni forma determinada, es decir, que a diferencia de los sólidos y los líquidos, ocupan todo el volumen del recipiente que los contiene. Las palabras gas y vapor a menudo se utilizan como sinónimos y comúnmente a la fase de vapor de una sustancia se le llama gas cuando su temperatura es más alta que la temperatura ítica. El vapor normalmente implica un gas que no se encuentra muy alejado del estado de condensación. Un gas ideal es aquel constituido por un número grande de moléculas puntuales que están en movimiento aleatorio y a distancias suficientemente grandes para que interaccionen únicamente durante los choques. Los choques de las moléculas se consideran perfectamente elásticos. A muy bajas presiones, los gases se aproximan al comportamiento ideal (sin importar la temperatura). Los gases se desvían del comportamiento de gas ideal principalmente cuando están cercanos al punto ítico. En el caso de un gas ideal, la ecuación que relaciona a la presión (), el volumen específico (v) y la temperatura absoluta () es: = R v = R (1) v Donde la constante de proporcionalidad R se denomina constante de los gases. La ecuación (1) es la ecuación de estado de gas ideal, o sencillamente relación de gas ideal. La constante R es diferente para cada gas y se determina a partir de: R u R = () M Siendo R u la constante universal de los gases y M es la masa molar (mal llamada también peso molecular) del gas. La constante R u es la misma para todos los gases y su valor es: R u = 8,31447 kj/kmol.k = 8,31447 ka.m 3 /kmol.k R u = 0, bar.m 3 /kmol.k = 8,05 atm.l/kmol.k R u = 1,9858 Btu/lbmol.R = 1545,37 ft.lbf/lbmol.r R u = 10,73 psia.ft 3 /lbmol.r La masa molar M se define como la masa de un mol (llamada también gramo-mol, abreviado gmol, mol) de una sustancia en gramos, o bien, la masa de un kmol (llamada también kilogramo-mol, Universidad de Carabobo rofesores: Alicia González y Alberto Martínez M.

3 abreviado kgmol, kmol) en kilogramos. La masa de un sistema es igual al producto de su masa molar M y el número de moles N: m = MN (3) La ecuación de estado del gas ideal se esibe de varias maneras diferentes: = mv = mr (4) m ρ = = ρr (5) mr = (MN)R = NRu = NRu (6) N ρ = = ρru (7) = Nv v = Ru (8) rocesos de cuasiequilibrio experimentados por un gas ideal Cuando un sistema está en equilibrio y se modifican las condiciones externas, sabemos entonces que el estado del sistema también se modifica. ues bien, toda modificación del estado de equilibrio de un sistema se llama proceso o transformación, es decir, cuando un sistema cambia su estado de equilibrio, se dice que ha experimentado una transformación termodinámica. Hemos definido una transformación de cuasiequilibrio como aquélla donde todos los estados intermedios de la transformación son de equilibrio. Edo. 1 Edo. Gas ideal roceso N cte m cte Gas ideal En cada estado podemos aplicar, por ejemplo: = mr = NR u 1, 1, 1,, 1 1 = mr 1 ; 1 1 = NR u 1 = mr ; = NR u Al esibir la ecuación de estado del gas ideal para una masa fija y simplificar, las propiedades de un gas ideal en dos estados diferentes se relacionan entre sí por medio de (esta ecuación será válida independientemente del proceso seguido): Igualando mr o NR u = (9) Un gas ideal es una sustancia imaginaria que obedece a la relación (1). Experimentalmente, se ha observado que la relación de gas ideal se aproxima mucho al comportamiento -v- de los gases reales a bajas densidades (gas diluido), ya que bajo condiciones que implican presiones bajas y temperaturas altas, la densidad de un gas disminuye y se comporta como un gas ideal. Entre los procesos de cuasiequilibrio experimentados por un gas ideal se encuentran: 3 Universidad de Carabobo rofesores: Alicia González y Alberto Martínez M.

4 rocesos isotérmicos (la temperatura permanece constante durante todo el proceso) rocesos isócoros o isométricos (el volumen permanece constante durante todo el proceso) rocesos isobáricos (la presión permanece constante durante todo el proceso) Representación gráfica de procesos de cuasiequilibrio experimentados por un gas ideal Diagramas usados más (SIGA LAS INSRUCCIONES DADAS OR SU ROFESOR) Factor de compresibilidad (medida de la desviación del comportamiento de gas ideal) La ecuación de estado de gas ideal tal como quedó expresada por las relaciones anteriores y subsiguientes es solo una extrapolación válida a presión baja o a bajas densidades, es decir, cuando las interacciones entre partículas del gas tienen poca importancia. En general, y para sustancias poco alejadas de la idealidad (es decir, moléculas pequeñas, con simetría esférica y bajo o nulo momento dipolar) se puede usar el modelo ideal para presiones menores de 5 atm. Cuando las densidades son altas las moléculas se encuentran relativamente cercanas entre sí y comienzan a tener influencia las interacciones mutuas de distinta índole: atracción, repulsión, efectos eléctricos por momento dipolar elevado, etc. que hacen más complejo su comportamiento, de modo que un modelo simple como la ecuación (1) deja de ser adecuado. Existen muchas técnicas que se han probado para resolver este problema. Estas se pueden resumir en dos clases: Métodos generalizados basados en el factor de compresibilidad ítico o en el factor acéntrico Ecuaciones de estado Cada uno de estos enfoques tiene sus ventajas comparativas de modo que es difícil elegir. En cada caso haremos una breve ítica de los aspectos salientes de la metodología tratada, que sólo tendrá intención orientativa. ara un estudio más profundo se debe recurrir a la bibliografía. De todas maneras, siempre que sea posible se deberán preferir los datos experimentales a las estimaciones ya que una estimación, por más exacta que sea, es solo eso: una estimación. rincipio de los estados correspondientes El término propiedad reducida fue usado por primera vez por an der Waals como parte del principio de los estados correspondientes. Cuando dos fluidos puros distintos tienen iguales valores de sus propiedades reducidas se dice que están en estados correspondientes. El principio de los estados correspondientes establece que todos los gases tienen el mismo comportamiento cuando se encuentran en sus estados correspondientes. Cabe aclarar que el principio de los estados correspondientes no es un principio en el mismo sentido que la primera o segunda ley de la termodinámica, sino más bien una hipótesis de trabajo que además no es totalmente válida ya que muchos gases no lo cumplen. 4 Universidad de Carabobo rofesores: Alicia González y Alberto Martínez M.

5 resión reducida: = R emperatura reducida: = R Factor de compresibilidad Z La ecuación de estado de los gases ideales [ecuación (1) y subsiguientes] constituye un caso límite en el que se supone que las moléculas no ocupan ningún volumen ni interaccionan entre sí de modo alguno. Se define un factor de compresibilidad Z a fin de corregir la desviación del comportamiento ideal a temperatura y presión específica: v Z = v = ZR (10) R A presiones y/o densidades bajas la ecuación (10) es la ecuación de estado de gases ideales puesto que Z = 1 pero a presiones elevadas o altas densidades Z 1, debiendo obtener su valor exacto de alguna manera. De la carta de compresibilidad generalizada se hacen las siguientes observaciones: A presiones muy bajas ( R << 1), los gases se comportan como gases ideales sin considerar la temperatura. A temperaturas altas ( R > ), es posible suponer con buena precisión el comportamiento de gas ideal, independientemente de la presión (excepto cuando R >> 1). La desviación de un gas respecto al comportamiento de gas ideal es mayor cerca del punto ítico. Otras ecuaciones de estado 1. Ecuación de estado de an der Waals a + ( v b) = R (1.1) v Donde: 7R a = (1.) 64 R b = (1.3) 8 ara cualquier sustancia, las constantes a y b se determinan únicamente con los datos del punto ítico (abla B-1). El valor de la constante R que debe utilizarse en la ecuación se encuentra en la abla B-1. El valor de v representa el volumen específico. En la ecuación (1.1) puede sustituirse v por v, siempre que en las ecuaciones (1.) y (1.3) se utilice el valor de R u en lugar de R. 5 Universidad de Carabobo rofesores: Alicia González y Alberto Martínez M.

6 . Ecuación de estado de Beattie-Bridgeman R u c A = 1 ( v + B) (.1) 3 v v v a b Donde: A = A o 1 (.) B = Bo 1 (.3) v v Las constantes que aparecen en la ecuación anterior se ofrecen en la abla B-3 para varias sustancias. El valor de la constante R u es la constante universal de los gases. v es volumen molar. 3. Ecuación de estado de Benedict-Webb-Rubin R u Co 1 br u a aα c γ γ / v = + BoR u A o e (3.1) v v v v v v Las constantes que aparecen en la ecuación anterior se ofrecen en la abla B-4 para varias sustancias. El valor de la constante R u es la constante universal de los gases. v es volumen molar. 4. Ecuación de estado virial ( ) b( ) c( ) d( ) R a = (4.1) 3 4 v v v v v 5 El valor de v representa el volumen específico. Los coeficientes a(), b(), c(), etc., son funciones únicamente de la temperatura y se conocen como coeficientes viriales. Ejercicios propuestos 1. Desarrolle una expresión para determinar la diferencia de presión entre dos puntos de un fluido estático que se comporta como un gas ideal y cuya temperatura varía según la ecuación: = a bh, siendo a y b constantes y h la altura del gas.. A partir de la ecuación básica de hidrostática y suponiendo que el aire se comporta como un gas ideal, determine la variación de la presión con la altura. Considere que la temperatura del aire es uniforme. 3. ara un gas ideal que experimenta un proceso de cuasiequilibrio que viene dado por la ecuación: = a, donde a es una constante, determine y dibuje el proceso en los diagramas -, - y -. 6 Universidad de Carabobo rofesores: Alicia González y Alberto Martínez M.

7 4. Un sistema termodinámico tiene sus variables relacionadas por la ecuación: = k, donde k es una constante. Determine y dibuje: a) Las isotermas en un diagrama - b) Las isócoras en un diagrama - c) Las isóbaras en un diagrama - 7 Universidad de Carabobo rofesores: Alicia González y Alberto Martínez M.

GAS IDEAL SIMPLE : desde el punto de vista termodinámico un gas ideal está caracterizado por dos ecuaciones de estado:

GAS IDEAL SIMPLE : desde el punto de vista termodinámico un gas ideal está caracterizado por dos ecuaciones de estado: SISTEMAS EJEMPLO: GAS IDEAL SIMPLE : desde el punto de vista termodinámico un gas ideal está caracterizado por dos ecuaciones de estado: Ecuación de estado mecánica. Ecuación de estado térmica. donde c

Más detalles

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio.

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio. Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio SEMESTRE I 2018 Gas ideal En las clases anteriores, cuando estudiamos el calor y la temperatura, no se hizo ninguna mención de la influencia de

Más detalles

Superficies Termodinámicas. 8-Sep-06 Alicia Ma. Esponda Cascajares 1

Superficies Termodinámicas. 8-Sep-06 Alicia Ma. Esponda Cascajares 1 Superficies ermodinámicas 8-Sep-06 Alicia Ma. Esponda Cascajares 1 Ley de Boyle-Mariotte En 1662 Robert Boyle formuló la generalización que relación el volumen de una masa de gas con la presión ejercida

Más detalles

El Equilibrio Termodinámico. Tipos de Equilibrios.

El Equilibrio Termodinámico. Tipos de Equilibrios. TEMA 1.) CONCEPTOS BASICOS Sistema Termodinámico. Paredes. Tipos de Sistemas. Criterio de Signos. Estado Termodinámico. El Equilibrio Termodinámico. Tipos de Equilibrios. Variables Termodinámicas. Procesos

Más detalles

Módulo 1 Termodinámica

Módulo 1 Termodinámica Módulo 1 Termodinámica 1er cuatrimestre del 2012 Dra. Noelia Burgardt Termodinámica de equilibrio - Sistemas, paredes, procesos, función de estado - Repaso de gases ideales y reales - Trabajo y calor -

Más detalles

Puesto que ambas derivadas son iguales a cero en el punto crítico podemos escribir:

Puesto que ambas derivadas son iguales a cero en el punto crítico podemos escribir: Ecuaciones de estado Una ecuación de estado exacta, que es una representación analítica del comportamiento, frecuentemente es deseable desde un punto de vista computacional. Se han desarrollado muchas

Más detalles

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado.

mediante un punto en dicho diagrama. La temperatura de dicho estado se obtiene haciendo uso de la ecuación de estado. Función de estado Una función de estado es una propiedad de un sistema termodinámico que depende sólo del estado del sistema, y no de la forma en que el sistema llegó a dicho estado. Por ejemplo, la energía

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

UNIDAD 2: ESTADO GASEOSO

UNIDAD 2: ESTADO GASEOSO UNIDAD 2: ESTADO GASEOSO 1 CARACTERISTICAS DE LOS GASES Los gases poseen masa y ocupan un determinado volumen en el espacio, este volumen queda determinado por el volumen del recipiente que los contiene.

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS

FUNDAMENTOS DE TERMODINÁMICA PROBLEMAS FUNDAMENOS DE ERMODINÁMICA ROBLEMAS 1.- Clasifique cada propiedad como extensiva o intensiva: a) temperatura, b) masa, c) densidad, d) intensidad del campo eléctrico, e) coeficiente de dilatación térmica,

Más detalles

Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de Termodinámica General

Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de Termodinámica General Universidad de Carabobo acultad de Ingeniería Estudios Básicos Departamento de ísica Cátedra de Termodinámica General rof. Alberto Martínez M. Semestre 2º 2012 Material complementario: resión de un fluido

Más detalles

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I RINCIIOS FISICOQUÍMICOS EN GEOFÍSICA I Introducción Conceptos Básicos de Termodinámica ropiedades Físicas de los Gases Gases Ideales Ecuaciones de Estado INTRODUCCIÓN La fisicoquímica se divide en 4 áreas:

Más detalles

PRIMER PRINCIPIO DE LA TERMODINÁMICA

PRIMER PRINCIPIO DE LA TERMODINÁMICA RIMER RINCIIO DE LA TERMODINÁMICA ÍNDICE. Capacidad calorífica y calor específico. Calorimetría 3. Cambios de fase. Calor latente 4. Experimento de Joule. er principio de la termodinámica 5. Capacidad

Más detalles

COORDINACION ACADEMICA UNIDAD QUERETARO. Problemas representativos para el examen de ingreso a doctorado. Termodinámica

COORDINACION ACADEMICA UNIDAD QUERETARO. Problemas representativos para el examen de ingreso a doctorado. Termodinámica UNIDAD QUEREARO roblemas representativos para el examen de ingreso a doctorado ermodinámica Equilibrio térmico, ecuaciones de estado y trabajo 1.- Los sistemas 1 y son sales paramagnéticas con coordenadas

Más detalles

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA

Más detalles

Física Termodinámica. Parte 2

Física Termodinámica. Parte 2 Física ermodinámica Parte 4. Gases 4. Sólidos, líquidos y gases Fuerzas entre moléculas: Atracción de largo alcance Atracción de corto alcance Fuerza muy fuerte pero actúa en distancias muy cortas Es fuerte

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA

Más detalles

TERMODINÁMICA Tema 10: El Gas Ideal

TERMODINÁMICA Tema 10: El Gas Ideal ERMODINÁMICA 1 er Curso Joaquín Bernal Méndez 1 Índice Introducción Ecuación de estado Experimento de Joule Capacidades caloríficas de los gases ideales Ley de Mayer Ecuación de oisson ransformaciones

Más detalles

Sustancia que se caracteriza porque sus moléculas. no tiene forma definida. adquiere la forma del recipiente que lo contiene.

Sustancia que se caracteriza porque sus moléculas. no tiene forma definida. adquiere la forma del recipiente que lo contiene. Qué es un gas? Sustancia que se caracteriza porque sus moléculas están en desorden. tienen gran energía. están muy separadas entre sí. prácticamente no se atraen entre sí. Una sustancia gaseosa no tiene

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

Introducción a la termodinámica

Introducción a la termodinámica Introducción a la termodinámica Prof. Jesús Hernández Trujillo Fac. Química, UNAM 31 de enero de 2017 Fisicoquímica La termodinámica es una rama de la Fisicoquímica Fisicoquímica: El estudio de los principios

Más detalles

III. Propiedades de una sustancia pura

III. Propiedades de una sustancia pura Objetivos: 1. Introducir el concepto de una sustancia. 2. Discutir brevemente la física de los procesos de cambio de fase. 3. Ilustrar los diagramas de fase de las sustancias s. 4. Demostrar los procedimientos

Más detalles

RESUMEN TERMO 2A_1C 2016

RESUMEN TERMO 2A_1C 2016 RESUMEN TERMO 2A_1C 2016 entorno o exterior sistema Universo sistema abierto cerrado aislado materia y energía energía nada Olla con agua sobre una hornalla Agua en un termo perfecto Persona o cualquier

Más detalles

Termodinámica. Calor y Temperatura

Termodinámica. Calor y Temperatura Termodinámica Calor y Temperatura 1 Temas 3. GASES IDEALES Y ESTADOS TERMODINÁMICOS. 3.1 Concepto y características del gas ideal. 3.2 Ley de Boyle, Ley de Charles, Ley de Gay- Lussac e hipótesis de Avogadro.

Más detalles

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 1. Conceptos básicos de la Termodinámica

FÍSICA APLICADA Y FISICOQUÍMICA I. Tema 1. Conceptos básicos de la Termodinámica María del Pilar García Santos GRADO EN FARMACIA FÍSICA APLICADA Y FISICOQUÍMICA I Tema 1 Conceptos básicos de la Termodinámica Esquema 1.1 Objetivos y alcance de la Termodinámica 1.2 Conceptos básicos:

Más detalles

Fase: Tiene una configuración molecular distinta que la distingue de otras fases.

Fase: Tiene una configuración molecular distinta que la distingue de otras fases. SUSTANCIA PURA Sustancia que tiene una composición química FIJA. Una mezcla de compuestos químicos se puede considerar como una sustancia pura, siempre y cuando la mezcla sea homogénea y posea composición

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

Integrando los estados inicial y final, se tiene:

Integrando los estados inicial y final, se tiene: Integrando los estados inicial y final, se tiene: 2 1 2 1 d Se define así : ' Este se conoce como el coeficiente de Joule y es una medida del efecto del mismo nombre. El comportamiento de la energía interna

Más detalles

UNIVERSIDAD DE CARABOBO. FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS. DEPARTAMENTO DE QUÍMICA

UNIVERSIDAD DE CARABOBO. FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS. DEPARTAMENTO DE QUÍMICA UNIVERSIDAD DE CARABOBO. FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS. DEPARTAMENTO DE QUÍMICA Asignatura: QUIMICA I Código: QM1B01; QM2B01 Semestre Lectivo: U-2017. Sección: 02, 07, 13, 16 Fecha: 05/ 02/ 18

Más detalles

A) DATOS BÁSICOS DEL CURSO B) OBJETIVOS DEL CURSO. Programa analítico TERMODINÁMICA I III

A) DATOS BÁSICOS DEL CURSO B) OBJETIVOS DEL CURSO. Programa analítico TERMODINÁMICA I III Nombre de la materia: TERMODINAMICA I Clave de la materia: 4002 Clave CACEI: CI Tipo de materia: Obligatoria No. de créditos aprobados: 8 Fecha última de Revisión Curricular: Julio de 2017 Materia y clave

Más detalles

Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de Termodinámica General

Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de Termodinámica General Universidad de Carabobo Facultad de Ingeniería Estudios Básicos Departamento de Física Cátedra de Termodinámica General rofesores: Alicia González y Alberto Martínez M. Semestre 2º 2012 Unidad II. Ley

Más detalles

Existe una relación de dependencia entre las variables termodinámicas de un sistema que se denomina ecuación

Existe una relación de dependencia entre las variables termodinámicas de un sistema que se denomina ecuación 2.0- Ecuaciones de estado Supongamos que una masa constante de un cierto gas, de composición asimismo constante, se encuentra contenida en un recipiente de volumen variable, como por ejemplo, un cilindro

Más detalles

Dispositivos Cilindro-Pistón

Dispositivos Cilindro-Pistón Presión ejercida sobre superficies sólidas: sistema cilindro-pistón Un sistema importante desde el punto de vista termodinámico es el sistema cilindro-pistón, ya que se puede estudiar con él el comportamiento

Más detalles

Ejercicios complementarios a los del Van Wylen

Ejercicios complementarios a los del Van Wylen Lista 0 Ej.7 Ej.8 Ej.9 Una llanta de automóvil tiene un volumen de 988 in 3 y contiene aire (supuesto gas ideal) a una presión manométrica de 24 lb/in 2 cuando la temperatura es de -2.60 ºC. Halle la presión

Más detalles

Unidad 4 Termoquímica

Unidad 4 Termoquímica Unidad 4 Termoquímica Termoquímica Ciencia que estudia la relación existente, entre la energía en sus diversas formas, y los procesos químicos. Parte de la Termodinámica, ciencia más amplia que se ocupa

Más detalles

TEMA II.4. Propiedad de los Fluidos. Dr. Juan Pablo Torres-Papaqui

TEMA II.4. Propiedad de los Fluidos. Dr. Juan Pablo Torres-Papaqui TEMA II.4 Propiedad de los Fluidos Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

FISICOQUIMICA UNQ Comisión C. Seminario 0 Conocimientos previos necesarios. Química

FISICOQUIMICA UNQ Comisión C. Seminario 0 Conocimientos previos necesarios. Química FISICOQUIMICA UNQ Comisión C Seminario 0 Conocimientos previos necesarios Química a. Enuncie la ley de Coulomb. b. Qué es una molécula polar? Qué características debe presentar? c. En qué tipo de propiedades

Más detalles

Termodinámica. Calor y Temperatura. Gases. Temas

Termodinámica. Calor y Temperatura. Gases. Temas Termodinámica Calor y Temperatura Temas 3. GSES IDELES Y ESTDOS TERMODINÁMICOS. 3. Concepto y características del gas ideal. 3. Ley de Boyle, Ley de Charles, Ley de Gay- Lussac e hipótesis de vogadro.

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla El gas ideal Física II Grado en Ingeniería de Organización Industrial rimer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada III Universidad de Sevilla Índice Introducción Ecuación

Más detalles

Actividad introductoria

Actividad introductoria Grado 10 Ciencias naturales Unidad 2 De qué está hecho todo lo que nos rodea? Tema Qué tan rápido viajan las moléculas de nitrógeno y oxígeno en el aire? Curso: Nombre: Actividad introductoria Lee con

Más detalles

Unidad III. Sistemas Monofásicos

Unidad III. Sistemas Monofásicos UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Química Unidad III. Balance de materia Sistemas Monofásicos

Más detalles

EVALUACIÓN FINAL DE QUÍMICA

EVALUACIÓN FINAL DE QUÍMICA EVALUACIÓN FINAL DE QUÍMICA ESTADO LÍQUIDO En los líquidos las moléculas se mueven lentamente con respecto a los gases, las fuerzas de atracción moleculares son capaces de mantenerlas juntas dentro de

Más detalles

Física Térmica - Práctico 7

Física Térmica - Práctico 7 Física érmica - ráctico 7 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de

Más detalles

Conceptos Básicos Termodinámica

Conceptos Básicos Termodinámica Conceptos Básicos Termodinámica Los sistemas físicos que encontramos en la Naturaleza consisten en un agregado de un número muy grande de átomos. La materia está en uno de los tres estados: sólido, líquido

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: TERMODINÁMICA HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Discuta la veracidad o falsedad de las siguientes afirmaciones: a) Cuando un sistema termodinámico abierto experimenta un ciclo termodinámico

Más detalles

Principio de los estados correspondientes. 1. Teorema de estados correspondientes (TEC)

Principio de los estados correspondientes. 1. Teorema de estados correspondientes (TEC) Termodinámica del equilibrio rincipio de los estados correspondientes rofesor: Alí Gabriel Lara 1. Teorema de estados correspondientes (TEC) Como vimos en la clase pasada para evaluar las propiedades termodinámicas

Más detalles

Tema III: Ecuaciones de Estado

Tema III: Ecuaciones de Estado Tema III: Ecuaciones de Estado Contenido: 1. Introducción 2. Bases formales sobre las ecuaciones de estado 3. Sistema Hidrostático Gas ideal 4. Sistema: Alambres tensores 5. Sistema: Láminas superficiales

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

CARÁCTERÍSTICAS DE LOS GASES

CARÁCTERÍSTICAS DE LOS GASES DILATACIÓN EN LOS GASES - CARACTERÍSTICAS DE LOS GASES - PRESIÓN EN LOS GASES: CAUSAS Y CARACTERÍSTICAS - MEDIDA DE LA PRESIÓN DE UN GAS: MANÓMETROS - GAS EN CONDICIONES NORMALES - DILATACIÓN DE LOS GASES

Más detalles

Tema 2: Fuerzas intermoleculares

Tema 2: Fuerzas intermoleculares Tema 2: Fuerzas intermoleculares Fuerzas intermoleculares: ion dipolo, dipolo dipolo, dispersión de London y puentes de hidrógeno. Gases ideales y reales. Propiedades de los ĺıquidos. Presión de vapor.

Más detalles

La primera ley de la termodinámica identifica el calor como una forma de energía.

La primera ley de la termodinámica identifica el calor como una forma de energía. La primera ley de la termodinámica identifica el calor como una forma de energía. Esta idea, que hoy nos parece elemental, tardó mucho en abrirse camino y no fue formulada hasta la década de 1840, gracias

Más detalles

ÍNDICE. Capítulo 1. Sistemas macroscópicos 1 Teoría 2 Cuestiones 7 Soluciones a las cuestiones 13 Problemas 14

ÍNDICE. Capítulo 1. Sistemas macroscópicos 1 Teoría 2 Cuestiones 7 Soluciones a las cuestiones 13 Problemas 14 ix ÍNDICE Prefacio y Dedicatoria Índice Constantes de uso frecuente v ix xi Capítulo 1. Sistemas macroscópicos 1 Teoría 2 Cuestiones 7 Soluciones a las cuestiones 13 Problemas 14 Capítulo 2. Variables

Más detalles

Tema 7 Termodinámica. mica

Tema 7 Termodinámica. mica Tema 7 Termodinámica mica Tema 7 7.1- Definiciones: Sistema, estado, función n de estado, transformaciones. 7.2- Trabajo y calor. 7.3- Enunciado y expresión n del primer principio de la Termodinámica.

Más detalles

Ley de Charles. Por qué ocurre esto?

Ley de Charles. Por qué ocurre esto? Ley de Charles En 1787, Jack Charles estudió por primera vez la relación entre el volumen y la temperatura de una muestra de gas a presión constante y, observó que cuando se aumentaba la temperatura el

Más detalles

0. Inicio. I. Conceptos previos. (use los comandos de su visor pdf para navegar las fichas) fing. FICHAS GUÍA: Conceptos Preliminares p.

0. Inicio. I. Conceptos previos. (use los comandos de su visor pdf para navegar las fichas) fing. FICHAS GUÍA: Conceptos Preliminares p. FICHAS GUÍA: Conceptos Preliminares p. 1/3 0. Inicio nts I. Conceptos previos (use los comandos de su visor pdf para navegar las fichas) FICHAS GUÍA: Conceptos Preliminares p. 2/3 1. descripción microscópica

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

LEYES DE GASES IDEALES

LEYES DE GASES IDEALES LEYES DE GASES IDEALES PV= k1 Se mantiene Ctte T,n V= k2*t Se mantiene Ctte P,n LEYES DE GASES IDEALES Ecuación de Estado. Donde: P indica la presión del gas. V indica el volumen del gas. n es el número

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Comportamiento p-v-t en gases Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos _ P T v R Ecuación de estado en gases ideales _ lim P v J P 0 = R=8,3143 _ T mol k P v = R _ T PV = nrt

Más detalles

Desviaciones del Comportamiento Ideal: Aparentes Verdaderas. Consecuencias de la Ley de Gases Ideales. Ley de Dalton para mezcla de gases

Desviaciones del Comportamiento Ideal: Aparentes Verdaderas. Consecuencias de la Ley de Gases Ideales. Ley de Dalton para mezcla de gases Gases Reales Desviaciones del Comportamiento Ideal: Aparentes erdaderas 1 Consecuencias de la Ley de Gases Ideales Ley de Dalton para mezcla de gases N i ni 1... N i i1 n n n n R i i i R i t Ley de Amagat

Más detalles

IES La Magdalena. Avilés. Asturias GASES

IES La Magdalena. Avilés. Asturias GASES GASES IES La adalena. Avilés. Asturias Teoría cinética de la materia ara poder explicar (ver preuntas más abajo) y entender el comportamiento de la materia, existe un modelo teórico que se basa en los

Más detalles

TERMODINÁMICA CAPÍTULO 7

TERMODINÁMICA CAPÍTULO 7 ERMODINÁMICA CAPÍULO 7 Conceptos básicos La termodinámica, campo de la física que describe y relaciona las propiedades físicas de la materia de los sistemas macroscópicos, así como sus intercambios energéticos.

Más detalles

El término termodinámica proviene del griego therme, (Calor) y dynamis, (Fuerza).

El término termodinámica proviene del griego therme, (Calor) y dynamis, (Fuerza). Termodinámica El término termodinámica proviene del griego therme, (Calor) y dynamis, (Fuerza). Es una herramienta analítica teórica y practica que interpreta fenómenos naturales desde el punto de vista

Más detalles

Clase 2: Conceptos básicos

Clase 2: Conceptos básicos Teórico Física Térmica 2011 21 de Febrero de 2012 Agenda... 1 Referencias 2 Sistemas y volúmenes de control 3 Mundos microscópico y macroscópico 4 Cantidades de interés y sus unidades: propiedades termodinámicas

Más detalles

PROPIEDADES TÉRMICAS DE LA MATERIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica

PROPIEDADES TÉRMICAS DE LA MATERIA. Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica PROPIEDADES TÉRMICAS DE LA MATERIA Fís. Carlos Adrián Jiménez Carballo Escuela de Física Instituto Tecnológico de Costa Rica 1 / 27 Objetivos Identificar un de gas ideal. Identificar algunas leyes de los

Más detalles

3. PROPIEDADES Y ESTADOS

3. PROPIEDADES Y ESTADOS 3. PROPIEDADES Y ESTADOS 3.1 LOS CONCEPTOS DE PROPIEDAD Y ESTADO La propiedad es cualquier característica o atributo que se puede evaluar cuantitativamente El volumen La masa La energía La temperatura

Más detalles

Unidad 17: Trabajo, Calor y Principios de la Termodinánica

Unidad 17: Trabajo, Calor y Principios de la Termodinánica Apoyo para la preparacin de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 17: Trabajo, Calor y Principios de la Termodinánica Universidad Politécnica de Madrid

Más detalles

Unidad IV: Propiedades fundamentales de la materia.

Unidad IV: Propiedades fundamentales de la materia. Unidad IV: Propiedades fundamentales de la materia. Facultad de Ingeniería 2012 UPV Unidad IV: Propiedades fundamentales de la materia: Masa y densidad Concepto de masa Relación entre masa y volumen Concepto

Más detalles

1. Definición de trabajo

1. Definición de trabajo ermodinámica. ema rimer rincipio de la ermodinámica. Definición de trabajo Energía transmitida por medio de una conexión mecánica entre el sistema y los alrededores. El trabajo siempre se define a partir

Más detalles

DEFINICIONES ELEMENTALES

DEFINICIONES ELEMENTALES DEFINICIONES ELEMENTALES A partir de las leyes pónderales y de la ley de Lavoisier aparece el concepto de peso equivalente ó peso de combinación, que es el peso de un elemento que se combina con un peso

Más detalles

Geoquímica TEMA 4. NOCIONES DE TERMODINÁMICA Y CINÉTICA:

Geoquímica TEMA 4. NOCIONES DE TERMODINÁMICA Y CINÉTICA: Geoquímica TEMA 4. NOCIONES DE TERMODINÁMICA Y CINÉTICA: Ecuaciones termodinámicas fundamentales y su aplicación en procesos naturales. Uso de datos termodinámicos en geoquímica. Cinética, aplicación en

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Cantidades fundamentales Cantidades básicas y unidaded Unidad I: ropiedades y Leyes de la ermodinámica Cantidades fundamentales ropiedades de estado Función de estado y ecuación de

Más detalles

Introducción y conceptos básicos.

Introducción y conceptos básicos. Introducción y conceptos básicos. Introducción a la Física Ambiental. Tema 1. Tema 1 IFA (Prof. Ramos) 1 Tema 1.- " Introducción y conceptos básicos". Crítica al teorema de conservación de la energía mecánica:

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas.

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Tema 2: Disoluciones Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Presión de vapor. Presión osmótica. Aumento ebulloscópico y descenso

Más detalles

Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas.

Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas. HIDROSTÁTICA La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición. Reciben el nombre

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II Diagnóstico 1PTO: NO ENTREGADA EN TIEMPO Y FORMA. 2PTS: ACTIVIDAD INCOMPLETA. 3PTS: ACTIVIDA COMPLETA. 1 TEMÁTICA INTEGRADORA ESCENARIO DIDÁCTICO PREGUNTA GENERADORA 2 Desarrolla, analiza e interpreta

Más detalles

1. Primer principio de la termodinámica.

1. Primer principio de la termodinámica. 1. Primer principio de la termodinámica. Conceptos previos La termodinámica es la parte de la Física que se encarga de estudiar los cambios en los sistemas físicos en los que interviene el calor. En primer

Más detalles

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR 1. Introducción a. Ecuación de los gases perfectos b. Principios de la termodinámica y ley de Joule de los gases ideales 2. Principio de funcionamiento de los

Más detalles

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR 1 Índice 1. Los estados de agregación de la materia 2. Los gases y la teoría cinética 3. Las leyes de los gases 4. La teoría cinético-molecular 2 1

Más detalles

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v

FÍSICA 4. P = RT V a V 2. U(T,V) = U 0 +C V T a V? α α T = C 1 = C 2. v = 1.003cm 3 /g. α = 1 v FÍSICA 4 SEGUNDO CUARIMESRE DE 2009 GUÍA 3: OENCIALES ERMODINÁMICOS, CAMBIOS DE FASE 1. Sean x,, z cantidades que satisfacen una relación funcional f(x,, z) = 0. Sea w una función de cualquier par de variables

Más detalles

Auxiliar: Univ. MIGUEL ANGEL GUTIERREZ FISICOQUIMICA (QMC 206)

Auxiliar: Univ. MIGUEL ANGEL GUTIERREZ FISICOQUIMICA (QMC 206) Auxiliar: Univ. FISICOQUIMICA (QMC 206) FACULTAD TECNICA Lp SEPTIEMBRE 2005 CARRERA DE QUIMICA INDUSTRIAL 1.- a-explique la Ley de Amagat. b-determine las constantes a,b,r en el punto critico para los

Más detalles

al volume n molar V cuando se expande según un proceso isotérmico reversible, desde el volumen molar, V

al volume n molar V cuando se expande según un proceso isotérmico reversible, desde el volumen molar, V 9.- Un sistema cerrado inicialmente en reposo sobre la tierra es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. durante este proceso hay una transferencia

Más detalles

TEMA 1 Cambios de fase

TEMA 1 Cambios de fase TEMA 1 Cambios de fase 1.1. Introducción CLIMATIZACIÓN: crear y mantener un ambiente térmico en un espacio para desarrollar eficientemente una determinada actividad CONFORT O BIENESTAR: - Térmico - Lumínico

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA SYLLABUS TERMODINÁMICA Y FLUIDOS PROYECTO CURRICULAR: NOMBRE DEL DOCENTE: ESPACIO ACADÉMICO (Asignatura): TERMODINÁMICA Y FLUIDOS Obligatorio

Más detalles

Tema 2 Primera ley de la termodinámica. M del Carmen Maldonado Susano

Tema 2 Primera ley de la termodinámica. M del Carmen Maldonado Susano Tema 2 Primera ley de la termodinámica M del Carmen Maldonado Susano Objetivo El alumno realizará balances de energía en sistemas termodinámicos, mediante la aplicación de la primera ley de la termodinámica.

Más detalles

PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO. Tema 2 Primera ley de la termodinámica

PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO. Tema 2 Primera ley de la termodinámica PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO Tema 2 Primera ley de la termodinámica Objetivo: El alumno realizará balances de energía en sistemas termodinámicos, mediante la aplicación de la primera

Más detalles

Profesor: Joaquín Zueco Jordán. Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán. Área de Máquinas y Motores Térmicos Conceptos fundamentales Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Ingeniería Ingeniería Ingeniería Ingeniería Ingeniería eléctrica Conceptos térmica mecánica... Base Objetivo Termodinámica

Más detalles

Trabajo práctico N 4. Termodinámica I

Trabajo práctico N 4. Termodinámica I Trabajo práctico N 4 Termodinámica I La Termodinámica es la parte de la Fisicoquímica que estudia el intercambio energético, expresado como calor, que se produce en las reacciones químicas o en los procesos

Más detalles

Introducción. Mecánica Estadística. Cinética

Introducción. Mecánica Estadística. Cinética 1. Introducción Introducción Ciencia Macroscópica ermodinámica Mecánica Estadística Ciencia Microscópica Química Cuántica Cinética 2. Conceptos Fundamentales ermodinámica: Estudio del calor, el trabajo,

Más detalles

F A P = F A ESTADOS DE LA MATERIA ESTADO GASEOSO PROPIEDADES DE LOS GASES

F A P = F A ESTADOS DE LA MATERIA ESTADO GASEOSO PROPIEDADES DE LOS GASES ESTADO GASEOSO ROIEDADES DE LOS GASES ESTADOS DE LA MATERIA Estados de la materia Sólido Líquido Gaseoso Bibliografía: Química la Ciencia Central - T.Brown, H.Lemay y B. Bursten. Química General - McMurry-Fay

Más detalles

Unidad I Transformaciones de la materia. Tema 1. Los gases y sus leyes.

Unidad I Transformaciones de la materia. Tema 1. Los gases y sus leyes. Unidad I Transformaciones de la materia. Tema 1. Los gases y sus leyes. 1. Los gases 1.1. Teoría cinético molecular de los gases. 1. Los gases consisten en un número grande de partículas que están a grandes

Más detalles

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea.

Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Sustancia que tiene una composición química fija. Una sustancia pura no tiene que ser de un solo elemento, puede ser mezcla homogénea. Mezcla de aceite y agua Mezcla de hielo y agua Las sustancias existen

Más detalles

Física II TERMODINÁMICA: PROBLEMAS ADICIONALES INGENIERÍA DE SONIDO

Física II TERMODINÁMICA: PROBLEMAS ADICIONALES INGENIERÍA DE SONIDO Física II TERMODINÁMICA: PROBLEMAS ADICIONALES INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel

Más detalles

mecánica estadística Equilibrio entre especies químicas Capítulo 4

mecánica estadística Equilibrio entre especies químicas Capítulo 4 mecánica estadística Equilibrio entre especies químicas Capítulo 4 Equilibrio entre fases y especies químicas. Una de las aplicaciones más importantes de la mecánica estadística es la predicción del comportamiento

Más detalles

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica presión volumen mol temperatura escala absoluta atmosférica manométrica absoluta empírica Boyle Charles Gay Lussac Avogadro PV = k T y n ctes V/T = k P y n ctes P/T = k V y n ctes V/n = Vm P y T ctes PV

Más detalles