1. El trabajo que realizamos cuando sostenemos un cuerpo de 20 kg a 1,5 m de altura sobre el suelo es: a) 183 J b) 0 J c) 294 J

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. El trabajo que realizamos cuando sostenemos un cuerpo de 20 kg a 1,5 m de altura sobre el suelo es: a) 183 J b) 0 J c) 294 J"

Transcripción

1 TRABAJO 1. El trabajo que realizamos cuando sostenemos un cuerpo de 20 kg a 1,5 m de altura sobre el suelo es: a) 183 J b) 0 J c) 294 J 2. Una fuerza constante de 20 N actúa sobre un cuerpo de 5 kg formando 60º con la dirección del desplazamiento: Si el cuerpo estaba en reposo y no hay fricción, el trabajo realizado por dicha fuerza al cabo de 10 s es: Y la velocidad del cuerpo al cabo de los 10 s será: a) J b) 250 J c) 345,6 J a) 15 m/s b) 40 m/s c) 20 m/s 3. Un bloque se desplaza 10 m sobre la superficie horizontal en la que se apoya. Sobre él actúa una fuerza de 18 N. Halla el trabajo realizado por la fuerza: a) Si tiene la misma dirección y sentido que el desplazamiento. b) Si forma un ángulo de 45 con el desplazamiento. c) Si forma un ángulo de 90 con el desplazamiento. d) Si forma un ángulo de 30 con el desplazamiento. e) Si el bloque no se desplaza. f) Si forma un ángulo de 180 con el desplazamiento. Sol.: a) 180 J; b) 127 J; c) 0 J; d) 156 J; e) 0 J; f) -180 J 4. a) Calcula el trabajo total realizado sobre un bloque de 10 kg, que se deja deslizar por una superficie horizontal cuyo coeficiente de rozamiento es 0,3 y recorre 5 m hasta pararse. b) Si se dejara deslizar desde la parte más alta de un plano inclinado de 30 y de longitud 5 m. Halla el trabajo total realizado sobre él hasta que llega a la base del plano. c) Si se deja caer desde una altura de 2,5 m. Calcula el trabajo total. Compara el trabajo realizado por el peso con el del apartado b) y saca conclusiones. Sol.: a) J; b) 118 J; c) 245 J 5. Se sube una caja de 100 kg al remolque de un camión de 120 cm altura. Indica, despreciando el rozamiento: a) El trabajo que se realiza al subirla directamente b) El trabajo que se realiza al subirla mediante una tabla de 3 m de longitud. c) En qué caso se realiza más fuerza? Por qué? Sol. a) y b) 1176 J; c) al subirla directamente. ENERGÍA CINÉTICA 6. Sobre un cuerpo de 750 g que se mueve con una velocidad de 2,5 m/s actúa una fuerza de 15 N en la misma dirección y sentido de la velocidad durante 10 s. Determina: a) El trabajo realizado por la fuerza b) La energía cinética final del cuerpo c) La velocidad final que alcanza (por métodos energéticos y dinámicos) Sol.: a) J; b) J; c) 202,5 m/s 7. La fuerza de fricción entre las ruedas de un coche de 1300 kg es de 220 N. Si el coche se mueve por una pista horizontal a una velocidad de 110 km/h y se deja en punto muerto, qué distancia recorrerá hasta que se detenga por completo? Resuelve el problema por métodos energéticos y dinámicos. Sol.: 2759 m 1

2 8. Se lanza un cuerpo a lo largo de un plano horizontal con una velocidad inicial de 5 m/s. El coeficiente de rozamiento entre el cuerpo y el plano es 0,30. Qué distancia recorre hasta pararse? Sol: 4,25 m 9. Un camión de 30 t que inicialmente estaba en reposo, se mueve con una velocidad de 56 km/h sobre una superficie horizontal en la que la fuerza de rozamiento tiene un valor de N. Calcula el trabajo realiza el motor del camión al recorrer 100 m usando el Teorema de las fuerzas vivas. Sol: 4, J 10. Un bloque de 50 kg es empujado por una fuerza que forma un ángulo de 30º, como indica la figura. El cuerpo se mueve, a partir del reposo, con aceleración constante de 0,5 m/s 2. Si el coeficiente de rozamiento cinético entre el bloque y el suelo es 0,2, calcula: a) El módulo de la fuerza aplicada. b) El trabajo realizado por la fuerza cuando el bloque se desplaza 20 m. c) La energía cinética del bloque cuando se ha desplazado la distancia anterior. Sol: a) 162 N; b) 2,8 kj; c) 500 J 11. Un objeto de masa 250 g se deja deslizar con velocidad de 3,2 m/s sobre una mesa horizontal. El extremo de la mesa está a una distancia de 1,4 m y el coeficiente de rozamiento cinético entre la mesa y el cuerpo es de 0,21. a) Explica si el objeto caerá o no al suelo. b) En caso afirmativo, y suponiendo que la altura de la mesa sobre el suelo es de 0,9 m a qué distancia de la mesa caerá? Sol: a) Sí cae; b) 0,95 m ENERGÍAS POTENCIALES Energía potencial gravitatoria 12. Deduce el trabajo realizado por el peso sobre un cuerpo de 10 kg de masa que: a) Asciende desde el suelo a una altura h = 2,5 m. b) Vuelve a caer al suelo desde la altura anterior. Sol.: -245 J; 245 J 13. Qué trabajo hay que realizar para elevar un cuerpo de 20 kg desde una altura de 10 m sobre el suelo hasta una altura de 25 m? Qué trabajo realiza el peso? Sol.: 2, J 14. Un embalse contiene 150 hm 3 de agua a una altura media de 35 m. Halla la energía potencial gravitatoria que posee el agua del embalse. Exprésala en kwh. Densidad del agua: 1 g/ml. Sol.: 5, J; 1, kwh Energía potencial elástica 15. El trabajo realizado por la fuerza elástica en una oscilación completa de un muelle desde la posición inicial A hasta B y de nuevo a A, siendo x la distancia entre A y B y k la constante del muelle, vale: a) 2kx 2 b) 4kx 2 c) cero 2

3 16. Un bloque se encuentra unido a un muelle de constante elástica 1, N/m apoyado en una superficie horizontal sin rozamiento. Calcula el trabajo realizado por la fuerza elástica: a) Si el muelle se acorta 10 cm. b) Si el muelle se alarga hasta volver a la posición inicial. Sol.: a) - 7,5 J; b) 7,5 J 17. Al colgar un cuerpo de 5 kg de un muelle vertical se produce un alargamiento de 12,5 cm. Calcula la constante elástica del muelle y la energía potencial elástica almacenada. Sol: 392 N/m; 3,06 J CONSERVACIÓN DE LA ENERGÍA 18. Teniendo en cuenta la relación entre fuerza conservativa y energía, indica razonadamente si las siguientes frases son verdaderas o falsas: a) Si solo actúan fuerzas conservativas, la energía cinética de una partícula no cambia. b) El trabajo realizado por una fuerza conservativa reduce la energía potencial asociada a dicha fuerza. c) El trabajo realizado por fuerzas no conservativas equivale a la variación de la energía total del sistema. Problemas sin rozamiento 19. Halla la altura h que alcanza un cuerpo que se lanza verticalmente desde el suelo con una velocidad de 12 m/s. Sol.: 7,35 m 20. Un objeto de 4 kg cae desde una altura de 22 m. Calcula: a) A qué altura sobre el suelo se igualan su Ec y su Ep. b) La velocidad en ese punto. c) La velocidad en el instante de tocar el suelo. Sol.: a) 11 m; b) 14,68 m/s ; c) 20,76 m/s 21. Se lanza una pelota hacia arriba, alcanzando los 7 m de altura. Calcula: a) A qué altura sobre el suelo se igualan su Ec y su Ep. b) La velocidad en ese punto. c) La velocidad con la que se ha lanzado la pelota. Sol.: a) 3,5 m ; b) 8,28 m/s ; c) 11,71 m/s 22. Dos pesas de 0,3 y 0,8 kg penden de los extremos de una cuerda que pasa por la garganta de una polea, ambas de masa despreciable. Si inicialmente las dos pesas se encuentran en reposo y a la misma altura, calcula, aplicando el principio de conservación de la energía mecánica, la velocidad del sistema cuando, una vez dejado en libertad, las pesas estén separadas una distancia vertical de 0,7 m. Sol.: 1,76 m/s 23. Calcula la velocidad con que llega a la base de un plano inclinado con α = 60º, de longitud L=10 m, un bloque que se coloca en su punto más alto. Considera despreciable el rozamiento. Sol.: 13 mis 24. Halla la longitud L que recorre sobre un plano inclinado a 30, un bloque que llega a la base del plano con velocidad v = 7 m/s y comienza a ascender por el mismo. Considera despreciable el rozamiento. Sol.: 5 m 25. Un péndulo de 1 m de longitud se deja oscilar desde la horizontal (posición A). Si no hay rozamiento, calcula la velocidad del péndulo en: a) La posición B (la cuerda forma un ángulo de 30º con la horizontal). b) La posición C (la cuerda forma un ángulo de 60º con la horizontal). 3

4 c) La posición D (la cuerda forma un ángulo de 90º con la horizontal). Sol.: a) 3,13 m/s; b) 4,12 m/s; c) 4,43 m/s Problemas con rozamiento 26. Un cuerpo de 4 kg resbala por un plano que tiene una inclinación de 60 y 5 m de longitud. Si al final del plano su energía mecánica ha disminuido en 10 J, el valor del coeficiente de rozamiento es: a) 0,25 b) 0,04 c) 0, Un cuerpo de 10 kg resbala a lo largo de un plano inclinado 30º con la horizontal. La longitud del plano es de 7 m y el coeficiente de rozamiento 0,3. Calcula: a) El trabajo de rozamiento. b) La energía mecánica del cuerpo cuando está en reposo en lo alto del plano. c) La energía cinética y la velocidad del cuerpo al final del plano. Sol: a) -178 J; b) 343 J; c) 165 J; 5,7 m/s 28. Un bloque de 5 kg desciende desde el reposo por un plano inclinado 30º con la horizontal. La longitud del plano es 10 m y el coeficiente de rozamiento 0,1. Calcula la velocidad del bloque en la base del plano inclinado. Sol: 9 m/s 29. Se tiene un plano inclinado 60º respecto a la horizontal cuya longitud es de 10 m Qué velocidad paralela al plano debe comunicarse a un cuerpo para que éste llegue a la parte superior del plano inclinado con velocidad nula? El coeficiente de rozamiento vale 0,1. Sol: 13,40 m/s 30. Una esfera metálica de 100 kg de masa se deja caer desde una altura de 5 metros sobre un suelo arenoso. La esfera penetra 40 cm en el suelo. Halla la fuerza de resistencia ejercida por el suelo. Sol.: N 31. Un proyectil de 30 g de masa alcanza un bloque de madera con una velocidad de 200 m/s. a) Calcula la resistencia que ofrece la madera a la penetración si el proyectil ha penetrado en ella 8 cm b) Halla qué velocidad tendría el proyectil después de atravesar una lámina de la misma madera de 2 cm de espesor. Sol.: a) 7500 N; b) 173,2 m/s Problemas con muelles 32. Contra un muelle de constante de fuerza k = 400 N/m, dejamos deslizar un cuerpo de 1 kg sobre una superficie horizontal con una velocidad de 3 m/s. La compresión del muelle será de: a) 15 cm b) 25 cm c) 40 cm 33. Calcula la velocidad con la que pasa por la posición de equilibrio un bloque, de masa 0,5 kg unido a un muelle horizontal de constante elástica k = 20 N/m, que se ha deformado 5 cm. Considera despreciable el rozamiento. Sol.: 0,316 mis 34. Un bloque de 5 kg que se desplaza sobre una superficie horizontal con una velocidad de 10 m/s choca contra un muelle de constante elástica k = 25 N/m. El coeficiente de rozamiento entre el bloque y la superficie horizontal es 0,2. Calcula la longitud que se comprime el muelle. 4

5 Sol: 4,1 m 35. Calcula la velocidad con la que pasa por la posición de equilibrio un bloque, de masa 0,5 kg colgado verticalmente a un muelle horizontal de constante elástica k = 2000 N/m, que se ha deformado 5 cm. Sol.: 3 mis 36. En el sistema de la figura, la masa del cuerpo es 2 kg y el coeficiente de rozamiento con el suelo 0,2. Si comprimimos el muelle (de constante elástica k = 300 N/m) 2 cm y después soltamos, calcula la velocidad del cuerpo cuando el muelle ha recuperado su longitud normal y la distancia que, a continuación, recorre el cuerpo sobre el suelo hasta que se para. Sol.: 0,72 m/s; 13,3 cm POTENCIA 37. El motor de un ciclomotor al ejercer una fuerza de 120 N le imprime una velocidad de 54 km/h. Qué potencia utiliza? Exprésala en todas las unidades que conozcas. Sol.: 1800 w; 1,8 kw; 2,45 CV 38. Qué trabajo realiza una máquina de 10 kw de potencia en 3 h? Exprésalo en kwh y en julios. Sol.: 30 kwh; 1, J 39. Cuál de las siguientes relaciones entre unidades equivale a 1 N? a) J s -1 d) w s m -1 b) kg m s -1 e) w m s -1 c) J m -1 s -2 f) J s 40. Cierto automóvil que circula a 129 km/h está sometido a una fuerza de fricción con la carretera de 211 N y a una fricción con el aire de 830 N. Qué potencia debe desarrollar en esas condiciones para mantener constante esa velocidad? Expresa el resultado en kilovatios y en caballos de vapor. Sol.: 37,3 kw; 50,7 CV 41. Se quiere llenar un depósito de agua de 8 m 3 de volumen. Para ello se utiliza una bomba de 10 CV. Sabiendo que el depósito se encuentra a una altura media de 10 m y que el rendimiento de la bomba es del 85%, cuánto tiempo se tardará en llenar el depósito? Dato: 1 CV = 735 w. Sol.: 2,09 min 42. Una turbina cuya potencia útil es de 50 CV funciona con un rendimiento del 80%. Si el caudal de agua que la pone en funcionamiento es de 500 L/s, cuál es la altura del salto de agua? Sol.: 9 m 43. Un automóvil de 1,4 t inicia el ascenso de una cuesta con una velocidad de 36 km/h. Cuando se ha elevado una altura vertical de 20 m sobre la base de la rampa alcanza una velocidad de 25 m/s, invirtiendo para ello un tiempo de 40 s. Supón que no hay rozamiento y calcula: a) El aumento experimentado por la energía mecánica del coche. b) La potencia media del motor necesaria para suministrar esa energía. Sol: a) 6, J; b) 16 kw 44. Un automóvil de 750 kg necesita una potencia de 20 CV para mantener una velocidad constante de 60 km/h por una carretera horizontal. Calcula. a) La fuerza de rozamiento que se opone al movimiento. 5

6 b) La potencia que necesita ese automóvil para subir con la misma velocidad una pendiente que forma un ángulo de 5,7º con la horizontal, suponiendo que la fuerza de rozamiento es la misma que en el plano horizontal. Sol: a) 880 N; b) 36,6 CV 45. El cable de una grúa está accionado por un motor de 1 CV que tiene un rendimiento del 80%. La grúa eleva la carga hasta una altura de 20 m, empleando para ello un tiempo de medio minuto. a) Cuál es la carga máxima que se puede elevar en cada viaje? b) Considerando que la velocidad con la que asciende el cuerpo es constante, determina la tensión que soporta el cable. Sol: a) m = 90 kg; b) T = 882 N REPASO 46. Indica razonadamente si las siguientes frases son verdaderas o falsas: a) El trabajo realizado por la fuerza de rozamiento es siempre negativo b) La energía cinética de un cuerpo puede ser negativa c) La energía potencial de un cuerpo puede ser negativa d) Si sobre un cuerpo en movimiento actúa una fuerza, entonces siempre se realiza un trabajo. e) El trabajo realizado por cualquier fuerza equivale a la variación negativa de la energía potencial gravitatoria. f) El trabajo realizado por cualquier fuerza equivale a la variación de la energía cinética. 47. Observa las tres situaciones de la figura. En ellas, una bola lleva al pasar por A una determinada velocidad. Suponiendo que no hay rozamiento, la velocidad en el punto B será, en cada caso, mayor, igual o menor que en el punto A? 48. Una masa de 3,8 kg, inicialmente en reposo, desciende por un plano inclinado, sin rozamiento, que forma un ángulo de 60º con la horizontal. Calcula: a) La energía cinética cuando ha descendido 34 m. b) La energía cinética suponiendo que existe un coeficiente de rozamiento de 0,15. Sol.: a) 1096,5 J; b) 1001,3 J 49. Se deja un bloque de hielo en una rampa helada de 30º de inclinación y 20 m de longitud. Calcula el tiempo que tarda en descender esa longitud: a) Suponiendo rozamiento nulo. b) Suponiendo que pierde el 10 % de energía por rozamiento. Sol.: a) 2,86 s ; b) 3,01 s 50. Un bloque de 0,5 kg está colocado sobre el extremo superior de un resorte vertical que está comprimido 10 cm y, al liberar el resorte, el bloque sale despedido hacia arriba verticalmente. La constante elástica del muelle es 200 N m -1. a) Explica los cambios energéticos que tienen lugar desde que se libera el resorte hasta que el cuerpo cae y calcula la máxima altura que alcanza el bloque. b) Con qué velocidad llegará el bloque al extremo del resorte en su caída? Sol.: a) 20,4 cm ; b) 1,43 m/s 51. Un péndulo está formado por una cuerda de 2 metros y una masa de 50 gramos. Se separa la masa del péndulo un ángulo de 30º de su posición de equilibrio y se deja en libertad. Calcula el trabajo realizado hasta la vertical por: 6

7 a) La fuerza del peso, usando la energía potencial b) La tensión de la cuerda. Sol.: a) W P = - Ep g = 0,13 J; b) W T = 0 J 52. Un bloque de 2 kg está situado en el extremo de un muelle, de constante elástica 500 Nm -1, comprimido 20 cm. Al liberar el muelle el bloque se desplaza por un plano horizontal y, tras recorrer una distancia de 1 m, asciende por un plano inclinado 30º con la horizontal. Calcula la distancia recorrida por el bloque sobre el plano inclinado. Usa 10 m/s 2 para el valor de g. a) Supuesto nulo el rozamiento b) Si el coeficiente de rozamiento entre el cuerpo y los planos es 0,1. Sol.: a) 1 m; b) 0,68 m 53. Se hace girar una piedra en un círculo vertical de 80 cm de radio. Si en el punto más bajo la velocidad es de 5 m/s, calcula la velocidad en los puntos A y B. Sol.: a) 3 m/s; b) 1,22 m/s 54. Un cuerpo de 50 kg se desliza por una montaña rusa tal como se ve en la figura. Si la velocidad en A es de 5 m/s y en B es de 3,2 m/s: a) Calcula las variaciones que experimentan la energía potencial y cinética. b) Cuánto vale el trabajo realizado por las fuerzas de rozamiento? c) Si, a partir de B se considera el rozamiento despreciable, hasta qué altura ascenderá el cuerpo? Sol.: a) Ec = 369 J y Ep = 490 J; b) W = 859 J ; c) 2,5 m 7

8 55. Qué velocidad tendrá un vagón de una montaña rusa sin rozamiento en los puntos A, B y C de la figura, si el carrito parte de O con v o = 0 m/s? Sol.: v A = 14,14 m/s ; v B =12,65 m/s ; v C = 7,74 m/s 56. Se deja caer un balón de baloncesto desde una altura de 1,5 m sobre el suelo. Si en cada bote pierde un 25% de su energía, determina la altura que alcanza después de botar 5 veces. Sol: h = 0,36 m 8

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4

Más detalles

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144

Slide 1 / 144. Slide 2 / 144. Slide 3 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 1 / 144 2 Una fuerza realiza 30000 J de trabajo

Más detalles

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA Fuerzas conservativas El trabajo realizado por las fuerzas conservativas solo depende de la posición inicial y final del cuerpo

Más detalles

Slide 2 / 144. Slide 1 / 144. Slide 3 / 144. Slide 4 / 144. Slide 5 / 144. Slide 6 / 144

Slide 2 / 144. Slide 1 / 144. Slide 3 / 144. Slide 4 / 144. Slide 5 / 144. Slide 6 / 144 Slide 1 / 144 1 El motor de un automóvil aplica una fuerza de 65 kn; cuánto trabajo realiza el motor a medida que el automóvil se mueve a una distancia de 75 m? Slide 2 / 144 2 Una fuerza realiza 30000

Más detalles

Soluciones unidad 5. Trabajo y Energía 4º ESO 1

Soluciones unidad 5. Trabajo y Energía 4º ESO 1 Soluciones unidad 5. Trabajo y Energía 4º ESO 1 SOLUCIONES UNIDAD 5. TRABAJO Y ENERGÍA QUÉ SABES DE ESTO? 1. Describe las diferentes transformaciones de la energía que se realizan cuando una niña se sube

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

d) Un trabajo negativo indica que la fuerza que lo realiza se opone al desplazamiento Unidad 6. Energía, trabajo y potencia

d) Un trabajo negativo indica que la fuerza que lo realiza se opone al desplazamiento Unidad 6. Energía, trabajo y potencia ACTIVIDADES Actividades DEL del FINAL final DE LA de UNIDAD la unidad. Explica por qué no se puede conocer el valor absoluto de la energía de un cuerpo. Porque la energía no puede medirse directamente;

Más detalles

PROBLEMAS DE TRABAJO Y ENERGÍA

PROBLEMAS DE TRABAJO Y ENERGÍA PROBLEMAS DE TRABAJO Y ENERGÍA 1. Un cuerpo se desplaza 5 m al actuar sobre él una fuerza de 50 N. Calcula el trabajo realizado en los siguientes casos: a) Fuerza y desplazamiento tienen la misma dirección

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA PROBLEMAS DE DINÁMICA 1º BACHILLERATO Curso 12-13 1. Se arrastra un cuerpo de 20 Kg por una mesa horizontal sin rozamiento tirando de una cuerda sujeta a él con una fuerza de 30 N. Con qué aceleración

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

ángulo θ. a) θ=0 o, b) θ=45 o, c) θ=60 o, d) θ=90 o, e) θ=120 o, f) θ=180 o.

ángulo θ. a) θ=0 o, b) θ=45 o, c) θ=60 o, d) θ=90 o, e) θ=120 o, f) θ=180 o. FISICA 1 (UNSAM -BUC-2-2009) Trabajo y Energía Cinética 1) Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de 500 N, que forma un ángulo θ con la dirección del

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

TECNOLOGÍA INDUSTRIAL 1º. PROBLEMAS TEMA1: LA ENERGÍA EL MOTOR DEL MUNDO

TECNOLOGÍA INDUSTRIAL 1º. PROBLEMAS TEMA1: LA ENERGÍA EL MOTOR DEL MUNDO TECNOLOGÍA INDUSTRIAL 1º. PROBLEMAS TEMA1: LA ENERGÍA EL MOTOR DEL MUNDO Tema1-1. Un cuerpo de masa 5 kg, inicialmente en reposo, está situado en un plano horizontal sin rozamientos y se le aplica una

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

GUÍA Nº4: Sistema de partículas

GUÍA Nº4: Sistema de partículas Junio - 014 GUÍA Nº4: Sistema de partículas PROBLEMA 1: Tres partículas inicialmente ocupan las posiciones determinadas por los extremos de un triángulo equilátero, tal como se muestra en la figura. a)

Más detalles

FS-11 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía III

FS-11 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física Trabajo y energía III FS-11 Ciencias Plan Común Física 2009 Trabajo y energía III Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

TRABAJO POTENCIA - ENERGÍA

TRABAJO POTENCIA - ENERGÍA PROGRM DE VERNO DE NIVELCIÓN CDÉMIC 15 TRJO POTENCI - ENERGÍ 1. Un sujeto jala un bloque con una fuerza de 7 N., como se muestra, y lo desplaza 6 m. Qué trabajo realizó el sujeto? (m = 1 kg) a) 1 J b)

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

Ecuaciones Claves. Conservación de la Energía

Ecuaciones Claves. Conservación de la Energía Ecuaciones Claves Conservación de la Energía La ley de conservación de la energía establece que dentro de un sistema cerrado, la energía puede cambiar de forma, pero la cantidad total de energía es constante.

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un mecánico empuja un auto de 2500 kg desde el reposo hasta alcanzar una rapidez v, realizando 5000 J de trabajo en el proceso. Durante este tiempo,

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS 1. Un automóvil circula con una velocidad media de 72 km/h. Calcula qué distancia recorre cada minuto. 2. Un ciclista recorre una distancia de 10 km

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h.

1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una velocidad de 120 km/h. SISTEMA DE UNIDADES EQUIVALENCIAS DE UNIDADES DE ENERGÍA 1 cal = 4,18 J 1 J = 0,24 cal 1Kwh = 3,6 x 10 6 J PROBLEMAS SOBRE ENERGÍA MECÁNICA FÓRMULAS: Energía potencial gravitatoria:. Energía cinética:.

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO

ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESULETOS DE DINÁMICA PRIMERO DE BACHILLERATO 1. Sobre un cuerpo de 20

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

C.P.F.P.A. San Francisco de Asís. Dolores. EJERCICIOS 2ª EVALUACIÓN. FÍSICA

C.P.F.P.A. San Francisco de Asís. Dolores. EJERCICIOS 2ª EVALUACIÓN. FÍSICA EJERCICIOS 2ª EVALUACIÓN. FÍSICA 1. Un tren de alta velocidad (AVE) viaja durante media hora con una velocidad constante de 252 Km/h. A continuación reduce su velocidad hasta pararse en 14 s. a) Describe

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

Departamento de Física TALLER DE MECÁNICA

Departamento de Física TALLER DE MECÁNICA TALLER DE MECÁNICA 1. Usted esta de pie sobre un asiento de una silla, y luego salta de ella. Durante el tiempo que usted esta en el aire y cae al piso, la Tierra hacia arriba con usted, (a) con una aceleración

Más detalles

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 1) Dos fuerzas F1 y F2 actúan sobre un pequeño cuerpo; F1 es vertical hacia abajo y vale F1=8,0 N, mientras que F2 es horizontal hacia la derecha y vale

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS Fuerza que ejerce el cenicero sobre el libro (Fuerza Normal): N 1 Fuerza que ejerce la mesa sobre el libro (Fuerza Normal): N 2 Fuerza de atracción que ejerce el planeta tierra sobre el libro (Peso del

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Año:2015 Período: Segundo Término Materia: Física A Profesor: Evaluación: Tercera Fecha: 17

Más detalles

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Julián Moreno Mestre www.juliweb.es

Julián Moreno Mestre www.juliweb.es Ejercicio de cálculos de trabajo: 1º Una bomba hidráulica llena un depósito de 500 L situado a 6 m de altura. Qué trabajo ha realizado? Sol: 2.94 10 5 J. 2º Determinar el trabajo realizado por una fuerza

Más detalles

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile.

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. 1. De acuerdo con la leyenda, un caballo aprendió las leyes de Newton. Cuando se le pidió

Más detalles

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero.

b) Si los tres vectores corresponden a los lados de un triangulo, la proyección escalar de (AxB) sobre C es diferente de cero. 1. Sean los vectores que se encuentran en el paralelepípedo tal como se muestran en la figura, escoja la alternativa correcta: a) b) c) d) e) 2. Sean tres vectores A, B y C diferentes del vector nulo,

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos MRU MRUA CINEMÁTICA 4º E.S.O. Caída y lanzamiento de cuerpos Movimiento Rectilíneo Uniforme 1. Un corredor hace los 400 metros lisos en 50 seg. Calcula la velocidad en la carrera. Sol: 8m/s. 2. Un automovilista

Más detalles

Queda prohibida su reproducción parcial o total con fines comerciales sin la autorización escrita correspondiente.

Queda prohibida su reproducción parcial o total con fines comerciales sin la autorización escrita correspondiente. FSCA El siguiente material es propiedad intelectual de Cursos ALBER ENSEN, y posee Derechos Registrados conforme a Ley. Se encuentra a disposición UNCAMENE de alumnos que consultan nuestra página Web.

Más detalles

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009 Movimiento Parabólico 1. Un cañón antitanques está ubicado en el borde de una meseta a una altura de 60 m. sobre la llanura que la rodea, como se observa en la figura. La cuadrilla del cañón avista un

Más detalles

TALLER DE ENERGÍA, MOMENTO LINEAL, IMPULSO Y COLISIONES

TALLER DE ENERGÍA, MOMENTO LINEAL, IMPULSO Y COLISIONES TALLER DE ENERGÍA, MOMENTO LINEAL, IMPULSO Y COLISIONES 1. Un pequeño bloque de masa m se desliza sin fricción a lo largo de una pista en rizo como se muestra en la figura. a. Si el bloque se suelta desde

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

10.- Qué se entiende por sistema material? Un insecto podría ser un sistema material? De qué tipo?

10.- Qué se entiende por sistema material? Un insecto podría ser un sistema material? De qué tipo? Tema 4. Energía. 1 TEMA 4. LA ENERGÍA. 1. LA ENERGÍA. 8.- Relaciona mediante flechas las dos columnas. 2. LOS SISTEMAS MATERIALES Y LA ENERGÍA. 10.- Qué se entiende por sistema material? Un insecto podría

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es

TRABAJO Y ENERGIA 1. Para un objeto que se mueve en una dimensión, el trabajo W hecho sobre el objeto por una fuerza constante aplicada F es TRABAJO Y ENERGIA 1 TRABAJO Y ENERGIA La primera figura muestra un esquiador que partiendo del reposo desciende por una superficie uniforme Cuál será la velocidad del esquiador cuando llegue al final de

Más detalles

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2

Tema 5. PRINCIPIOS GENERALES DE MÁQUINAS 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 1. CONCEPTO DE MÁQUINA...2 2. SISTEMA INTERNACIONAL DE UNIDADES. MAGNITUDES Y MEDIDAS...2 2. TRABAJO. UNIDADES Y EQUIVALENCIAS...2 3. FORMAS DE ENERGÍA...3 A) Energía. Unidades y equivalencias...3 B) Formas

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

DINÁMICA FCA 05 ANDALUCÍA

DINÁMICA FCA 05 ANDALUCÍA 1. Con un arco se lanza una flecha de 0 g, verticalmente hacia arriba, desde una altura de m y alcanza una altura máxima de 50 m, ambas sobre el suelo. Al caer, se clava en el suelo una profundidad de

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

Trabajo, energía y potencia

Trabajo, energía y potencia Trabajo, energía y potencia Qué es la energía? Idea intuitiva: La energía es la responsable de los cambios en los sistemas físicos puedes dar algunos ejemplos? Transformaciones energéticas en aparatos

Más detalles

Física 4º E.S.O. 2015/16

Física 4º E.S.O. 2015/16 Física 4º E.S.O. 2015/16 TEMA 3: El movimiento rectilíneo Ficha número 6 1.- Las ecuaciones de los movimientos de dos móviles que se mueven por la misma trayectoria, en las unidades del S.I. son respectivamente:

Más detalles

PROBLEMAS RESUELTOS TEMA: 4

PROBLEMAS RESUELTOS TEMA: 4 PROBLEMAS RESUELTOS TEMA: 4. Determinar la posición del centro de gravedad del sistema formado por los cuatro puntos materiales, A, B, C y D distribuidos según la figura. Datos: m A = 00 g, m B = 200 g,

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

FÍSICA 10 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA.

FÍSICA 10 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA. FÍSICA 0 GRADO ELVER ANTONIO RIVAS CÓRDOBA ENERGÍA. Se puede definir informalmente la energía que posee un cuerpo como una medida de su capacidad para realizar trabajo Julio (J): es la unidad de energía

Más detalles

TALLER 4 TEMA : Fuerza-Trabajo Potencia-Energía. Realiza estos ejercicios desarrollando todos los procesos necesarios

TALLER 4 TEMA : Fuerza-Trabajo Potencia-Energía. Realiza estos ejercicios desarrollando todos los procesos necesarios TALLER 4 TEMA : Fuerza-Trabajo Potencia-Energía Recuerda : trabajar en este taller te representa centrarnos y conocer el tema a tratar, lo que se va a explicar y evaluar El practicar y repasar el tema

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

TRABAJO Y ENERGÍA. F r

TRABAJO Y ENERGÍA. F r TRABAJO Y ENERGÍA. Trabajo mecánico... Trabajo de una fuerza constante... Trabajo de una fuerza variable.. Energía... Energía cinética... Energía potencial.... Energía potencial gravitatoria.... Energía

Más detalles

PROBLEMAS DE CINEMÁTICA. 4º ESO

PROBLEMAS DE CINEMÁTICA. 4º ESO Velocidad (km/h) Espacio(km) PROBLEMAS DE CINEMÁTICA. 4º ESO 1. Ordena de mayor a menor las siguientes cantidades: 12 km/h; 3 5 m/s; 0 19 km/min 3 5 m/s 1km/1000 m 3600 s/1h = 12 6 m/s 0 19 km/min 60 min/1h

Más detalles