Bárbara Cánovas Conesa. x = nº que votan Roma y = nº que votan Londres z = nº que votan París

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Bárbara Cánovas Conesa. x = nº que votan Roma y = nº que votan Londres z = nº que votan París"

Transcripción

1 Bárbara Cánovas Conesa Junio 0 a) espeja la matriz X en la siguiente ecuación matricial: 7I X + AX = B, suponiendo que todas las matrices son cuadradas del mismo orden (I es la matriz identidad). b) Si A = ( 0 ), calcula la matriz X que cumple AX = I, donde I es la matriz identidad de orden. 7 7I X + AX = B X + AX = B 7I ( I + A)X = B 7I ( I + A) ( I + A)X = ( I + A) (B 7I) I X = ( I + A) (B 7I) X = ( I + A) (B 7I) AX = I A AX = A I I X = A X = A A = 0 7 = 0 A A = (Adj. A)t A Adj. A = ( 7 0 ) (Adj. )t = ( 0 7 ) A = ( 0 7 ) A = ( 7 0 ) X = ( 7 0 ) Los alumnos de º de Bachillerato de un centro escolar votan entre los tres posibles destinos para el viaje de fin de curso: Roma, Londres y París. El número total de votos es 0. El número de alumnos que quieren ir a Roma es el triple de la diferencia entre los que quieren ir a París y los que quieren ir a Londres. El número de alumnos que quieren ir a París es la mitad de la suma de los que quieren ir a Roma y a Londres a) Plantea el sistema de ecuaciones que permita saber cuántos alumnos quieren ir a Roma, Londres y París respectivamente. b) Resuelve el sistema planteado en el apartado anterior. x = nº que votan Roma y = nº que votan Londres z = nº que votan París Lo resolvemos por Gauss: x + y + z = 0 x = (z y) { x + y z = x + y + z = 0 { x + y z = 0 x y + z = x + y + z = 0 ( 0 ) F F ( 0 4 0) { y 4z = 0 0 F + F z = 0 Es decir, quieren ir 60 alumnos a Roma, 0 alumnos a Londres y 40 a París. x = 60 { y = 0 z = 40 Se ha registrado el ruido que se produce en una cocina industrial durante 4.5 horas. La función R(t) = t 9t + 4t + 8, representa el ruido medido en decibelios (db) y t el tiempo medido en horas, 0 < t < 4.5. a) En la primera hora (t = ), cuántos decibelios se registraron? b) En qué momento se produce mayor ruido? Cuál fue el valor máximo del ruido registrado? En la primera hora se registraron: R() = = 44 db Para que exista un máximo (mayor ruido) la R (t) = 0 y R (t) < 0: R (t) = t 8t + 4 R (t) = 0 t 8t + 4 = 0 { t = 4 t = R (t) = 6t 8

2 R (4) = 6 > 0 R () = 6 < 0 máximo R() = 48 Por tanto a las horas se produce el máximo ruido cuyo registro fue de 48db. PAEG _ Matemáticas CCSS _ CLM Se considera la función f(x) = { x x si x (x ). Se pide: + si x > a) Estudia su continuidad en x =. b) Extremos relativos en el intervalo (,4). c) Intervalos de crecimiento y decrecimiento en (,). Para que sea continua lim f(x) = lim f(x) = f() x + x Por lo tanto, f(x) no es continua en x =. { lim f(x) = lim x x x x = 0 lim f(x) = lim x + x +(x ) + = f() = 0 En el intervalo (,4) la función toma el valor: f(x) = (x ) +. Para que exista un extremo relativo: f (x) = 0 f (x) = (x ) f (x) = x 4 f (x) = 0 x 4 = 0 x = f (x) = > 0 un mínimo relativo f() = Es decir, existe un mínimo relativo en (, ). En el intervalo (, +) la función toma el valor: f(x) = (x ) + : f () <0 f (4) >0 Con lo que f(x) es decreciente en (,) y creciente en (,+). En un instituto el 0% de los alumnos juegan al baloncesto, el 5% juegan al fútbol, y el 50% juegan al fútbol o al baloncesto o a ambos deportes. a) Se elige un alumno al azar, cuál es la probabilidad de que juegue al fútbol y juegue al baloncesto? b) Si elegimos un alumno al azar y juega al baloncesto, cuál es la probabilidad de que juegue al fútbol? Suceso A = jugar al baloncesto P(A) = 0. Suceso B = jugar al fútbol P(B) = 0.5 P(AB) = 0.5 La probabilidad de jugar al fútbol y al baloncesto: P(AB) P(A B) = P(A) + P(B) P(AB) = P(A B) = Si juega al baloncesto, la probabilidad de que juegue al fútbol es: P( B A ) P( B P(B A) A ) = P(A ) = P(B A ) = 0. 69

3 Bárbara Cánovas Conesa Junio 0 Se sabe que el peso de los paquetes de harina, que se producen en una fábrica, sigue una distribución normal de media desconocida y desviación típica 0 gramos. Se seleccionan al azar 50 paquetes de harina y se observa que tienen un peso medio de 745 gramos. a) Halla el intervalo de confianza para el peso medio de los paquetes de harina de dicha fábrica con un nivel de confianza del 97 %. b) Explica razonadamente, cómo podríamos disminuir la amplitud del intervalo de confianza. El intervalo de confianza para la media es: IC = (x ± Zα σ ) n x = 745 = 0 n = 50 - = 0.97 = 0.0 α = α = El valor crítico Zα es aquel que cumple, en la distribución normal estándar P (Z Zα ) - α buscamos en la tabla P (Z Zα ) Zα =.7 IC = (745 ±.7 0 ) = (745 ± 6.) = (78. 87, 75. ) 50 Si queremos obtener un intervalo de anchura menor manteniendo el nivel de confianza podemos aumentar el tamaño de la muestra, lo que hace disminuir el radio del intervalo porque hace aumentar el denominador de la fracción que aparece en él. σ n Si no queremos cambiar el tamaño de la muestra, podemos reducir el intervalo renunciando al nivel de confianza, tomando uno menor. Esto hace que el factor Zα que aparece en el radio del intervalo disminuya y por tanto disminuye el intervalo. Una empresa tiene 000 bolsas de ajo morado de Las Pedroñeras y 000 botellas de aceite de oliva de Los Montes de Toledo. esea elaborar dos tipos de lotes para regalo con dichos productos: lotes de tipo A formados por tres bolsas de ajos y una botella de aceite de oliva, que venderá a 50 euros; lotes de tipo B formados por una bolsa de ajos y dos botellas de aceite de oliva que venderá a 80 euros. a) ibuja la región factible. b) Cuántos lotes de cada tipo deberá preparar para obtener la mayor cantidad de dinero? Si llamamos: x = nº lotes tipo A y = nº lotes tipo B La función a optimizar (maximizar) será: G(x, y) = 50x + 80y x + y 000 A = (800, 600) x + y 000 B = (0, 000) { { x 0 C = (000, 0) y 0 = (0, 0) B (0, 000) 000 Los valores que toma la función G(x, y) = 50x + 80y en cada uno de los vértices: En el vértice A : G (800, 600) = En el vértice B : G (0, 000) = En el vértice C : G (000, 0) = En el vértice : G (0, 0) = 0 Por tanto la solución óptima se encuentra en el vértice A, es decir, para x=0 e y=000, G(x,y) toma un valor máximo de (0, 0) A (800, 600) 000 C (000, 0)

4 4 PAEG _ Matemáticas CCSS _ CLM Una empresa fabrica tres modelos de lavadoras: A, B y C. Para fabricar el modelo A se necesitan horas de trabajo en la unidad de montaje, horas en la unidad de acabado y hora en la unidad de comprobación. Para fabricar el modelo B se necesitan 4 horas de trabajo en la unidad de montaje, horas de trabajo en la unidad de acabado y hora en la unidad de comprobación. Para fabricar el modelo C se necesitan horas en la unidad de montaje, hora de trabajo en la unidad de acabado y hora de trabajo en la unidad de comprobación. Sabiendo que se han empleado 40 horas en la unidad de montaje, 40 horas en la unidad de acabado y 50 horas en la unidad de comprobación. Se pide: a) Plantea el sistema que permita saber cuántas lavadoras de cada modelo se han fabricado. b) Resuelve el sistema planteado. x = nº tipo A y = nº tipo B z = nº tipo C Lo resolvemos por Gauss x + 4y + z = 40 { x + y + z = 40 x + y + z = x + y + z = 50 ( 4 40) F F ( 0 0) { y z = 0 40 F F z = 60 Es decir, se han fabricado 50 lavadoras del tipo A, 40 del tipo B y 60 del tipo C. x = 50 { y = 40 z = 60 ada la función f(x) = x + ax + bx + c. Calcula los valores de las constantes a, b y c para que la gráfica de la función pase por el punto (0, 4), tenga un mínimo relativo en el punto de abscisa x =-, y un punto de inflexión en x = -. Para que pase por el punto (0,4) f(0) = 4 c = 4 f(x) = x + ax + bx + 4 Para que tenga un mínimo relativo en x=- f (-)=0 f (x)= x + ax + b f (-)=0 a + b = 0 Para que tenga un punto de inflexión en x=- f (-)=0 f (x)= 6x + a f (-)= a = 0 a = 6 f(x) = x + x + bx + 4 a + b = 0 + b = 0 b = 9 Por tanto la función queda: f(x) = x + 6x + 9x + 4 Se considera la función f(x) = { x x + t si x (x ) + si x > a) Para qué valor de t la función f(x) es continua en x =? b) Para t=0, representa gráficamente la función f(x). Para que sea continua lim f(x) = lim f(x) = f() x + x Para t = 0: f(x) = { x x si x (x ) + si x > lim f(x) = lim x x x x + t = + t { lim f(x) = lim x + x +(x ) + = + t = t = 0 f() = + t Para x: f(x)= x x : parábola Para x>: f(x)=(x-) + f(x)= x - 6x + 0: parábola Vértice: Vx= -b a = Vy= - : (, ) Pasa por (0,0) (, ) Vértice: Vx= Vy= : (, ) (, )

5 Bárbara Cánovas Conesa Junio En una empresa se producen dos tipos de muebles: A y B, en una proporción de a, respectivamente. La probabilidad de que un mueble de tipo A sea defectuoso es 0.05 y de que un mueble de tipo B sea defectuoso es 0.. a) Elegido un mueble al azar, cuál es la probabilidad de que sea defectuoso? b) Se escoge al azar un mueble y resulta no defectuoso, cuál es la probabilidad de que sea del tipo B? Suceso A = elegir modelo A Suceso B = elegir modelo B Suceso = elegir defectuoso La probabilidad de que sea defectuoso: P () = P(A) P(B) = P( A ) P(A) + P( B ) P(B) = P() = La probabilidad de que si no es defectuoso, sea del modelo B: P ( B ) = P(B ) P( ) = P ( B ) P(B) P( ) = /5 / P (B ) = A B Se estudió el cociente intelectual de 0 estudiantes de º de Bachillerato elegidos aleatoriamente de un determinado centro escolar, siendo estos valores: 80, 96, 87, 04, 05, 99,, 89, 90 y 0. Sabiendo que el cociente intelectual se distribuye según una normal con desviación típica 5. Se pide: a) Halla el intervalo de confianza al nivel del 95% para la media del cociente intelectual de los estudiantes de º de Bachillerato de dicho centro escolar. b) Razona y explica qué se podría hacer para que el intervalo de confianza tuviera menor amplitud con el mismo nivel de confianza. El intervalo de confianza para la media es: IC (x ± Zα σ x = = 5 n = 0 = 97. n ) - = 0.95 = 0.05 α = α = El valor crítico Zα es aquel que cumple, en la distribución normal estándar P (Z Zα ) - α buscamos en la tabla P (Z Zα ) Zα =.96 IC = (97. ±.96 5 ) = (97. ± 9.9) = (87. 9, ) 0

6 6 PAEG _ Matemáticas CCSS _ CLM Si queremos obtener un intervalo de anchura menor manteniendo el nivel de confianza, podemos aumentar el tamaño de la muestra, lo que hace disminuir el radio del intervalo al aumentar el denominador: n n n n Zα σ n Zα σ n Así, se restaría y sumaría a la media una cantidad menor, lo que hace que la amplitud del intervalo disminuya.

-7 3 A-1 = 120 F 2 -F 1 F 3 +F 1

-7 3 A-1 = 120 F 2 -F 1 F 3 +F 1 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Junio.0 Opción A JUNIO _ 0.- a) espeja la matriz X en la siguiente ecuación matricial: 7I - X + AX = B, suponiendo que todas las matrices

Más detalles

x = nº amarillos y = nº blancos z = nº rojos

x = nº amarillos y = nº blancos z = nº rojos 67 70 Septiembre 0 Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 0000 euros. Lo invertido en las acciones

Más detalles

PROPUESTA A. . Se pide: 4. Se considera la función f ( x) b) Si A, calcula la matriz X que cumple A. X I, donde I es la matriz identidad de

PROPUESTA A. . Se pide: 4. Se considera la función f ( x) b) Si A, calcula la matriz X que cumple A. X I, donde I es la matriz identidad de PROPUESTA A. a) Despeja la matri X en la siguiente ecuación matricial: 7 I X + A X = B, suponiendo que todas las matrices son cuadradas del mismo orden (I es la matri identidad). (.75 puntos) b) Si A,

Más detalles

y = x 1 y = -x + 2 x 1 = -x + 2 x = 1.5 y = 0.5 y = -x + 2 x = 0 x y 1 x + y 2 x 0 y 0 x = 0 y = 2 y = x - 1 x = 1 y = 0 y = 0 y = 0

y = x 1 y = -x + 2 x 1 = -x + 2 x = 1.5 y = 0.5 y = -x + 2 x = 0 x y 1 x + y 2 x 0 y 0 x = 0 y = 2 y = x - 1 x = 1 y = 0 y = 0 y = 0 0. 0. 0. 0.8....8 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Junio 2.03 JUNIO 203 Opción A.- Considera el siguiente problema de programación lineal: Maximiza la función z 2x y sujeta

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta A

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta A Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta A 1. a) Despeja la matriz X en la siguiente ecuación matricial:

Más detalles

Universidad de Castilla la Mancha PAU/LOGSE Septiembre Opción A

Universidad de Castilla la Mancha PAU/LOGSE Septiembre Opción A 1 Universidad de Castilla la Mancha PAU/LOGSE Septiembre.01 Opción A SEPTIEMBRE 01 1.- Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones

Más detalles

t = ( ) En una tienda de ropa figura la siguiente información: Tres pantalones cuestan lo mismo que una camisa y cuatro

t = ( ) En una tienda de ropa figura la siguiente información: Tres pantalones cuestan lo mismo que una camisa y cuatro Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Junio 011 ada la ecuación matricial: I + 3X + AX = B. Se pide: a) Resuelve matricialmente la ecuación b) Si A = ( 3 0 ), calcula la matriz X que

Más detalles

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =

= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 = www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas

Más detalles

M = 3I + A 2 = 3 M = X B = I X B B -1 = I B -1 X I= B -1 X = B -1

M = 3I + A 2 = 3 M = X B = I X B B -1 = I B -1 X I= B -1 X = B -1 -3 - - 0 3 4 www.clasesalacarta.com Universidad de Castilla la Mancha PU/LOGSE Reserva-.03 RESERV 03 Opción - 0.- adas las matrices: -3 y -3 0 a) Calcula la matriz M (3I ), donde I es la matriz identidad

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Julio 018 En una nave industrial se realiza el montaje de dos tipos de bicicletas: de paseo y de montaña. Para cada jornada de trabajo tenemos

Más detalles

Universidad de Castilla la Mancha PAEG Septiembre 2.014

Universidad de Castilla la Mancha PAEG Septiembre 2.014 www.clasesalacarta.com 1 Universidad de Castilla la Mancha PAEG Septiembre.014 Opción A SEPTIEMBRE 014-1 0-1 - 1.- Dadas las matrices: A = ( 1-3 1) y B = ( 1 0 ). 0 1 4 a) Despeja la matriz X en la siguiente

Más detalles

La ecuación que nos dan en el apartado b) es igual que la del apartado a), por lo que tenemos que hacer la inversa de las dos matrices:

La ecuación que nos dan en el apartado b) es igual que la del apartado a), por lo que tenemos que hacer la inversa de las dos matrices: Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Septiembre 017 a) Despeja X en la siguiente expresión matricial: M X N = P b) Despeja y calcula X en la siguiente ecuación matricial: ( 3 1 1

Más detalles

Bárbara Cánovas Conesa ) = 1 24

Bárbara Cánovas Conesa ) = 1 24 67 70 Junio 0 Dada la ecuación matricial: X AX = B AX. Se pide: a) esuelve matricialmente la ecuación b) Si A = ( 4 5 ) B = ( ) calcula la matriz X. 9 4 X AX = B AX X AX + AX = B X + AX = B (I + A)X =

Más detalles

V 1 (2, 8) Considera el siguiente problema de programación lineal: Minimizar la función F = x + 6y, sujeta a las siguientes restricciones:

V 1 (2, 8) Considera el siguiente problema de programación lineal: Minimizar la función F = x + 6y, sujeta a las siguientes restricciones: 637 70 113 1 Junio 018 Considera el siguiente problema de programación lineal: Minimizar la función F = x + 6y, sujeta a las siguientes restricciones: x + 7y 58 4 x + 5y 48 3 x y 13 a) Dibuja la región

Más detalles

3 2 ) 1) = ( 11 8 ) ( 22 11

3 2 ) 1) = ( 11 8 ) ( 22 11 67 70 11 1 Junio 017 Dada la matriz M = ( ) se pide: 1 a) Realiza el producto M M t (siendo M t la matriz transpuesta de M) b) Despeja X en la siguiente expresión matricial: P X = M M t c) i P = ( ), obtén

Más detalles

Si llamamos: X: nº monedas 0.5 Y: nº monedas 0.2 Z: nº monedas 0.1

Si llamamos: X: nº monedas 0.5 Y: nº monedas 0.2 Z: nº monedas 0.1 Bárbara Cánovas Conesa 67 70 11 1 Junio 00 a) Despeja la matriz X en la ecuación X + AX = 1 0 1 1 0 0 b) Halla matriz X de la ecuación anterior sabiendo que: A = ( 0 0 ) y = ( 0 1 0). 1 1 1 0 0 1 X + AX

Más detalles

C t

C t 1 Universidad de Castilla la Mancha PAEG Junio.016 JUNIO 016 Opción A 1-1 4 - - 1.- adas las matrices: A = ( 1 1); = (-3 1) y C = ( 0 3 ). - 3 0 4-1 0 a) Realiza la siguiente operación: (A ) C T (donde

Más detalles

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta B 1. a) Despeja la matriz X en la siguiente ecuación

Más detalles

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) 3. Se considera la función

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) 3. Se considera la función Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = 2x + y sujeta a las siguientes restricciones: x y 1 x + y 2 x 0 y 0 a) Dibuja la región factible. (1 punto)

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

Propuesta A. a) 0.25 por cada inecuación bien dibujada. Toda la región factible 1 punto.

Propuesta A. a) 0.25 por cada inecuación bien dibujada. Toda la región factible 1 punto. Evaluación para el Acceso a la Universidad Convocatoria de 018 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se podrá

Más detalles

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos)

Propuesta A. b) Si A =, calcula la matriz X que cumple A X = I, donde I es la matriz identidad de orden 2. (0.75 puntos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (2012) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B.

Más detalles

Universidad de Castilla la Mancha PAEG Septiembre 2.016

Universidad de Castilla la Mancha PAEG Septiembre 2.016 1 Universidad de astilla la Mancha PAEG Septiembre.016 SEPTIEMBRE 016 Opción A 1.- En una granja hay vacas y caballos. El veterinario contratado tiene la obligación de supervisar diariamente entre 4 y

Más detalles

UCLM - Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 04 Propuesta B Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales

Más detalles

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = x + 3y sujeta a las siguientes restricciones: x + y 2 x + y 4 x 0 y 0 a) Dibuja la región factible. (1 punto)

Más detalles

, obtén la expresión de la matriz X del apartado anterior. (0.5 ptos) 3 4. (0.5 ptos) (0.25 ptos por la inversa)

, obtén la expresión de la matriz X del apartado anterior. (0.5 ptos) 3 4. (0.5 ptos) (0.25 ptos por la inversa) Evaluación para el Acceso a la Universidad Convocatoria de 017 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se podrá

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ) 1 1 x + 1 Sea la función f definida

Más detalles

Propuesta A B = M = (

Propuesta A B = M = ( Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (016) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A ó B. Se

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ). 1 1 x + 1 Sea la función f definida mediante

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A =, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M =, calcule la matriz ( M M ). 1 1 x + 1 Sea la función f definida mediante

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta A

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta A Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta A 1. Dada la ecuación matricial I + 3 X + A X B. Se pide:

Más detalles

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)

Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos) Propuesta A 1. Dadas las matrices y a) Calcular la matriz M = (2 I + A) 2, donde I es la matriz identidad de orden 3. b) Calcula, si es posible, la matriz X tal que X B = I, donde I es la matriz identidad

Más detalles

Propuesta A. a) Si la matriz ( X puede ) multiplicarse por la que tiene a su izquierda, entonces es que tiene dos filas.

Propuesta A. a) Si la matriz ( X puede ) multiplicarse por la que tiene a su izquierda, entonces es que tiene dos filas. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS (017. Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B de cuatro preguntas cada uno. El alumno debe

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

x = nº cajas mazapán y = nº cajas piñón z = nº cajas almendras

x = nº cajas mazapán y = nº cajas piñón z = nº cajas almendras www.clasesalacarta.com Universidad de Castilla la Mancha PAG Septiembre.05 Septiembre 05 Opción A.- a) Despeja la matriz X en la siguiente ecuación matricial: XA + X = B, suponiendo que todas las matrices

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León Junio 2003

Pruebas de Acceso a las Universidades de Castilla y León Junio 2003 Pruebas de Acceso a las Universidades de Castilla y León Junio 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES LOGSE CRITERIOS GENERALES DE EVALUACIÓN Cada pregunta de la 1 a la 3 se puntuará sobre un

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014). Materia: Matemáticas aplicadas a las ciencias sociales

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014). Materia: Matemáticas aplicadas a las ciencias sociales PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014. Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B de cuatro preguntas cada uno. El alumno

Más detalles

Propuesta A ( se pide: ; B = 1. Dada las matrices: A = ; C = 1 1

Propuesta A ( se pide: ; B = 1. Dada las matrices: A = ; C = 1 1 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS (018. Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B de cuatro preguntas cada uno. El alumno debe

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A SEPTIEMBRE 010 Opción A 1.- Sea el siguiente sistema de ecuaciones: x + y az = 1 y + z = 0 ax + 3z = a a) Clasifica el sistema en función de sus posibles soluciones para los distintos valores del parámetro

Más detalles

Universidad Politécnica de Cartagena Pruebas de acceso a la Universidad de los mayores de 25 años Convocatoria 2013

Universidad Politécnica de Cartagena Pruebas de acceso a la Universidad de los mayores de 25 años Convocatoria 2013 Universidad Politécnica de Cartagena Pruebas de acceso a la Universidad de los mayores de 25 años Convocatoria 2013 FASE ESPECÍFICA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES IMPORTANTE: El examen consta

Más detalles

EJERCICIO 1. Sean las matrices A = 0 1. y B = 0 x

EJERCICIO 1. Sean las matrices A = 0 1. y B = 0 x Matem. Apl. a las CC.SS. II Examen Final 206/7 Duración: hora y 30 minutos. Elige sólo una de las dos opciones A o B, y contesta los ejercicios de la opción elegida. No uses bolígrafo rojo ni lápiz. Respeta

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDAD CARLOS III DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Curso 2015 2016 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 28) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = y B = 1 1 2 1 1 n 1 1 1, X = a) Hallar los valores

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2015). Materia: Matemáticas aplicadas a las ciencias sociales

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2015). Materia: Matemáticas aplicadas a las ciencias sociales PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS (015). Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B) de cuatro preguntas cada uno. El alumno

Más detalles

a) X N = M 1 P X = M 1 P N 1 (0.5 ptos) b) En este caso la matriz P del apartado anterior es la matriz identidad, y por lo tanto: = 1 3

a) X N = M 1 P X = M 1 P N 1 (0.5 ptos) b) En este caso la matriz P del apartado anterior es la matriz identidad, y por lo tanto: = 1 3 Evaluación para el Acceso a la Universidad Convocatoria de 017 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se podrá

Más detalles

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A.

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A. Pruebas de Acceso a la Universidad. SEPTIEMBRE 00. Bachillerato de iencias Sociales. El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos..

Más detalles

OPCIÓN A Problema 1.- (Calificación máxima: 2 puntos)

OPCIÓN A Problema 1.- (Calificación máxima: 2 puntos) INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN INSTRUCCIONES: El alumno deberá elegir una de las dos opciones A o B que figuran en el presente eamen y contestar razonadamente a los cinco ejercicios

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una fábrica de muebles dispone de 600 kg de madera para fabricar librerías de 1 y de 3 estantes. Se sabe que son necesarios 4 kg de madera para fabricar una librería de 1 estante, siendo

Más detalles

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017 INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos

Más detalles

NÚMERO PERROS GATOS COSTE. A x 4x 3x 240x. B y 2y 6y 400y. Obtengamos, gráficamente, la región factible (solución del conjunto de restricciones):

NÚMERO PERROS GATOS COSTE. A x 4x 3x 240x. B y 2y 6y 400y. Obtengamos, gráficamente, la región factible (solución del conjunto de restricciones): Se trata de un problema de programación lineal. Organicemos los datos en una tabla: TIPO DE FURGONETAS NÚMERO PERROS GATOS COSTE A x x x 0x B y y 6y 00y Condiciones: x 0, y 0, y x x y x 6y 5 F x,y 0x 00y

Más detalles

EVALUACION: 1ª CURSO: 1º B.C.S. FECHA: 20/10/16 EXAMEN: B1-1. 1) a) Explica brevemente para qué se utiliza la racionalización de denominadores.

EVALUACION: 1ª CURSO: 1º B.C.S. FECHA: 20/10/16 EXAMEN: B1-1. 1) a) Explica brevemente para qué se utiliza la racionalización de denominadores. EVALUACION: 1ª CURSO: 1º B.C.S. FECHA: 0/10/16 EXAMEN: B1-1 1) a) Explica brevemente para qué se utiliza la racionalización de denominadores. b) Se puede escribir una semirrecta en forma de entorno?. Razona

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A 1 1 x 0 1 Sean las matrices A, B y C 1 1 x 0 1 a) (1 punto) Encuentre el valor o valores de x de forma que B A 1 b) (1 punto) Igualmente para que B C A c) (1 punto) Determine x para que A B C

Más detalles

Junio de 2011 (Común Modelo) Enunciado Germán-Jesús Rubio Luna

Junio de 2011 (Común Modelo) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 011 (Común Modelo) Enunciado Germán-Jesús Rubio Luna CURSO 010-011 JUNIO -5 3-1 1 3 Sean las matrices A =, B =, C =. 1-3 0 1 1-1 5 3 a) (1 punto) Calcule A B.C t. b) (1.5

Más detalles

OPCIÓN DE EXAMEN Nº 1

OPCIÓN DE EXAMEN Nº 1 MATEMÁTICAS CCSS º DE BACHILLERATO 017 OPCIÓN DE EXAMEN Nº 1 Ejercicio 1 a) (3 puntos) Resolver la ecuación matricial 0 4 1 1 3 1 C. A X B C con A 1 3 1 0, 1 0 B 1 1 y 0 1 3 b) Dada la matriz a b c M d

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015-coincidente) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015-coincidente) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 015-coincidente) Selectividad-Opción A Tiempo: 90 minutos Problema 1 ( puntos) Se considera el sistema de ecuaciones dependiente del parámetro

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A (3 puntos) Una fábrica de muebles dispone de 600 kg de madera para fabricar librerías de 1 y de 3 estantes. Se sabe que son necesarios 4 kg de madera para fabricar una librería de 1 estante, siendo su

Más detalles

SOLUCIÓN. a) Sí se puede pues el número de columnas de A coincide con el de filas de B.

SOLUCIÓN. a) Sí se puede pues el número de columnas de A coincide con el de filas de B. SOLUCIÓN. a) Sí se puede pues el número de columnas de A coincide con el de filas de B. 1 0 5 3 1 0 5 1 1 1 1 1 3 0 1 7 1 0 b) No, porque el número de columnas de B (3) no coincide con el número de filas

Más detalles

APLICADAS A LAS CIENCIAS SOCIALES

APLICADAS A LAS CIENCIAS SOCIALES IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Enunciado Germán-Jesús Rubio Luna e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bárbara Cánovas Conesa 637 70 3 www.clasesalacarta.com Junio 07 ada la función f() { + a si b 9 si > a) Calcula razonadamente los parámetros a y b para que f() sea derivable en todo R. b) Enuncia el teorema

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]

Más detalles

CANTABRIA. Índice. Junio de Septiembre de Criterios generales de corrección:

CANTABRIA. Índice. Junio de Septiembre de Criterios generales de corrección: CANTABRIA Índice Junio de 008 54 Septiembre de 007 60 Enunciados de las pruebas y criterios extraídos de los textos Pruebas de acceso a la Universidad publicados por el Servicio de Publicaciones de la

Más detalles

OPCIÓN DE EXAMEN Nº 1

OPCIÓN DE EXAMEN Nº 1 INDICACIONES Elija una de las dos opciones. No se admitirá ningún resultado si no está debidamente razonado. No se permite el uso de calculadoras gráficas ni programables. Tampoco está permitido el uso

Más detalles

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A Prueba de Acceso a la Universidad. JUNIO 00. Bachillerato de iencias Sociales. El ejercicio presenta dos opciones A y B. El alumno deberá elegir y desarrollar una de ellas sin mezclar contenidos. OPIÓN

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

Modelo 1 ( ) OPCIÓN A EJERCICIO 1. Se consideran las matrices A = B= a) (0.75 puntos) Efectúe la operación A.B t

Modelo 1 ( ) OPCIÓN A EJERCICIO 1. Se consideran las matrices A = B= a) (0.75 puntos) Efectúe la operación A.B t Instrucciones: a Duración: hora y minutos. b Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida. c En cada ejercicio, parte o apartado se indica la puntuación máxima

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Junio 2017) Selectividad-Opción A Tiempo: 90 minutos 2 3 A = , y B = 3 5 1

Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Junio 2017) Selectividad-Opción A Tiempo: 90 minutos 2 3 A = , y B = 3 5 1 Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Junio 217) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (2 puntos) Considérense las matrices ( ) ( ) 1 2 2 A =, y B = 5 1 1 4 a)

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

Selectividad Septiembre 2007 SEPTIEMBRE 2007

Selectividad Septiembre 2007 SEPTIEMBRE 2007 Bloque A SEPTIEMBRE 2007 1.- Cada instalación de una televisión analógica necesita 10 metros de cable y cada instalación de televisión digital necesita 20 metros. Cada televisión analógica necesita 20

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Modelo 3 OPCIÓN A. Pasando4B al2º miembro: AX = C 4 B A AX = A ( C 4 B). = ( 4 ) = ( 4 ) I X A C B X A C B

Modelo 3 OPCIÓN A. Pasando4B al2º miembro: AX = C 4 B A AX = A ( C 4 B). = ( 4 ) = ( 4 ) I X A C B X A C B Instrucciones: a) Duración: 1 hora y 3 minutos. b) Elija una de las dos opciones propuestas y conteste los ejercicios de la opción elegida. c) En cada ejercicio, parte o apartado se indica la puntuación

Más detalles

SOLUCIÓN Se trata de un problema de programación lineal. Organicemos los datos en una tabla: FÁBRICAS Nº DE HORAS SILLAS MESAS TABURETES COSTE

SOLUCIÓN Se trata de un problema de programación lineal. Organicemos los datos en una tabla: FÁBRICAS Nº DE HORAS SILLAS MESAS TABURETES COSTE Se trata de un problema de programación lineal. Organicemos los datos en una tabla: FÁBRICAS Nº DE HORAS SILLAS MESAS TABURETES COSTE A x x x 4x 500x B y 4y y y 00y Condiciones: x 0, y 0 x 4y 80 x y 4x

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 0 de febrero de 018 1 hora y 15 minutos. NOMBRE APELLIDOS CALIFICACIÓN 1. Considérense las matrices A ( 1 1 1 4 8 1 1 1 ), B ( 5 3 ) y C ( 1 k +

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, matrices, programación lineal y probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, matrices, programación lineal y probabilidad Análisis, matrices, programación lineal y probabilidad Problema 1: Se considera la curva de ecuación cartesiana y = x 2 + 8x, calcular las coordenadas del punto en el que la recta tangente a la curva es

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Plantee, sin resolver, el siguiente problema: Un barco puede transportar vehículos de dos tipos: coches y motos Las condiciones de la nave obligan a que el número de motos no pueda

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (5 puntos) Un fabricante elabora dos tipos de anillos a base de oro y plata Cada anillo del primer tipo precisa 4 g de oro y de plata, mientras que cada uno del segundo necesita 3 g de oro y 1

Más detalles

IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes 010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1_A Sea el recinto del plano

Más detalles

OPCIÓN DE EXAMEN N.º 1

OPCIÓN DE EXAMEN N.º 1 OPCIÓN DE EXAMEN N.º 1 Ejercicio 1 (3,5 puntos) Una fábrica de productos navideños decide comercializar, con vistas a la próxima campaña de diciembre, dos surtidos diferentes con polvorones de limón y

Más detalles

[1,75 PUNTOS] Considerando la matriz A del apartado anterior con a = 1, resuelve la ecuación C. 6 si x 1

[1,75 PUNTOS] Considerando la matriz A del apartado anterior con a = 1, resuelve la ecuación C. 6 si x 1 MATEMÁTICAS CCSS º DE BACHILLERATO 014 OPCIÓN DE EXAMEN Nº 1 Ejercicio 1 [,5 PUNTOS] A. [1,75 PUNTOS] Determina para qué valores de a la matriz 1 A 5 a 1 1 a no tiene inversa. [1,75 PUNTOS] Considerando

Más detalles

MATEMÁTICAS CCSS 2º DE BACHILLERATO

MATEMÁTICAS CCSS 2º DE BACHILLERATO MATEMÁTICAS CCSS º DE BACHILLERATO 015 OPCIÓN DE EXAMEN Nº 1 EJERCICIO 1 [3,5 PUNTOS] Una empresa discográfica quiere sacar al mercado los discos de dos nuevos grupos. Estima que por cada disco producido

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2013) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 203) Selectividad-Opción A Tiempo: 90 minutos 3 2 0 Problema (2 puntos) Dada la matriz A = 0. a) Calcúlese A x b) Resuélvase el sistema de ecuaciones

Más detalles

x: acciones tipo A y: acciones tipo B función a optimizar: R(x,y)= 0.01x + 0.05y x 10000 y 8000 x + y 15000 x 0 y 0 x = 10000 x + y = 15000 x = 7000

x: acciones tipo A y: acciones tipo B función a optimizar: R(x,y)= 0.01x + 0.05y x 10000 y 8000 x + y 15000 x 0 y 0 x = 10000 x + y = 15000 x = 7000 4 6 8 4 6 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Septiembre. SEPTIEMBRE Opción A.- Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos k 1 0 Problema 1 (2 puntos) Se considera la matriz A = 7 k k 1 1 k a) Estudíese para qué

Más detalles

Universidad de Castilla la Mancha Septiembre Propuesta A

Universidad de Castilla la Mancha Septiembre Propuesta A A.- árbara Cánovas Conesa 67 7 Universidad de Castilla la Mancha Septiembre.7 Propuesta A www.clasesalacarta.com Septiembre 7 a) Calcula razonadamente el área de la región determinada por la curva f()

Más detalles

Teoría de grafos 1 A=

Teoría de grafos 1 A= Teoría de grafos. Un grafo es un conjunto, no vacío, de objetos llamados vértices (o nodos) y una selección de pares de vértices, llamados aristas que pueden ser orientados o no. Típicamente, un grafo

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa 1 Junio 018 a) Enuncia el teorema de Bolzano y justifica razonadamente que la gráfica de la función f(x) = x 15 + x + 1 corta al eje OX al menos una vez en el intervalo [-1,1]. b) Calcula razonadamente

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios tipo 1-2 de selectividad. ( años )

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios tipo 1-2 de selectividad. ( años ) Colegio Portocarrero. Curso 04-05. Ejercicios tipo - de selectividad ( años 005-007) Cuaderno de verano º Bachillerato mates aplicadas. Alumno: Cuaderno de verano º Bachillerato, matemáticas aplicadas.

Más detalles