Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, matrices, programación lineal y probabilidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, matrices, programación lineal y probabilidad"

Transcripción

1 Análisis, matrices, programación lineal y probabilidad Problema 1: Se considera la curva de ecuación cartesiana y = x 2 + 8x, calcular las coordenadas del punto en el que la recta tangente a la curva es paralela a la recta y = 2x Problema 2: Una fábrica tiene tres cadenas de producción, A, B y C. La cadena A fabrica el 50 % del total de los coches producidos; la B, el 30 %, y la C, el resto. La probabilidad de que un coche resulte defectuoso es: en la cadena A, 1/2, en la B, 1/4, y en la C, 1/6. Calcule razonadamente: a) La probabilidad de que un coche sea defectuoso y haya sido fabricado por la cadena A. b) La probabilidad de que un coche sea defectuoso. c) Si un coche no es defectuoso, cuál es la probabilidad de que haya sido producido por la cadena C? Problema 3: Un inversor utiliza la siguiente función para reinvertir en Bolsa parte del capital que obtiene mensualmente. R(x) representa la cantidad reinvertida cuando el capital obtenido es x (tanto la cantidad como el capital en euros): Es la cantidad reinvertida una función continua del capital obtenido? Problema 4: Representa gráficamente la función f(x) = x 3 3x estudiando: intervalos de crecimiento y decrecimiento, máximos y mínimos relativo, intervalos de concavidad y convexidad y puntos de inflexión. Problema 5: Sean las matrices: Halla el producto de A por B Problema 6: En una factoría, se desean producir al menos 4 unidades del producto B. Cada unidad de producto B ocupa un metro cúbico de espacio de almacenamiento, lo mismo que cada unidad de producto A. Tan solo disponemos de un almacén con capacidad de 20 metros cúbicos. Juan se encarga de una fase de la producción y Pedro de otra fase de la producción. Cada unidad de A requiere 4 horas de trabajo de Juan y 2 horas de trabajo de Pedro. Cada unidad B requiere 1 hora de trabajo de Juan y 3 horas de trabajo de Pedro. Juan debe trabajar al menos 32 horas y Pedro al menos 36 horas. Cada unidad de producto de A produce un beneficio de

2 25 euros y cada unidad de B produce un beneficio de 20 euros. Utilizando técnicas de programación lineal, calcula el número de unidades de producto A y de producto B que permiten obtener mayores beneficios, así como el beneficio máximo que se puede conseguir. Problema 7: Se quiere fabricar una caja de volumen máximo que sea el doble de larga que de ancha en la que, además, la suma del ancho más el largo más el alto sea igual a un metro. a) Qué medidas debe tener la caja? b) Qué volumen tendrá? Problema 8: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada de f(x) es nula en x = 1 Problema 9: En un instituto hay 250 alumnos cursando estudios de Bachillerato, 110 de ellos son alumnos de segundo curso. El director pregunta a todos si están de acuerdo en realizar una determinada actividad cultural. Obtiene respuesta (afirmativa o negativa) de los 250 alumnos. Un 30 % de los alumnos de primer curso le contestaron que están de acuerdo y un 40 % de alumnos de segundo curso le contestan que no están de acuerdo. Si seleccionamos al azar un alumno entre los 250 determinar, justificando la respuesta: a) La probabilidad de que sea un alumno de segundo curso de los que están de acuerdo en realizar la actividad cultural b) La probabilidad de que sea un alumno de los que no están de acuerdo en realizar la actividad cultural c) Sabiendo que el alumno seleccionado pertenece al primer curso, la probabilidad de que sea de los que están a favor de realizar la actividad cultural Problema 10: Sea la función a) Existe algún valor del parámetro a para el que f(x) sea continua en x = 0? b) Para a = 2 comprueba si x = 1/2 es asíntota vertical de f(x) Problema 11: Halla los intervalos de monotonía y los extremos relativos de la función definida por g(x) = x 3 3x Con los datos anteriores haz un esbozo de la gráfica. Problema 12: Sean A y B dos matrices de tamaño 2 x 2. Es cierta la igualdad (A + B)(A B) = A 2 B 2? Pruébalo si es cierto o busca un contraejemplo si es falso.

3 Problema 13: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados, que se envasan en dos tipos de caja del modo siguiente: Caja tipo 1: 200 g de polvorones y 100 g de mantecados. Precio: 4 euros Caja tipo 2: 200 g de polvorones y 300 g de mantecados. Precio 6 euros Cuántas cajas de cada tipo se tendrán que preparar y vender para obtener el máximo de ingresos? Cuál es el importe de la venta? Problema 14: Se considera la función convexidad y los puntos de inflexión.. Determina los intervalos de concavidad y Problema 15: La función f(t), 0 t 10, en la que el tiempo t está expresado en años, representa los beneficios de una empresa (en cientos de miles de euros) entre los años 1990 (t = 0) y 2000 (t = 10) Es continua esta función? Es derivable? Problema 16: Un estudio hecho en un cierto IES, en el que se imparte ESO y Bachillerato se recogieron los siguientes datos: El 60 % de los alumnos son mujeres. El 15 % de los hombres estudian en Bachillerato. El 20 % de las mujeres estudian Bachillerato. El 30 % de las mujeres que estudian Bachillerato eligen una opción de letras. a) Calcula la probabilidad de que un alumno del IES, elegido al azar, sea mujer, estudie Bachillerato y curse una opción de letras. b) Qué porcentaje del alumnado estudia Bachillerato? c) Qué porcentaje de estudiantes de Bachillerato son hombres? Problema 17: Se considera la curva de ecuación. Calcula sus asíntotas. Problema 18: Qué se puede decir de la gráfica de una función f(x) si se sabe que f (1) = 0, f (1) < 0, f (3) = 0 y f (3) > 0?

4 Problema 19: Sea a) Calcula A 2 y expresa el resultado en función de la matriz identidad. b) Utiliza la relación hallada con la matriz identidad para calcular A 2005 Problema 20: Una empresa de equipos informáticos produce dos tipos de microprocesadores: A y B. El trabajo necesario para su producción se desarrolla en dos fases, la de fabricación y la de montaje. Cada microprocesador A requiera 3 minutos de fabricación y 2 minutos de montaje y cada microprocesador B requiere 2 minutos de fabricación y 4 minutos de montaje. Si sólo se dispone diariamente de 4 horas para la fabricación y 4 horas para el montaje, siendo el beneficio obtenido de 160 euros por cada microprocesador A y de 190 euros por cada microprocesador B, se pide justificando la respuesta. Cuántos microprocesadores hay que producir de cada tipo para obtener unos beneficios máximos? Cuál será el valor de dichos beneficios máximos? Problema 21: La función f definida por f(x) = x 3 + ax 2 + bx + c verifica que su gráfica pasa por el punto ( 1, 0) y tiene un máximo relativo en el punto (0, 4). Determina la función f (calculando a, b y c). Problema 22: Calcula y simplifica la derivada de la función Problema 23: En una clase de segundo de Bachillerato compuesta por el 55 % de chicos y el resto de chicas, practica el balonmano el 40 % de los chicos y una de cada cuatro chicas. Si elegimos al azar un alumno de la clase: a) Cuál es la probabilidad de que practique balonmano? b) Cuál es la probabilidad de que practique balonmano y sea chica? c) Si resulta que no practica balonmano, Cuál es la probabilidad de que sea chica? Problema 24: Se considera la función. Calcula sus asíntotas. Problema 25: Cierta entidad financiera lanza al mercado un plan de inversión cuya rentabilidad, en euros viene dada por: R(x) = 0,01x 2 + 5x , siendo x la cantidad que se invierta. a) Qué rentabilidad obtiene un inversor que invierte 1000 euros?

5 b) Cuánto ha de invertir si quiere obtener una rentabilidad máxima? c) Calcula esa rentabilidad máxima. Problema 26: Sea la matriz Problema 27: Resuelve las siguientes cuestiones a) Representa gráficamente el recinto definido por el siguiente sistema de inecuaciones: x 3(y 3); 2x + 3y 36; x 15; x 0; y 0 b) Calcula los vértices del recinto. c) Obtén el valor máximo de la función F(x, y) = 8x + 12y en este recinto e indica dónde se alcanza. Problema 28: En una factoría la función de costes es C(x) = x 3 3ln x, donde x > 0 es el número de toneladas que se producen. a) Calcula el coste mínimo, si existe, y el número de toneladas que se han de producir para alcanzar dicho coste. b) Si la función de ingresos es I (x) = x x, escribe la función de beneficios. c) Calcula los intervalos en los que la función de beneficios es creciente o decreciente y di si existe beneficio máximo y en caso afirmativo el número de toneladas que se han de producir para alcanzar dicho beneficio. Problema 29: Sea la función f definida por a) Estudia la continuidad y derivabilidad de f b) Calcula la ecuación de la recta tangente a la gráfica de la función en el punto de abscisa x = 1 Problema 30: De un estudio sobre accidentes de tráfico de dedujeron los siguientes datos: En el 23 % de los casos no se llevaba puesto el cinturón de seguridad, en el 65 % no se respetaron los límites de velocidad permitidos y en el 30 % de los casos se cumplían ambas normas, es decir, llevaban puesto el cinturón y respetaban los límites de velocidad. a) Calcule la probabilidad de que, en un accidente de tráfico, no se haya cumplido alguna de las dos normas. b) Razona si son independientes los sucesos llevar puesto el cinturón y respetar los límites de velocidad. Problema 31:

6 La temperatura (en C) de un objeto viene dada por la función donde t es el tiempo en horas. Calcula la temperatura inicial, la temperatura cinco horas más tarde y la temperatura que puede alcanzar el objeto si se deja transcurrir mucho tiempo. Problema 32: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente a la gráfica de f(x) en x = 6 es horizontal. b) Para a = 1 y b = 1 Razona cuál es el dominio de f(x) y la existencia de asíntotas verticales. Determina los intervalos de concavidad y convexidad y los puntos de inflexión de f(x) Problema 33: Sean las matrices Determina x para que A B = I 2 Problema 34: Una refinería de petróleo adquiere dos tipos de crudo, ligero y pesado, a un precio de 70 euros y 65 euros por barril, respectivamente. Con cada barril de crudo ligero la refinería produce 0,3 barriles de gasolina 95; 0,4 barriles de gasolina 98 y 0,2 barriles de gasoil. Asimismo, con cada barril de crudo pesado produce 0,1; 0,2 y 0,5 barriles de cada uno de estos tres productos, respectivamente. La refinería debe suministrar al menos barriles de gasolina 95, barriles de gasolina 98 y barriles de gasoil. Determina cuántos barriles de cada tipo de crudo debe comprar la refinería para cubrir sus necesidades de producción con un coste mínimo y calcula éste. Problema 35: El beneficio en euros por kilogramo de un alimento perecedero se estima que viene dado por la función B(x) = 4x 2x 2 0,68 donde x es el precio en euros de cada kilogramo del alimento. a) Entre qué precios por kilogramo se obtienen beneficios? b) A qué precio se obtiene el máximo beneficio? c) Si en un comercio se tienen 1000 kilogramos de ese alimento Qué beneficio máximo puede obtener?

7 Soluciones Problema 1: La pendiente de la recta tangente tiene que ser 2 por ser paralela a la recta y = 2x Como la pendiente de la recta tangente viene dada por la derivada de la función: y = 2x + 8 2x + 8 = 2 2x = 6 x = 3 y = ( 3) 2 + 8( 3) = 9 24 = 15 El punto es P( 3, 15) Problema 2: D = coche defectuoso Árbol de probabilidades a) Se aplica la regla del producto o de probabilidad compuesta b) Se aplica la regla de la suma o de probabilidad total P(D) = P(A) P(D/A) + P(B) P(D/B) + P(C) P(D/C) = = 0,5 1/2 + 0,3 1/4 + 0,2 1/6 = 0,36 c) Se aplica el teorema de Bayes Problema 3: La función R(x) está definida por una función polinómica que es continua en su dominio y por una función racional que es continua en su dominio siempre que el denominador sea distinto de cero. Como el denominador es distinto de cero para todo x 600, se estudia el caso en x = 600 Para que sea continua en Se estudian los límites laterales: continua en x = 600 no es Problema 4: Máximos y mínimos f (x) = 3x 2 6x 3x 2 6x = 0 x = 0, x = 2 raíces reales simples.

8 f(0) = 4, A(0, 4) f (x) = 6x 6 f (0) = 6 < 0 A(0, 4) Máximo relativo. f(2) = 0, B(2, 0) f (2) = 6 > 0 B(2, 0) mínimo relativo. Monotonía o crecimiento f (1) = 3 < 0 ( ) Colegio Portocarrero. Curso Punto de inflexión f (x) = 6x 6 6x 6 = 0 x = 1 f(1) = 2, C(1, 2) f (x) = 6 f (1) = 6 0 C(1, 2) punto de inflexión. Curvatura: f (0) = 6 < 0 ( ) Problema 5: Problema 6: a) Tabla con los datos del problema. Producto A Producto B Restricciones Nº de unidades x y x 0; y 4 Limitación de espacio x y x + y 20 Nº de horas de trabajo de Juan 4x y 4x + y 32 Nº de horas de trabajo de Pedro 2x 3y 2x + 3y 36 Beneficios 25x 20y f(x, y) = 25x + 20y Máximo b) Región factible.

9 c) Valores de la función objetivo en los vértices de la región factible. A(12, 4); B(16, 4); C(4, 16); D(6, 8). El máximo es f(16, 4) = 480 euros d) La solución óptima es B(16, 4), es decir, x = 16 unidades del producto A e y = 4 unidades del producto B. Beneficios = 480 euros Problema 7: a) Datos, incógnita y dibujo. Función que hay que maximizar es: f(x, y) = 2x 2 y sujeta a la restricción: 3x + y = 1 y = 1 3x Se escribe la función con una sola variable f(x) = 2x 2 (1 3x) = 2x 2 6x 3 Se calculan los máximos y los mínimos f (x) = 4x 18x 2 ; 4x 18x 2 = 0 x = 2/9, x = 0 (x = 0 no tiene sentido) Se comprueba en la 2ª derivada f (x) = 4 36x f (2/9) = 4 < 0 ( ) Para x = 2/9 se alcanza el máximo. Solución Para x = 2/9, y = 1/3, se tiene que las dimensiones de la caja son 2/9 m de ancho, 4/9 m de largo y 1/3 m de alto. b) El volumen será: Problema 8: f(1) = 2 a b ln 1 = 2 a 1 + b 0 = 2 a = 2 f (x) = 3ax 2 + b/x, como f (1) = 0 3a b/1 = 0 3a + b = 0 b = 3a b = 6 Problema 9: Se resuelve mediante una tabla de contingencia: A = están de acuerdo ; NA = no están de acuerdo A = Están de acuerdo No están de acuerdo Total 1º Curso 0,3 140 = º Curso 66 0,4 110 =

10 Total a) b) c) Problema 10: a) La función f(x) está definida por una función polinómica que es continua en su dominio y por una función racional que es continua en su subdominio siempre que el denominador sea distinto de cero. Como el denominador depende del parámetro a, se estudia el caso en x = 0 Para que sea continua en Se estudian los límites laterales: Para a = 1/2, la función es continua en x = 0 b) Problema 11: Máximos y mínimos f (x) = 3x 2 6x 3x 2 6x = 0 x = 0, x = 2 raíces reales simples. f(0) = 7, A(0, 7) f (x) = 6x 6 f (0) = 6 < 0 A(0, 7) Máximo relativo. f(2) = 3, B(2, 3) f (2) = 6 > 0 B(2, 3) mínimo relativo. Monotonía o crecimiento f (1) = 3 < 0 ( )

11 Problema 12: Es falso, contraejemplo Problema 13: a) Tabla con los datos del problema. Caja tipo 1 Caja tipo 2 Restricciones Nº de cajas x y x 0; y 0 Polvorones 0,2x 0,2y 0,2x + 0,2y 24 Mantecados 0,1x 0,3y 0,1x + 0,3y 15 Ingresos 4x 6y f(x, y) = 4x + 6y Máximo b) Región factible. c) Valores de la función objetivo en los vértices de la región factible. O(0, 0); A(120, 0); B(105, 15); C(0, 50). El máximo es f(105, 15) = 510 euros d) La solución óptima es B(105, 15), es decir, x = 105 cajas tipo 1 e y = 15 cajas tipo 2. Ingresos = 510euros Problema 14: f(1/2) = 0,53 A(1/2, 0,53) f (1/2) = 24 0 A(1/2, 0,53) es punto de inflexión. x = 1 f (1) = 7 > 0 Problema 15: Los únicos puntos problemáticos son t = 2 y t = 6 Continuidad para t = 2 Para que la función sea continua, los límites laterales deben existir y ser iguales al valor de la función.

12 Derivabilidad para t = 2 Para que sea derivable en t = 2, las derivadas laterales deben ser iguales. f (2 ) = f (2 + ) La función es derivable en t = 2 Continuidad para t = 6 Para que la función sea continua, los límites laterales deben existir y ser iguales al valor de la función. Derivabilidad para t = 6 Para que sea derivable en t = 6, las derivadas laterales deben ser iguales. f (6 ) f (6 + ) La función no es derivable en t = 6 Problema 16: M = ser mujer, H = ser hombre, L = elegir opción de letras Árbol de probabilidades a) Se aplica la regla del producto o de probabilidad compuesta b) Se aplica la regla de la suma o de probabilidad total P(B) = P(M) P(B/M) + P(H) P(B/H) = 0,6 0,2 + 0,4 0,15 = 0,18 = 18% c) Se aplica el teorema de Bayes

13 Problema 17: Asíntotas verticales: no tiene Asíntotas horizontales: no tiene. Asíntotas oblicuas: se realiza la división y se obtiene la asíntota oblicua: y = x Problema 18: Podemos afirmar: a) En x = 1 tiene un máximo relativo porque se anula la primera derivada y es cóncava porque f (1) < 0 b) En x = 3 tiene un mínimo relativo porque se anula la primera derivada y es convexa porque f (3) > 0 Problema 19: a) b) Si A 2 = I 2, entonces A 3 = A ( I 2 ) = A; A 4 = I 2 ( I 2 ) = I 2 la matriz A es cíclica de orden 4. Dividiendo 2005 entre 4 queda de resto 1 A 2005 = A 1 = A Problema 20: a) Tabla con los datos del problema. Microp. A Microp. B Restricciones Nº microprocesadores x y x 0; y 0 Fabricación 3x 2y 3x + 2y 240 Montaje 2x 4y 2x + 4y 240 Beneficios 160x 190y f(x, y) = 160x + 190y Máximo b) Región factible. c) Valores de la función objetivo en los vértices de la región factible. O(0, 0); A(80, 0); B(60, 30); C(0, 60). El máximo es f(60, 30) = euros d) La solución óptima es B(60, 30), es decir, x = 60 microprocesadores del tipo A e y = 30 microprocesadores del tipo B. Beneficios = euros

14 Problema 21: Como f( 1) = a b + c = 0 (1) f (0) = 0 f (x) = 3x 2 + 2ax + b b = 0 (2) f(0) = 4 c = 4 (3) Resolviendo el sistema formado por (1), (2) y (3), se tiene: Problema 22: Es la derivada de un cociente: Problema 23: BM = practica balonmano NBM = no practica balonmano Árbol de probabilidades a) Se aplica la regla de la suma o de probabilidad total P(BM) = 0,55 0,4 + 0,45 0,25 = 0,3325 b) Se aplica la regla del producto o de probabilidad compuesta c) Se aplica el teorema de Bayes Problema 24: Es la hipérbola Luego: trasladada 1 unidad hacia arriba y 2 unidades hacia la derecha.

15 Asíntota vertical: x = 2 Asíntota horizontal: y = 1 Asíntota oblicua: no tiene Colegio Portocarrero. Curso Problema 25: a) R(1000) = 0, = 2500 euros, pierde dinero. b) R (x) = 0,02x + 5 0,02x + 5 = 0 x = 250 R(250) = 3125, A(250, 3125) R (x) = 0,02; R (250) = 0,02 < 0 A(250, 3125) Máximo relativo. c) La rentabilidad máxima es 3125 euros Problema 26: Problema 27: a) Región factible. b) Vértices de la región factible: O(0, 0); A(15, 0); B(15, 2); C(9, 6); D(0, 3) c) Valores de la función objetivo en los vértices de la región factible. El máximo es F(15, 2) = F(9, 6) = 144. La solución óptima se alcanza en B(15, 2) y C(9, 6); por tanto en todos los puntos del segmento BC Problema 28: a) C (x) = 0 3x 3 3 = 0 x = 1 C(1) = 1; A(1, 1) C (1) = 9 > 0 A(1, 1) es un mínimo relativo. Para x = 1 tonelada, se alcanza el coste mínimo que es 1

16 b) La función beneficios es B(x) = I(x) C(x) = 12 x + 3ln x c) B (x) = 0 12x + 3 = 0 x = 1/4 No tiene sentido porque x debe ser mayor que cero. B (x) > 0 para todo x > 0. Luego la función beneficio es creciente Problema 29: a) Continuidad La función está definida por una función racional y una polinómica que no tienen puntos de discontinuidad en sus dominios de definición. El único punto problemático es x = 0 Para que la función sea continua, los límites laterales deben existir y ser iguales al valor de la función. Derivabilidad Para que sea derivable en x = 0, las derivadas laterales deben ser iguales. f (0 ) f (0 + ) La función no es derivable en x = 0 b) Ecuación de la recta tangente: Ecuación punto pendiente: y f(a) = f (a)(x a) x = 1 f(1) = = 2 P(1, 2) f (x) = 2x + 1 f (1) = = 3 y 2 = 3(x 1) y 2 = 3x 3 y = 3x 1 Problema 30: Se aplican las propiedades de la probabilidad y la probabilidad condicionada. Diagrama de Venn Problema 31:

17 f(0) = 8 C f(5) = 17,25 C Problema 32: que nunca se anula, por tanto no tiene puntos de inflexión. Curvatura: f (0) = 2 > 0 (+) Problema 33: Se calcula A B y se igualan los términos con los de I 2 Problema 34: a) Tabla con los datos del problema.

18 Crudo ligero Crudo pesado Restricciones Nº de barriles x y x 0; y 0 Gasolina 95 0,3x 0,1y 0,3x + 0,1y Gasolina 98 0,4x 0,2y 0,4x + 0,2y Gasoil 0,2x 0,5y 0,2x + 0,5y Coste 70x 65y f(x, y) = 70x + 65y Mínimo b) Región factible. c) Valores de la función objetivo en los vértices de la región factible. A(147500, 0); B(90000, 23000); C(60000, 83000); D(0, ). El mínimo es f(90000, 23000) = euros d) La solución óptima es B(90000, 23000), es decir, x = barriles de crudo ligero e y = euros barriles de crudo pesado. Coste = euros Problema 35: a) La función beneficio viene dada por una parábola que tiene un máximo. Produce beneficios cuando B(x) > 0. B(x) = 0 4x 2x 2 0,68 = 0 x = 0,19, x = 1,81. En el intervalo (0,19; 1,81) es donde se obtienen beneficios. b) El beneficio máximo se obtiene en el vértice Para x = 1 euro/kg se obtiene el máximo beneficio de 1,32 euros (El resultado también se puede obtener resolviendo B (x) = 0) c) ,32 = 1320 euros

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Repaso con solución

Colegio Portocarrero. Curso Departamento de matemáticas. Repaso con solución Repaso con solución Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Sean las matrices: Halla el producto de A por B Problema 3: La función representa, en miles de euros, el

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor

Más detalles

Colegio Portocarrero. Departamento de matemáticas. Repaso de todo con su solución

Colegio Portocarrero. Departamento de matemáticas. Repaso de todo con su solución Repaso de todo con su solución Problema 1: Un estudio revela que el 10 % de los oyentes de radio sintoniza a diario las cadenas Music y Rhythm, que un 35 % sintoniza a diario Music y que el 55 % de los

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

Colegio Portocarrero. Curso 2015-2016. Departamento de matemáticas. Álgebra, programación lineal y análisis. (con solución)

Colegio Portocarrero. Curso 2015-2016. Departamento de matemáticas. Álgebra, programación lineal y análisis. (con solución) Álgebra, programación lineal y análisis (con solución) Problema 1: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 2: Sea la función f definida por a) Estudia la continuidad

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES.

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES. IES Padre Poveda (Guadi) EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES 1 (001-M1;Sept-A-) Las ganancias de una empresa, en millones de pesetas, se ajustan a la 50 100 función

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Representación de funciones

Representación de funciones Representación de funciones 1) Sea la función Calcule: a) Los intervalos de crecimiento y decrecimiento. Sol: La función es creciente en (0,4) y decreciente en (,0) (4, ). b) Las coordenadas de sus extremos

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la

1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la 1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la función f(t) = t3 3-22t2 +448t-2600, siendo t el tiempo medido en semanas,

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

-7 3 A-1 = 120 F 2 -F 1 F 3 +F 1

-7 3 A-1 = 120 F 2 -F 1 F 3 +F 1 www.clasesalacarta.com Universidad de Castilla la Mancha PAU/LOGSE Junio.0 Opción A JUNIO _ 0.- a) espeja la matriz X en la siguiente ecuación matricial: 7I - X + AX = B, suponiendo que todas las matrices

Más detalles

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A a) (.5 puntos) Resuelva el siguiente sistema y clasifíquelo atendiendo al número de soluciones: x + y + z = 0 x + 3y z = 17 4x + 5y + z = 17 b) (0.75 puntos) A la vista del resultado anterior,

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

JUNIO Opción A

JUNIO Opción A Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

DP. - AS Matemáticas ISSN: X

DP. - AS Matemáticas ISSN: X DP. - AS - 5119 007 Matemáticas ISSN: 1988-379X 003 APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. Un vendedor de enciclopedias recibe, como sueldo mensual, una cantidad fija

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

Derivadas. Derivabilidad

Derivadas. Derivabilidad Apuntes Tema 4 Derivadas. Derivabilidad 4.1 Derivada de una función Llamamos tasa de variación media al cociente entre el incremento que sufre la variable dependiente y el incremento de la variable independiente.

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVABILIDAD 1- Considere la función: 3 2 a) Determine las asíntotas, horizontales, verticales y oblicuas, que tenga la función f(x). b) Determine los intervalos de

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas 11 Aplicaciones de las derivadas 1. Representación de funciones polinómicas Piensa y calcula Calcula mentalmente: a) lím ( 3 3) b) lím ( 3 3) +@ a) + @ b) @ @ Aplica la teoría Representa las siguientes

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO

OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO OBJETIVOS MÍNIMOS Y CRITERIOS DE CALIFICACIÓN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º DE BACHILLERATO COLEGIO MARAVILLAS Realizada por: D Luis Carlos Romero OBJETIVOS MÍNIMOS QUE EL ALUMNO DEBE

Más detalles