MA0455 (Tarea 1) b(s)µ 1 (s)ds + µ(t)b(t)µ(t) 1. a(s)ds 0 µ(t) t a(s)ds. a(s)ds t. + e

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MA0455 (Tarea 1) b(s)µ 1 (s)ds + µ(t)b(t)µ(t) 1. a(s)ds 0 µ(t) t a(s)ds. a(s)ds t. + e"

Transcripción

1 MA0455 Tarea Problema. Eisencia y unicidad de la ecuación lineal Sean a y b funciones coninuas en el inervalo I, con 0 I. Enonces eise una única solución al problema de Cauchy que viene dada por a = b, I 0 = 0 donde µ = e asds 0. = µ 0 + µ bsµ sds, 0 I Eisencia. Suponiendo que eise : I R que saisface. Derivando se obiene: Por ano cumple. = 0 dµ d + dµ d µ = 0 ae asds 0 + ae asds 0 µ 0 bsµ sds + µbµ = a 0 e asds 0 + e asds 0 µ = a + b 0 bsµ sds + b 0 bsµ sds + b Unicidad. Asuma que eisen dos funciones, g y z, definidas en I que cumplen el problema de Cauchy, por ano, basaría probar r = g z Noe que r = 0, I r + ar = g z ag z = g ag z az = b b = 0 Enonces enemos la ecuación de variables separables r ar = 0 Aneriormene se probó que dichas ecuaciones poseen solución única y en ese caso esá dada por: asds r = ce 0 Pero de la hipóesis de que g y z cumplen el problema de Cauchy r 0 = g 0 z 0 = 0 De donde se obiene c = 0 y por ano r = 0, para odo I. Se ha demosrado que g y z son iguales, o sea, la solución en única.

2 Problema. Inerés compueso Supongamos que inverimos I 0 colones en una insiución financiera que paga inereses compuesos al año de r por cieno. El valor de una inversión a iempo años, depende la consancia en que se paguen los inereses. Los bancos normalmene pagan inereses anuales, mensuales, semanales o inclusive diarios.. Muesre que si el banco paga inereses cada m periodos enonces el valor de la inversión viene dada por I m = I 0 + m r m. Por definión de inerés compueso, se sabe que si se inviere I 0 colones en el iempo 0, al final del periodo se endrá: Para el segundo periodo será: I 0 + I 0 r = I 0 + r Al final de n periodos se endrá: I 0 + r + I 0 + rr = I 0 + r A n = I 0 + r n Se debe ener claro que r es un inerés compueso converible a m periodos, o sea, si se quiere conocer el inerés aplicable a cada periodo, se debe omar: i = r m Siguiendo la lógica que se eplicó al inicio, al final de m periodos se abrá acumulado: I m = I 0 + r m m. Como m represena el número de periodos en que se esá dividiendo el año, si se quisiera averiguar cuáno se ha acumulado al final de años, basa con elevar la ecuación a m, pues eso indica el número de capializaciones oales que se efecuaron. De esa forma se obiene la ecuación: I m = I 0 + r m m. 3. Supongamos que el banco paga los inereses de manera coninua, enonces la velocidad de acumulación de la inversión viene dada por I = I 0 I. encuenre el valor de I y demuesre que I m iende a I cuando m. El problema de Cauchy sería I = ri I0 = I 0 Noe que es una ecuación de variables separables, de donde obenemos fácilmene: ahora se inroduce el límie I = I 0 e r lim I m = lim I 0 m m = I 0 lim m = I 0 e r m + r m + r m m

3 3. Asuma que un banco paga inereses de manera bimensual y used desea uilizar la aproimación coninua 3 para calcular el valor de la inversión después de 5 años. Cuál es el inerés máimo que puede ener el banco si used quiere que su error se menor a ɛ colones? Definiendo para una asa de inerés converible cada dos meses, durane 5 años, el error, respeco un esquema de conversión coninua, se iene que ɛ = e 5r + r 30 6 omando fr = e 5r + 6 r 30 ɛ, se desea enconrar, los valores de r ales que, fr = 0. Donde una forma de aproimar dicho valor, omando r 0 = 0.5 como valor inicial, vendría dada por r 0 = 0.5 r n+ = r n e5rn 30 + rn 6 ɛ 5e 5rn rn 6 aravés del méodo de aproimación de Newon-Raphson. Problema 3. Conaminación del lago Considere un lago que inicialmene coniene millones de liros de agua fresca. Agua que coniene un químico conaminane empieza a enrar al lago a una velocidad de 5 millones de liros/año y la mezcla sale del lago a la misma velocidad. La concenración γ del químico en el agua que enra varía periódicamene de acuerdo a la epresión γ = + sin 3 gramos/liro.. Encuenre la canidad del químico presene en el agua cada año. Considerando los siguenes daos V = millones liros Velocidad enra agua = Concenración químico agua que enra se desea enconrar d d q = 5 Velocidad sale agua millones liros + sin 3 año así, el problema de Cauchy vine dado por = 5 millones liros año = γ = + sin 3 gramos liros 0 6 gramos 5 millones liros q = sin q q0 = liros millones liros millones liros q año V gramos millones liros Noe que esa ecuación es lineal y por ano posee un facor inegranre de la forma µ = e así, usando q = µ + sin 3s 0 6 u sds 0 = e sin 3s e s ds 0 = e e 5 0 4s ds + sin 3s e 5 0 4s ds 0 0 = e e sin 3s e 5 0 4s ds 3 0

4 Resolviendo la inegral, se obiene como resulado: q = e [ e e sin cos 3 e ]. Encuenre res limiaciones del modelo uilizado. Se asume que la velocidad con la que sale y enra el agua es la misma, ese argumeno es poco úil pues en la realidad hay muchos facores, como el relieve, la época del año o elemenos como ramas u oros objeos en el medio que pueden hacer que la velocidad de enrada y fuga del agua sea disina. Se asume que el químico se dsiribuye de forma uniforme denro del agua, sin embargo, eso no sucede necesariamene, porque el químico se quede arapado enre las raíses de los árboles, por ejemplo. No se conoce sobre oros químicos que hayan en el agua y que puedan reaccionar creando ora susancia, de esa forma, la concenración de nuesro químico sería disina. Problema 4. Imposibilidad de oscilaciones Sea f CR una función no nula. Demuesre que no eisen soluciones periódicas de la ecuacón diferencial. = f Asuma por conradiccón que = + T para T > 0 y = f. Ahora: +T fs ds = +T fs sds Dado que es diferenciable y su derivada es inegrable f es coninua para odo R, en paricilar lo es en el inervalo [, + T ]. Por lo que se puede realizar el siguiene cambio de variable: acá hace fala referenciar la prueba de cambio de variable Asi u = s du = sds Ahora veamos lo siguiene +T fs ds = +T fs sds = +T fudu = fuds, = 0 Lo cuál es una conradicción pues f es no nula. +T fs ds = 0 f 0 = 0, 0 [, + T ] Problema 5. Daación por carbono 4 Los arqueólogos usan el decaimieno radioacivo del carbono 4 para esimar la fecha de muere de maerial orgánico. El carbono es esable mienras que el carbón 4 es radioacivo y al pasar el iempo decae a nirógeno 4 y oras parículas. Mienras el organismo esá vivo las canidades de carbono y 4 se manienen iguales, porque el organismo repone el carbono 4 por medio de acividades como respirar y comer. Cuando el organismo muere, la reposición del carbono 4 se deiene y 4

5 empieza a decaer a una velocidad proporcional a la canidad presene a iempo seg. La vida media de un compueso radioacivo es el iempo en que dura en desinegrarse la miad del compueso. Se conoce que la vida media del carbono 4 es de años. Asuma que obiene una muesra de hueso de humano en el que se ha desinegrado el 70% del carbono 4.. Formule una ED para la canidad de carbono 4 y resuélvala. Sea 0 la canidad inicial de carbono 4 presene en el fósil. Enonces, el problema de Cauchy asociado viene dado por = κ 0 = 0 así, pueso que el problema es de la forma, su solución viene dada por para a = κ, b = 0, la solución es de la forma = 0 e κ adicionalmene, se conoce que la vida media del maerial saisface por lo ano, la solución de la ED viene dada por. Halle la edad del fósil enconrado. Calculando la inversa de, se saisface que 0 = 0 e κ5730 ln = 5730κ κ = ln 5730 = 0 e ln 5730 = 0 e ln ln = ln = ln ln en paricular, para 0 = 0.7 la edad de fósil, en años, viene dada por = ln ln Problema 6. Trayecorias orogonales Dos curvas suaves se llaman orogonales si en cada puno de inersección poseen recas angenes perpendiculares enre sí. Sea Ω R abiero y F C R al que F 0 en Ω. Considere la familia de curvas F, y = c ;, y, c Ω R. 4 Las rayecorias orogonales a la familia 4 son odas las curvas que son orogonales a odas las curvas de la familia 4 en Ω. 5

6 . Encuenre la ED que saisfacen las rayecorias orogonales a la familia 4. Tenemos noe que G, y = F, y c G, y = 0,, y Ω así como, ambien se cumple que G = F 0 G y = F 0. Con lo cual, por el eorema de la y función implícia, asumiendo S.P.G G 0. Eise y = y, al que y dy d = G/ G/ y = F/ F/ y Donde, para z = z rayecoria orogonal de 4 sobre Ω, se debe saisfacer que dz dy d d = dz d = dy/d dz d = F/ y F/ de forma que, la ED asociada viene dada por dy d = F/ y F/. Sean a, b R + y Ω = R \ 0, 0. Encuenre las rayecorias orogonales a la familia de elipses Tomando F, y de la forma 5, se saisface a + y b = c,, y, c Ω R 5 F F y = a = y b La ED es de la forma dy d = a y b dy = a d y b = a b dy y d ln y = a b ln + C con lo cual, la familia de curvas orogonales a 5 son de la forma b ln y a ln = C pues, y son separables. 6

7 3. Qué an esencial es la condición F 0 en Ω? Hace fala prueba Problema 7. Modelo SI para epidemias En una comunidad de N = individuos hay I = individuos infecados con una enfermedad conagiosa y S individuos sanos. Después de un mes se observa que la canidad de infecados ha crecido a individuos.. Uilice el modelo SI del documeno aneo para aproimar la canidad de infecados en cualquier insane poserior. Considerando los siguenes daos Población N = individuos del modelo, se iene que donde el problema de Cauchy se epresa como con lo cual, resolviendo luego, evaluando en = 0 r = cγ N I = rin I I0 = di = rin I d dt = rd IN I dt = r d pues I, son separables. IN I di N I + di = r d N I ln I lnn I = rn + C I ln = rn + C N I I = Ce rn ecuación N I I = Ce rn N I I = CNerN + Ce rn por ano, la equación queda definida como I0 = CN + C = CN + C C = CN C = C = 9 I = 06 e e N 50000

8 . Cuáno ardará en infecarse la miad de la población? Se quiere observar cuáno arda en meses en reducirse la población a = 06 e e Diga res limiaciones del modelo y cómo podría mejorarse. Se asume que N población es fija, una limiane basane fuere, pues esas se encuenran en consane cambio por la muere y nacimienos de individuos. Sería conveniene N esé en función de, que permiar conabilizar la canidad de individuos en el momeno. El modelo pide una población lo suficienemene grande para que el cambio de N por N no afece los cálculos, eviando que ese modelo se pueda usar de forma adecuada en poblaciones pequeãs. Sin embargo, si se revisa con deenimieno el modelo, se puede observar que el cambio fue innecesario, pues manener N no complica el modelo. Sería ideal analizar la población por secores geográficos. Pues la ransmisión de una enfermedad infecciosa se da por medio del conaco de personas y eso a su vez se produce denro de grupo de personas que se relacionan. Problema 8. Reacciones químicas Dos susancias químicas P y Q reacciones para formar ora susancia PQ. La velocidad a la que PQ se produce es proporcional al produco de la canidad de susancia P y Q que esá presene a iempo min. Para formar gramos de PQ necesiamos un gramo de cada una de las susancias P y Q. Inicialmene hay 00 gramos de P y 50 gramos de Q y luego de 0 minuos hay 0 gramos de PQ.. Encuenre un ED para la canidad de susancia PQ luego de minuos. Considerando los siguenes daos Canidad inicial P 0 Canida inicial Q 0 Velocidad PQ Canidad resane P Canidad resane Q = 00 gramos = 50 gramos = κp Q gramos minuos = 00 = 50 con lo cual, la ecuación de Cauchy viene dada por. Resuelva la ED y encuenre para odo. Resolviendo la ecuación anerior gramos gramos = κ = 0 8

9 [ ln d = κ d d = κd d = κ d d = κ + C ln 50 ] = 5κ + C 00 ln 50 = 5κ + C = Ce 5κ = 00 Ce5κ Ce 5κ Dado que en momeno = 0 hay una canidad 0 de P Q = Ce 5κ0 C = 3. Cuál es la canidad máima de PQ que se puede formar en esa reacción? Calculando Ce5κ lim = lim 00 Ce 5κ L H 5κCe 5κ = 00 lim 5κCe 5κ = 00 con lo cual, la canidad máima de la susancia P Q producida iende a 00 gramos. 4. Cuáno sobra de las susancias P y Q después de un largo periodo de iempo? Considerando lim 00 lim 00 = = lim 00 lim 00 = 50 = 0 con lo cual, se pude apreciar que después de un iempo suficienemene largo, oda la susancia Q se consume, y an solo la miad de la susancia P es uilizada durane la reacción. 9

Resolución de Ecuaciones de Primer Orden

Resolución de Ecuaciones de Primer Orden 1 Resolución de Ecuaciones de Primer Orden 1.1 Desinegración Radiaciva Si las moléculas de ciero ipo ienen endencia a desinegrarse en moléculas más pequeñas a un rimo que no se ve afecado por la presencia

Más detalles

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden . Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

a) en [0, 2] ; b) en [-1, 1]

a) en [0, 2] ; b) en [-1, 1] UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CATEDRA: Maemáica I CURSO: 04 TRABAJO PRACTICO Nº -Tercera Pare Pare III. Aplicaciones de la derivada TEOREMA DE ROLLE

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Aplicaciones de las Ecuaciones Diferenciales

Aplicaciones de las Ecuaciones Diferenciales Aplicaciones de las Ecuaciones Diferenciales Velocidad de Variación: Cuando una canidad z varía con el iempo, la velocidad con la que lo hace se puede represenar como z v, siendo v una velocidad promedio.

Más detalles

Ecuaciones de Primer Orden e Intervalo Maximal

Ecuaciones de Primer Orden e Intervalo Maximal 2 Ecuaciones de Primer Orden e Inervalo Maximal 2.1 Algunos Méodos de Resolución En general, es muy difícil resolver ecuaciones diferenciales de primer orden. Pero hay cieros ipos canónicos de ésas para

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Resolviendo la Ecuación Diferencial de 1 er Orden

Resolviendo la Ecuación Diferencial de 1 er Orden Resolviendo la Ecuación Diferencial de er Orden J.I. Huircán Universidad de La Fronera February 6, 200 bsrac El siguiene documeno planea disinos méodos para resolver una ecuación diferencial de primer

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA CURSO: Maemáica Inermedia 3 JORNADA: SEMESTRE: Mauina er. Semesre AÑO: 205 TIPO DE EXAMEN: NOMBRE DEL AUXILIAR: NOMBRE

Más detalles

Ecuaciones de primer orden

Ecuaciones de primer orden Capíulo 1 Ecuaciones de primer orden Problema 1.1 Hallar la solución general de la ecuación + 1 + 2 = 0. Hallar la solución que verifica (0) = 0 y la que verifica (1) = 0. k=-5 k=5 k=-1 Figura 1.1: Soluciones

Más detalles

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden

Ejercicios de Ecuaciones Diferenciales con Matlab: Ecuaciones diferenciales de primer orden Ejercicios de Ecuaciones Diferenciales con Malab: Ecuaciones diferenciales de primer orden 8 de marzo de 9. Consideremos la ecuación diferencial ẋ = f(x, λ). Calcular los punos de bifurcación y dibujar

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Relación de ejercicios. Ecuaciones diferenciales

Relación de ejercicios. Ecuaciones diferenciales Relación de ejercicios. Ecuaciones diferenciales Abraham Rueda Zoca Ejercicio 1. [ punos] Resolver la ecuación diferencial: x = 2 + x + x 2 2. Solución. Veamos que se raa de una ecuación homogénea. Si

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-4-M-2-00-2017 CURSO: Maemáica Inermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Examen

Más detalles

OPTIMIZACIÓN DINÁMICA

OPTIMIZACIÓN DINÁMICA OPIMIZACIÓN DINÁMICA Francisco Alvarez González fralvare@ccee.ucm.es EMA 5 Problemas en iempo coninuo: principio del máximo de Ponryagin 1. Formulación en iempo coninuo. 2. Ejemplos. 3. Función valor.

Más detalles

CAPÍTULO 1 LA FUNCIÓN DERIVADA

CAPÍTULO 1 LA FUNCIÓN DERIVADA CAPÍTULO LA FUNCIÓN DERIVADA. LA DERIVADA En el fascículo anerior uilizase el concepo de la razón de cambio a ravés de problemas o siuaciones de la vida real e ilusrase gráficamene 0 o, dando una inerpreación

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

y = log b x b y =x. ln(e x ) = x = e lnx.

y = log b x b y =x. ln(e x ) = x = e lnx. 5. FUNCIÓN LOGARÍTMICA La función logarímica de base b se define como la inversa de la función exponencial con base b. Es decir, el logarimo de base b de un número x es el exponene al cual debe elevarse

Más detalles

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es

Hallar el vector unitario tangente a la curva dada por. Solución La derivada de es. Por tanto, el vector unitario tangente es SECCIÓN.4 Vecores angenes vecores normales 859 En la sección precedene se vio que el vecor velocidad apuna en la dirección del movimieno. Esa observación lleva a la definición siguiene, que es válida para

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

Una familia de elipses *

Una familia de elipses * Miscelánea Maemáica 38 (003) 33 4 SMM Una familia de elipses * Fernando Garibay B. Faculad de Ingeniería Química Universidad Michoacana de San Nicolás de Hidalgo Edificio M, Cd. Universiaria 5800 Morelia,

Más detalles

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Correlación. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Correlación Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. Correlación Cruzada.. Auocorrelación.4. Calculo de la correlación y de la auocorrelación.5.

Más detalles

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática Índice Tema 1: Cinemáica Capíulo 1: Inroducción a la Cinemáica TEMA 1: CINEMÁTICA Capíulo 1: Inroducción a la cinemáica Inroducción Dos nuevas ciencias Galileo Galilei (1564 164) El movimieno en el Renacimieno.

Más detalles

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exactas y Cambios de Variables Lección 3 Técnicas analíicas para las Ecuaciones diferenciales de primer orden: Ecuaciones Exacas y Cambios de Variables 3.1. Ecuaciones Exacas Las ecuaciones exacas esán relacionadas con las llamadas

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Tema 9. Formulación lagrangiana

Tema 9. Formulación lagrangiana Tema 9. Formulación lagrangiana. agrangiano Se define como la diferencia enre la energía cinéica del sisema T y su energía poencial V = T V y será función en general de las coordenadas, de las velocidades

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales Lección Inroducción a los sisemas no lineales de ecuaciones diferenciales Un modelo de Gierer-Meinhard para ecuaciones de ipo Acivador-Inhibidor Modelo G-M: con = [A], = [B]. k = k = k = k 4 = A B A +

Más detalles

CINEMÁTICA II. pendiente = t(s)

CINEMÁTICA II. pendiente = t(s) C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II Tipos de movimienos i) Movimieno recilíneo uniforme (MRU): cuando un cuerpo se desplaza con rapidez consane a lo largo de una rayecoria recilínea,

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?.

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?. CINEMÁTICA: MRU 1. Pasar de unidades las siguienes velocidades: a) de 36 km/ a m/s. b) de 10 m/s a km/. c) de 30 km/min a cm/s. d) de 50 m/min a km/. 2. Un móvil recorre 98 km en 2, calcular: a) Su velocidad.

Más detalles

Universidad de Sonora Departamento de Químico Biológicas

Universidad de Sonora Departamento de Químico Biológicas Deparameno de Maemáicas. Universidad de Sonora. Universidad de Sonora Deparameno de Químico Biológicas Ejemplo del Formao para la enrega de Problemas de Aplicación. Elemenos de Cálculo Inegral y algebra

Más detalles

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 3 Aplicaciones de E. D. de primer orden Ejercicios resueltos

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 3 Aplicaciones de E. D. de primer orden Ejercicios resueltos Bloque IV. Ecuaciones Diferenciales de primer orden Tema Aplicaciones de E. D. de primer orden Ejercicios resuelos IV.-1 Una solución de salmuera de sal fluye a razón consane de 6L/min. hacia el inerior

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 A) Hallar la pendiene de la reca secane a la parábola y + 8,cuyas abscisas de los punos de inersección son 1 y 4 f ( ) f ( a) B) Dada la siguiene epresión

Más detalles

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial

TRABAJO PRÁCTICO N 3: Derivadas - Diferencial TRABAJO PRÁCTICO N : Derivadas - Diferencial ) Definición de derivada en un puno: La derivada de la función f es aquella función, denoada por f ', al que su valor en un número del dominio de f esá dado

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

PRÁCTICA 1 DE FÍSICA GENERAL II

PRÁCTICA 1 DE FÍSICA GENERAL II PRÁCTICA 1 DE FÍSICA GENERAL II CURSO 2017-18 Deparameno de Física Aplicada e Ingeniería de Maeriales Juan Anonio Porro González Francisco Cordovilla Baró Rafael Muñoz Bueno Beariz Sanamaría Prácica 1

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial Los Procesos de Poisson y su principal disribución asociada: la disribución exponencial Lucio Fernandez Arjona Noviembre 2004. Revisado Mayo 2005 Inroducción El objeivo de esas noas es inroducir al esudio

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

LA INTEGRAL INDEFINIDA

LA INTEGRAL INDEFINIDA Inegrales LA INTEGRAL INDEFINIDA Inegral indefinida: Primiiva (aniderivada) Primiivas (Aniderivadas) Dada la función F( es fácil hallar su derivada F (. El proceso inverso: enconrar F ( a parir de F (

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

Por lo tanto el polinomio de Newton basado en diferencias divididas será:

Por lo tanto el polinomio de Newton basado en diferencias divididas será: Universidad Nacional de Ingeniería 7--6 Faculad de Ingeniería Mecánica P.A. 5- Área de Ciencias Básicas y Humanidades SE PERMITE UNA HOJA DE FORMULARIO. Problema ARIO - EXAMEN FINAL DE CALCULO NUMERICO

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

U.P.R. Departamento de Ciencias Matemáticas RUM MATE 3031 Examen Final 3 de diciembre de 2007

U.P.R. Departamento de Ciencias Matemáticas RUM MATE 3031 Examen Final 3 de diciembre de 2007 U.P.R. Dearameno de Ciencias Maemáicas RUM MATE 33 Eamen Final 3 de diciembre de 7 Nombre: Profesor: Sección: Insrucciones: Lea cada reguna minuciosamene y muesre odo su rabajo. Esá rohibido coiar, consular

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

PROBLEMAS DE CINÉTICA QUÍMICA RESUELTOS.

PROBLEMAS DE CINÉTICA QUÍMICA RESUELTOS. PROBLEMAS DE CINÉTICA QUÍMICA RESUELTOS. 1. Una reacción en solución enre los compuesos A y B, se siguió durane 1 hora a una emperaura de 37 o C. Se midió la concenración residual de los reacivos a diferenes

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una.

a) Dar la definición de dominio y rango de una función. b) Explicar cada una de las siguientes funciones y dar tres ejemplos de cada una. UNIVERSIDAD DE LONDRES PREPARATORIA GUIA DE MATEMÁTICAS VI Áreas I-II Plan : 9 Clave maeria : 00 Clave UNAM : Unidad I. Funciones Objeivos Que el alumno idenifique disinos ipos de funciones, esablezca

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilaciones (9 hs. Movimieno rmónico Simple (MS. Oscilaciones amoriguadas 3. Oscilaciones forzadas y resonancia 4. Superposición de MS. Cinemáica y dinámica del MS. Sisema muelle-masa.3 Péndulos.4

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x)

Autoevaluación Cálculo Integral. sen(x) dx (i) cos(x) Auoevaluación Cálculo Inegral Ejercicio 6. Calcular las siguienes inegrales indefinidas: ln d d ln( + d (a (b (c g cos + e d e + (d (e e + e d (f d cos( sen (g sen ( d (h ( + sen( d (i cos( cos ( + d (j

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Y K AN AN AN MODELO SOLOW MODELO

Y K AN AN AN MODELO SOLOW MODELO MODELO SOLOW MODELO Rendimienos consanes a escala decrecienes en uso de facores. Tasa de ahorro exógena, s. Crecimieno exógeno, a asa g, de eficiencia del rabajo. Equilibrio mercado de bienes de facores.

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO.

TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. UNIVERSIDAD AUTONOMA SAN FRANCISCO CURSO DE DINÁMICA Docene: Álvarez Solís María del Carmen. Fecha: 10 Oc - 2017 TEMA 02: CINÉMATICA PLANA DE UN CUERPO RIGIDO. La cinemáica de cuerpos rígidos esudia las

Más detalles

Circuitos para observar la descarga y carga de un capacitor.

Circuitos para observar la descarga y carga de un capacitor. IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere

Más detalles

M O D E L O S D E I N V E N T A R I O

M O D E L O S D E I N V E N T A R I O nvesigación Operaiva Faculad de iencias Exacas - UNPBA M O E L O E N V E N T A O El objeivo de la eoría de modelos de invenario es deerminar las reglas que pueden uilizar los encargados de gesión para

Más detalles

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

1. Elasticidad lineal

1. Elasticidad lineal Inroducción al MEF 1. Elasicidad lineal 1.1. Descripción del problema El problema de esfueros en elasicidad lineal se planea para un sólido que ocupa una región del espacio Ω con una fronera Γ (cf. figura

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana.

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana. 1.- Sea una función coninua y = f() al que el dominio de f() =[a,b], enonces: a) El máimo absoluo de f() se alcanza en uno de los valores ales que f ()=0. b) No iene porque ener máimo absoluo. c) El máimo

Más detalles

ELECTRICIDAD IV. Un capacitor está formado por dos conductores, muy cercanos entre sí, que transportan cargas iguales y opuestas.

ELECTRICIDAD IV. Un capacitor está formado por dos conductores, muy cercanos entre sí, que transportan cargas iguales y opuestas. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-30 ELECTRICIDAD I EL CAPACITOR Un capacior esá formado por dos conducores, muy cercanos enre sí, que ransporan cargas iguales y opuesas. El capacior más sencillo

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO

VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII.- CONDUCCIÓN TRANSITORIA DEL CALOR MÉTODO GRÁFICO VIII..- SOLUCIONES NUMÉRICAS A PROBLEMAS DE CONDUCCIÓN MONODIMENSIO- NALES EN RÉGIMEN TRANSITORIO El méodo numérico aplicado a los problemas de conducción

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. NOTA: En odos los ejercicios se deberá jusificar la respuesa eplicando el procedimieno seguido en la resolución del ejercicio. CURSO 10-11 JUNIO CURSO 10 11 1 Aplicando ransformadas de Laplace, hallar

Más detalles

6.7. ENSAYOS EN FLUJO CONVERGENTE

6.7. ENSAYOS EN FLUJO CONVERGENTE Clase 6.7 Pág. 1 de 1 6.7. ENSAYOS EN FLUJO CONVERGENTE 6.7.1. Principios Los pasos que deben seguirse para efecuar un ensayo de flujo convergene son: 1. Se bombea en un puno hasa conseguir que las condiciones

Más detalles

5º Año Área Electrónica TEORÍA DE LOS CIRCUITOS II SEÑALES APERIÓDICAS INDICE

5º Año Área Electrónica TEORÍA DE LOS CIRCUITOS II SEÑALES APERIÓDICAS INDICE TEORÍ DE LOS CIRCUITOS II SEÑLES PERIÓDICS INDICE SEÑLES PERIÓDICS ELEMENTLES 2 Señal escalón 2 Señal rampa 3 Señal impulso 4 Relación enre las señales aperiódicas elemenales 5 Página REPRESENTCIÓN DE

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDDES PÚLICS DE L COUNIDD DE DRID PRUET DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) Curso 8-9 (Sepiebre) TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El aluno conesará a los cuaro ejercicios de

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDADES PÚBLICAS DE LA COUNIDAD DE ADRID PRUETBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 8-9 (Sepiebre) ATERIA: ATEÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El aluno conesará a los

Más detalles

Respuesta A.C. del BJT 1/10

Respuesta A.C. del BJT 1/10 Respuesa A.. del BJT 1/10 1. nroducción Una ez que se ubica al ransisor denro de la zona acia o lineal de operación, se puede uilizar como amplificador de señales. n base a un ransisor BJT NPN en configuración

Más detalles

( ) ( 15 50) 0

( ) ( 15 50) 0 PRUE DE CCESO L UNIVERSIDD JUNIO 7 OPCION ) Deermina dos números reales posiivos sabiendo que su suma es y que el produco de sus cuadrados es máximo. Sean x e y los números reales que suman y P x y odos

Más detalles

Señales de Potencia,Energía y Orden Superior

Señales de Potencia,Energía y Orden Superior Señales de Poencia,Energía y Orden Superior Clasificación de Señales: as señales se clasifican maemáicamene evaluando su energía o poencia en un inervalo que va siempre desde a + de modo de abarcar la

Más detalles