Funciones Reales en una Variable
|
|
|
- Joaquín Navarrete Carmona
- hace 10 años
- Vistas:
Transcripción
1 Funciones Reales en una Variable
2 Contenidos Concepto función Grafica de una función Dominio y Recorrido de una función Clasificación de la funciones Función Inversa Paridad de las Funciones Operaciones con funciones Ejemplos
3 Concepto de función La palabra función es utilizada en nuestro lenguaje común para expresar que algunos hechos dependen de otros. Así, la idea matemática de función no es un concepto nuevo, sino una formalización de nuestra idea intuitiva
4 Definición de Función Una función de un conjunto A no vacío en un conjunto B no vacío, es una relación que se establece entre ambos conjuntos de tal forma que a todo elemento de A le corresponde un único de B. En símbolos matemáticos En forma de esquema Donde
5 Cuál es Función?
6 Cuál es Función? Menú
7 Representación Grafica Método de Óvalos Plano Cartesiano Menú
8 Dominio y Recorrido Dominio Sea A y B dos conjuntos no vacío, y f una función de A en B, a un sub conjunto del conjunto A se llama Dominio de la función a Y lo denotaremos por
9 Dominio y Recorrido Recorrido Sea A y B dos conjuntos no vacío, y f una función de A en B, a un sub conjunto del conjunto B se llama recorrido de la función a Y lo denotaremos por
10 Dominio y Recorrido en el plano cartesiano
11 Dominio y Recorrido usando Método de Óvalos
12 Cual es el Dominio y Recorrido de la siguiente función? Dominio Recorrido Buscar condiciones para la variable Buscar condiciones para la variable
13 Cual es el Dominio y Recorrido de la siguiente función? Dominio Recorrido Buscar condiciones para la variable Buscar condiciones para la variable
14 Tabla de Evaluación Y su grafica es Menú
15 Clasificación de las funciones Función Lineal Función Cuadráticas Función Cúbica Función Potencia Función Raíz donde Función Reciproca donde
16 Función Valor Absoluto donde Funciones Racionales Funciones Irracionales
17 Función Exponenciales Función Logarítmicas Funciones Trigonométricas
18 Funciones Hiperbólicas Ver Graficas Menú
19 Propiedades de las funciones Función Inyectiva (1-1) Se dice que es una Función Inyectiva si Función Epiyectiva (sobre) Se dice que es una Función Sobre si Función Biyectiva Se dice que es una Función Biyectiva si es inyectiva y sobre a la vez
20 Función Inversa Sea una función biyectiva, entonces la función inversa de es una función biyectiva tal que y Gráficamente podemos representar estas funciones de la manera siguiente:
21 Función inversa Menú
22 Ejemplo Hallar la inversa y grafica de la siguiente función Solución Para hallar la inversa de la función debemos despejar la variable Por lo tanto
23 Y ambas grafica en el mismo plano cartesiano son Menú
24 Paridad de una función Funciones pares Decimos que una función es par siempre que para todo valor de la variable independiente perteneciente al dominio se cumpla que:
25 Ejemplo Dada la función a) es par o impar?. b) Utilizando Winplot grafique Solución Analizaremos si la función es par, para ello debe cumplir que Para este caso Por lo tanto esta función es par
26 Función Impar Decimos que una función es impar siempre que para todo valor de la variable independiente perteneciente al dominio se cumpla que: Función sin paridad El carácter par o impar de una función es lo que conocemos como su paridad. Las funciones que no son ni pares, ni impares, carecen de paridad.
27 Ejemplo Dada la función a) es par o impar?. b) Utilizando Winplot grafique Solución Analizaremos si la función es impar, para ello debe cumplir que Para este caso Por lo tanto esta función es impar Menú
28 Operaciones con funciones Sean y dos funciones tal que Suma de f y g Resta de f y g Producto de f y g Cociente de f y g
29 Función Compuesta Sean y funciones tales que Entonces se llama función compuesta de g y f y lo denotamos por A la función definida por para cada valor de A, tal que su imagen este en el conjunto B Gráficamente podemos expresar la función compuesta de g y f de la siguiente manera
30 Composición de de f y g
31 Composición de una Función con su Inversa De la representación anterior se puede notar que: o
32 Ejemplo Considere las siguientes funciones reales definidas por Solución Determine Por hallar la inversa de Para este caso la función es biyectiva por lo tanto existe su inversa, la cual es
33 En donde su Dominio es los números reales Además el dominio d la función También son los números reales Por lo tanto Por lo tanto Por lo tanto
34 Ejemplos 1.- Para cada una de las siguientes relaciones, determine Dominio, Recorrido para que sea función a) b) c)
35 2.- Para cada una de las siguientes relaciones, determine Dominio para que sea función a) b) 3.- Trace la grafica de la siguiente función a) b)
36 4.- Considere las siguientes funciones reales definidas por Determine Además explicite sus dominio
37 5.- Usando alguna aplicación grafica determine Dominio, Recorrido a) d) b) e) c) f)
38 6.- Sean la funciones definidas por Hallar dominio de cada una de las siguientes funciones. Además presente su grafica en caso que sea posible
39 7.- Para cada uno de los pares de funciones determine a) b) c) d) e) Menú Terminar
40 Función Lineal Función Cuadráticas Función Cúbica Función Potencia Función Raíz Función Reciproca
41 Función Valor Absoluto Función Exponenciales Función Logarítmicas Funciones Trigonométricas
42 Funciones Hiperbólicas Menú
FUNCIONES INTRODUCCIÓN
FUNCIONES INTRODUCCIÓN Contenidos Concepto unción Graica de una unción Dominio y Recorrido de una unción Clasiicación de la unciones Función Inversa Paridad de las Funciones Operaciones con unciones Ejemplos
1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES
1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES OBJETIVO.- Conocer y manejar las operaciones definidas entre funciones así como conocer la clasificación de éstas y sus características. 1.6.1.- Operaciones
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
Funciones 1. Ejercicios básicos sobre funciones. www.math.com.mx. José de Jesús Angel Angel. [email protected]
Funciones Ejercicios básicos sobre funciones www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-008 Contenido. Introducción. Ejercicios Introducción Los aspectos básicos a estudiar
Un Apunte de Funciones "Introducción al Cálculo Dif. e Int."
Un Apunte de Funciones "Introducción al Cálculo Dif. e Int." Las funciones son relaciones, las cuales, lo que hacen es tomar un elemento de un conjunto de partida (dominio) y transformarlo en otra cosa,
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B.
Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B. Sea R una relación de un conjunto A en un conjunto B. Se dice que un elemento a de A está relacionado con un elemento b de
Profr. Efraín Soto Apolinar. Función Inversa
Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.
Raíces cuadradas y radicales
Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama
, o más abreviadamente: f ( x)
TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
Tutorial MT-b15. Matemática 2006. Tutorial Nivel Básico. Relaciones y Funciones
134567890134567890 M ate m ática Tutorial MT-b15 Matemática 006 Tutorial Nivel Básico Relaciones y Funciones Matemática 006 Tutorial Relaciones y Funciones Marco teórico: 1. Producto cartesiano: El producto
3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función
TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable
Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones
Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Funciones 1. Hallar Dominio y Recorrido de la función: x. Sea f : R R definida por: x + 5 si 9 < x x x si 9 x 9 x 4 si
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
Relaciones entre conjuntos
Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo
Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo conjunto. Ejemplos reales de relaciones que envuelven funciones:
Funciones y gráficas (1)
Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes
3. Operaciones con funciones.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
CLASIFICACIÓN DE FUNCIONES. En esta parte de la unidad se procede de la siguiente forma:
1 CLASIFICACIÓN DE FUNCIONES En esta parte de la unidad se procede de la siguiente forma: Dar las clasificaciones para efectos de claridad en la indagación Dar conceptos básicos de cada una Dejar preguntas
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Halla dominio e imagen de las funciones
Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
Ecuaciones de primer y segundo grado
Igualdad Ecuaciones de primer y segundo grado Una igualdad se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2.
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
EJERCICIOS DE FUNCIONES REALES
EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }
La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL
NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: MATEMÁTICA I CÓDIGO ASIGNATURA: 1215-101 PRE-REQUISITO:
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. [email protected]. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }
I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora
Funciones. 2.6 Tipos de funciones CAPÍTULO. 2.6.1 Funciones monótonas
CAPÍTULO Funciones.6 Tipos de funciones Definimos ahora algunos tipos de funciones que tienen comportamientos mu particulares que son importantes en el estudio del cálculo..6. Funciones monótonas Una función
f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0
FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
1. Lección 4 - Leyes de Descuento
1. Lección 4 - Leyes de Descuento Apuntes: Matemáticas Financieras 1.1. El descuento comercial La expresión matemática del descuento comercial es: A 1 (t) = 1 d t para d > 0 Por lo que una u.m. en el instante
FUNCIONES EN R. Agosto 2007
FUNCIONES EN R Alexis Vera Pérez Instituto de Estadística & Sistemas Computarizados de Información Universidad de Puerto Rico, Recinto de Río Piedras Agosto 2007 1 Definición y notación Definición 1 Una
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria
x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3
3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Funciones hiperbólicas inversas (19.09.2012)
Funciones hiperbólicas inversas 9.09.0 a Argumento seno hiperbólico. y = arg shx = x = senh y = ey e y = x = e y e y. Multiplicando por e y, xe y = e y = e y xe y = 0, de donde e y = x ± x +. Para el signo
VII. Estructuras Algebraicas
VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación
MATEMÁTICAS. TEMA 5 Límites y Continuidad
MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas
La Función Exponencial y la Función Logarítmica
1 Capítulo 7 La Función Exponencial y la Función Logarítmica M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación
Aplicaciones Lineales
Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales
Gráficas de funciones
Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:
Relaciones y Funciones
OBJETIVOS Unidad Tema Subtema Objetivos IV Relaciones y funciones 4.1 Relaciones 4.2 Funciones Entender y definir el concepto de relación así como las diferentes representaciones de una relación Entender,
TEMA 4. FUNCIONES DE VARIABLE REAL
TEMA 4. FUNCIONES DE VARIABLE REAL 4.1 Definición de función real Definición: Una función real de variable real es una aplicación de un subconjunto A en. f : A El dominio de una función es el conjunto
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
Aplicaciones Lineales
Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES
DESIGUALDADES E INTERVALOS
DESIGUALDADES E INTERVALOS 1. INTERVALOS: Son regiones comprendidas entre dos números reales. En general, si los etremos pertenecen al intervalo, se dice que cerrado, si por el contrario no pertenecen
EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS
EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS 1. Dados = -+4i, z = 5-i, z = y z 4 =7i, calcular: a) ( - z ) z b) z 4 + z z 4 c) + z 4-5z d) + z -1 f) z g) ( + 1 ) 1 z z h) z 1 z i) z j) e) z -1 z + z 4 a)
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
3. OPERACIONES CON FUNCIONES.
3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos
Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d
Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en
personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12
Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo
I. DATOS DE IDENTIFICACIÓN. 10. Requisitos para cursar la asignatura: Recomendada_Introducción a las Matemáticas
UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA COORDINACIÓN DE FORMACIÓN BÁSICA COORDINACIÓN DE FORMACIÓN PROFESIONAL Y VINCULACIÓN PROGRAMA DE UNIDAD DE APRENDIZAJE POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
Concepto de función y funciones elementales
Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
ESTRUCTURAS ALGEBRAICAS 1
ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia
Introducción al Cálculo Simbólico a través de Maple
1 inn-edu.com [email protected] Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos
1 El espacio vectorial R n.
Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga February 26, 2009 1 El espacio vectorial R n. La estructura de espacio vectorial es posiblemente la estructura más
Grupos. Subgrupos. Teorema de Lagrange. Operaciones.
1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial
FACULTAD DE INGENIERÍA FORESTAL EXCELENCIA ACADÉMICA QUE CONTRIBUYE AL DESARROLLO DE LAS CIENCIAS FORESTALES
IDENTIFICACIÓN DE LA ASIGNATURA Nombre: Matemáticas Fundamentales Código: 0701479 Área Específica: Ciencias Básicas Semestre de Carrera: Primero JUSTIFICACIÓN El estudio de las matemáticas es parte insustituible
CUADERNO DE TRABAJO 2
1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el
(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA
(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.
Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma
CONJUNTOS Y RELACIONES BINARIAS
UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo Cálculo Contenidos Clase 1: Funciones: Dominio, recorrido, gráfico. Ejemplos. Clase 2: Igualdad de funciones.
Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica)
Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica) Apellidos: No. Estudiante: Nombre: Sección: Conceptos Básicos de Lógica: Lógica es el estudio de como razonar correctamente.
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
Aplicaciones Lineales
Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES
Funciones Reales de Variable Real
1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet
FUNCIONES Y GRÁFICAS.
FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones
Función exponencial y Logaritmos
Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
Estructuras algebraicas
Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota
Análisis Dinámico: Integración
Análisis Dinámico: Integración Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: Integración 1 / 57 Integración indefinida
FUNCIONES 1. DEFINICION DOMINIO Y RANGO
1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad
Funciones uno-uno, sobre y biunívocas
Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo
