OPTIMIZACIÓN NO LINEAL MULTIDIMENSIONAL RESTRINGIDA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPTIMIZACIÓN NO LINEAL MULTIDIMENSIONAL RESTRINGIDA"

Transcripción

1 3 de Mayo de 8 OPTIMIZACIÓN NO LINEAL MULTIDIMENSIONAL RESTRINGIDA (Parte ) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación No Lineal José Luis Quintero

2 Puntos a tratar. Segundo problema de interés. Definiciones importantes 3. Método de Lagrange (Igualdad) 4. Análisis de sensibilidad 5. Ejemplos ilustrativos Programación No Lineal José Luis Quintero

3 PROBLEMA. Segundo problema de interés P: optf(x) s.a. G(x) =, H(x) n n n m f:r R, x R, G:R R, n p H:R R OBSERVACIÓN. El conjunto F(P) está formado por todos los vectores x que satisfacen las restricciones del problema P. Programación No Lineal José Luis Quintero 3

4 Puntos a tratar. Segundo problema de interés. Definiciones importantes 3. Método de Lagrange (Igualdad) 4. Análisis de sensibilidad 5. Ejemplos ilustrativos Programación No Lineal José Luis Quintero 4

5 Definiciones importantes DEFINICIÓN. El vector x F(P) se dice que satura una restricción g(x) o h(x) (restricción activa) si g(x) = o h(x) =. DEFINICIÓN. El vectorx F(P) se dice regular si y sólo si los gradientes de las restricciones saturadas o activas en x forman un conjunto de vectores linealmente independientes. Programación No Lineal José Luis Quintero 5

6 Puntos a tratar. Segundo problema de interés. Definiciones importantes 3. Método de Lagrange (Igualdad) 4. Análisis de sensibilidad 5. Ejemplos ilustrativos Programación No Lineal José Luis Quintero 6

7 PROBLEMA. Método de Lagrange (Igualdad) optf(x) s.a. G(x) =, f:r R, x R, G:R R PROBLEMA. (Función de Lagrange) OBSERVACIÓN. n n n m t m optl(x, λ ) = f(x) λg(x), λ R Si x es factible en PROBLEMA entonces L(x, λ ) = f(x) Programación No Lineal José Luis Quintero 7

8 Método de Lagrange (Igualdad) PROPOSICIÓN. En un punto regularx de la hipersuperficie S definida por G(x) =, el plano tangente o espacio nulo de la matriz jacobiana G(x) viene definido por N { y R n : G(x) y } = = Programación No Lineal José Luis Quintero 8

9 Método de Lagrange (Igualdad) ÓPTIMO (CONDICIÓN NECESARIA): m f(x) = λ g(x) i i L(x, λ ) = i= G(x) = t f(x) = λ G(x) L(x, λ ) = G(x) = x debe ser regular Programación No Lineal José Luis Quintero 9

10 Método de Lagrange (Igualdad) ÓPTIMO (CONDICIÓN SUFICIENTE): (x, λ) x t f(x) = λ G(x) G(x) = PROPOSICIÓN. Suponga con regular tal que y la matriz es definida positiva en N, esto es, para y Entonces t se cumple que. sujeto a. m L(x, λ ) = f(x) λ x i i i= x G(x) = y g(x) y N, L(x, λ ) y > x es un mínimo local estricto de f(x) Programación No Lineal José Luis Quintero

11 H Hessiano Orlado L M O M L G = G t L xx n = n L m L x x x x xn ORL g g L L M O M L g gm L L x n xn xnx xn Programación No Lineal José Luis Quintero g x g x m L g x M O M L g x M O M L m

12 Hessiano Orlado donde : matrizm mdeceros G(x) : matriz jacobiana de las restricciones t G(x): matriz jacobiana traspuesta L : xx matrizn ndesegundasderivadasdel Lagrangiano respecto de x Programación No Lineal José Luis Quintero

13 Método de Lagrange (Igualdad) CRITERIO DEL HESSIANO ORLADO Si(x, λ) cumple con la condición necesaria de primer orden y los últimos n m menores principales dominantes del Hessiano Orlado evaluado en(x, λ) tienen signos alternados m empezando en ( ) + entonces x es un máximo local de f(x) bajo restricciones de igualdad. Programación No Lineal José Luis Quintero 3

14 Método de Lagrange (Igualdad) CRITERIO DEL HESSIANO ORLADO Si(x, λ) cumple con la condición necesaria de primer orden y los últimos n m menores principales dominantes del Hessiano Orlado evaluado en(x, λ) tienen todos el signo de m ( ) entoncesx es un mínimo local de f(x) bajo restricciones de igualdad. Programación No Lineal José Luis Quintero 4

15 Puntos a tratar. Segundo problema de interés. Definiciones importantes 3. Método de Lagrange (Igualdad) 4. Análisis de sensibilidad 5. Ejemplos ilustrativos Programación No Lineal José Luis Quintero 5

16 Análisis de sensibilidad PROBLEMA. optf(x) s.a. G(x) = c, f:r R, x R, G:R R n n n m OBSERVACIÓN. f(x( c )) c = c = λ t Programación No Lineal José Luis Quintero 6

17 Puntos a tratar. Segundo problema de interés. Definiciones importantes 3. Método de Lagrange (Igualdad) 4. Análisis de sensibilidad 5. Ejemplos ilustrativos Programación No Lineal José Luis Quintero 7

18 PROBLEMA. Ejemplo ilustrativo optf(x,x) = xx s.a. g(x,x) = x + x = PROBLEMA. (Función de Lagrange) optl(x,x, λ ) = xx λ (x + x ) Programación No Lineal José Luis Quintero 8

19 Ejemplo ilustrativo PROBLEMA. (Condición necesaria) L(x,x, λ ) = : x x = λx (x,x, λ ) = (,, ) () () () = λ () () () 4 λ = = x x (x,x, ) (,, ) Programación No Lineal José Luis Quintero 9

20 Ejemplo ilustrativo PROBLEMA. (Regularidad) g(x,x) = (x,): g(x,x ) = g(, ) = (,) () () Rango( g(, )) = (, )regular g(x,x ) = g(, ) = (,) () () Rango( g(, )) = (, )regular Programación No Lineal José Luis Quintero

21 Ejemplo ilustrativo PROBLEMA. (Espacio nulo) { y } N = :xy + y = { y } P(,, ) N = : y + y = { y } P(,, ) N = : y + y = Programación No Lineal José Luis Quintero

22 Ejemplo ilustrativo PROBLEMA. (Condición suficiente) λ L(x,x, λ ) = = + λ x 4 3 L( x 3, 3, 3) = 4 3 L( x 3, 3, 3) = Programación No Lineal José Luis Quintero

23 Ejemplo ilustrativo PROBLEMA. (Condición suficiente) t y t λ y y Ly = y yy y = λ + y x t y L(P) y = 6 y >.mínimolocalestricto x 3 t y L(P) y = 6 y <.máximolocalestricto x 3 Programación No Lineal José Luis Quintero 3

24 Ejemplo ilustrativo CRITERIO DEL HESSIANO ORLADO x H = x λ ORL Programación No Lineal José Luis Quintero 4

25 Ejemplo ilustrativo 3 H (P) = ORL = 4 < P esunmínimolocal Programación No Lineal José Luis Quintero 5

26 Ejemplo ilustrativo 3 H (P) = ORL = 4 > P esunmáximolocal Programación No Lineal José Luis Quintero 6

27 Ejemplo ilustrativo 5 5 Eje z Eje z -5 Eje y - - Eje x -5 Eje y Eje x x 7 Eje z Eje z - x 4 Eje y Eje x - 3 Eje y Eje x.5 Programación No Lineal José Luis Quintero 7

28 PROBLEMA. Ejemplo ilustrativo optf(x,x) = x + x s.a. g(x,x) = x + x = PROBLEMA. (Función de Lagrange) optl(x,x, λ ) = x + x λ (x + x ) Programación No Lineal José Luis Quintero 8

29 Ejemplo ilustrativo PROBLEMA. (Condición necesaria) L(x,x, λ ) = : () () () () () () = λx = λx x + x = (x,x, λ ) = (,, ) (x,x, λ ) = (,, ) Programación No Lineal José Luis Quintero 9

30 Ejemplo ilustrativo PROBLEMA. (Regularidad) g(x,x) = (x,x): = = () () g(x,x ) g(, ) (, ) Rango( g(, )) = (, )regular = = () () g(x,x ) g(,) (,) Rango( g(,)) = (,) regular Programación No Lineal José Luis Quintero 3

31 Ejemplo ilustrativo PROBLEMA. (Espacio nulo) { y } N = :xy + xy = { y } P(,, ) N = : y y = { y } P(,, ) N = :y + y = Programación No Lineal José Luis Quintero 3

32 Ejemplo ilustrativo PROBLEMA. (Condición suficiente) λ λ L(x,x, λ ) = = + λ x L(,, x ) = L(,, x ) = Programación No Lineal José Luis Quintero 3

33 Ejemplo ilustrativo PROBLEMA. (Condición suficiente) t y t λ y y Ly = (y y) x y = λ + λ y t y L(P) y = y >.mínimolocalestricto x t y L(P) y = y <. máximo local estricto x Programación No Lineal José Luis Quintero 33

34 Ejemplo ilustrativo CRITERIO DEL HESSIANO ORLADO x x H = x λ ORL x λ Programación No Lineal José Luis Quintero 34

35 Ejemplo ilustrativo H (P) = ORL = 8 < P esunmínimolocal Programación No Lineal José Luis Quintero 35

36 Ejemplo ilustrativo H (P) = ORL = 8 > P esunmáximolocal Programación No Lineal José Luis Quintero 36

37 Ejemplo ilustrativo 5 Eje z Eje z - -5 Eje y - - Eje x -4 Eje y Eje x Eje z Eje z - Eje y Eje x - Eje y Eje x.5 Programación No Lineal José Luis Quintero 37

38 PROBLEMA. Ejemplo ilustrativo 3 optf(x,y,z) = x + y s.a. g(x,y,z) = z = 3 g(x,y,z) = z (y ) = PROBLEMA. (Función de Lagrange) 3 optl(x,y,z, λ, λ ) = x + y λz λ(z (y )) Programación No Lineal José Luis Quintero 38

39 Ejemplo ilustrativo 3 PROBLEMA. (Condición necesaria) L(x,y,z, λ, λ ) = : x = y = 3 λ(y ) = λ + λz z = 3 z (y ) = INFACTIBLE Programación No Lineal José Luis Quintero 39

40 Ejemplo ilustrativo 3 OTRA FORMA: z = C: r(t) = (t,,) 3 z (y ) = f((t)) r = u(t) = t + u'(t) = t = t = u''(t) = u''() > P(,, ) Mínimo local Programación No Lineal José Luis Quintero 4

41 Pensamiento de hoy Todo el mundo desea saber, pero pocos están dispuestos a pagarelprecio. Juvenal Programación No Lineal José Luis Quintero 4

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

FUNDAMENTOS DE CONVEXIDAD (Parte 2)

FUNDAMENTOS DE CONVEXIDAD (Parte 2) 1 de Marzo de 018 FUNDAMENTOS DE CONVEXIDAD (Parte ) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación No Lineal José Luis Quintero 1 Puntos

Más detalles

FUNDAMENTOS DE CONVEXIDAD (Parte 2)

FUNDAMENTOS DE CONVEXIDAD (Parte 2) 19 de Mayo de 2016 FUNDAMENTOS DE CONVEXIDAD (Parte 2) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación No Lineal José Luis Quintero 1 Puntos

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización con restricciones de igualdad Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización con restricciones de igualdad 1

Más detalles

OPTIMIZACIÓN CLÁSICA. En el problema de optimización

OPTIMIZACIÓN CLÁSICA. En el problema de optimización OPTIMIZACIÓN CLÁSICA Definición En el problema de optimización ( ) ópt f (x 1,..., x n ), (x 1,..., x n ) F D el conjunto F recibe el nombre de conjunto factible y la función f el de función objetivo.

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 51 Formulación general del problema Óptimos locales Condición de regularidad Condiciones

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

Soluciones del capítulo 9 Optimización Estática

Soluciones del capítulo 9 Optimización Estática Soluciones del capítulo 9 Optimización Estática Héctor Lomelí y Beatriz Rumbos 6 de febrero de 00 9 Sean A y B dos subconjuntos convexos de R n : b Sea A + B = {a + b : a A y b B} y sean x, y A + B Se

Más detalles

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F.

Introducción a la optimización con algoritmos. Ejercicios. 0 2 f(x + t(y x))(y x)dt. J(x + t(y x))(y x)dt siendo J la matriz Jacobiana de F. Introducción a la optimización con algoritmos Ejercicios Preliminares 1. Demostrar que si f C 2 (IR n ), f : IR n IR entonces f(y) f(x) = 1 0 2 f(x + t(y x))(y x)dt. 2. Demostrar que si F C 1 (IR n ),

Más detalles

c j (x) 0 j D c j (x) = 0 j I

c j (x) 0 j D c j (x) = 0 j I INTRODUCCIÓN A LA OPTIMIZACIÓN 1. Introducción 1.1. Generalidades. Dado un conjunto X y una función f : X R (la funciónobjetiva), se desea determinar x X tal que, para todo x X valga f(x) f(x ). La variable

Más detalles

Hipógrafo - Epígrafo. Definición: Sea f : X IR con X IR n convexo. El hipógrafo de f es el conjunto. El epígrafo de f es el conjunto

Hipógrafo - Epígrafo. Definición: Sea f : X IR con X IR n convexo. El hipógrafo de f es el conjunto. El epígrafo de f es el conjunto Hipógrafo - Epígrafo Definición: Sea f : X IR con X IR n convexo. El hipógrafo de f es el conjunto H f = {(x, k) x X, k IR, k f (x)} El epígrafo de f es el conjunto E f = {(x, k) x X, k IR, k f (x)} Nota:

Más detalles

MATEMATICAS III (Lic. en Economía. 01/12/04)

MATEMATICAS III (Lic. en Economía. 01/12/04) Departamento de Métodos Cuantitativos en Economía y Gestión Universidad de Las Palmas de G.C. MATEMATICAS III (Lic. en Economía. 01/12/04 1. El dominio de la función f(x, y = ln [ (x 2 y(x 1 2] es un conjunto:

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Cálculo I Curso 2016/17 19 de junio de 2017 Soluciones a los ejercicios del examen final 1) Se considera la función f : [0, ) R definida por { 1 + x(ln(x) 1) si x > 0, f(x) = 1 si x = 0. (a) Probar que

Más detalles

Optimización con restricciones de desigualdad. Yolanda Hinojosa

Optimización con restricciones de desigualdad. Yolanda Hinojosa Optimización con restricciones de desigualdad Yolanda Hinojosa Contenido Optimización no lineal con restricciones de desigualdad. Condiciones necesarias y suficientes de óptimo Análisis de sensibilidad.

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9 Soluciones a los ejercicios propuestos: Matemáticas III. Curso 10 11 9 Tema 9 1. Consideremos el problema min F x, ys.a.:gx, y = b. Siendo F y g funciones con derivadas parciales continuas en IR. Supongamos

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es.

Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es. Método lagrangiano. En el método de Jacobi, sea que el vector Λ represente los coeficientes de sensibilidad; esto es Entonces, Λ = Y0 J 1 = f g f Λ g = 0 Esta ecuación satisface las condiciones necesarias

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

1. El sistema: F(x,y,z) = =

1. El sistema: F(x,y,z) = = > 1. El sistema: F(x,y,z) = = Define implícitamente a la función (y, z) =f(x) en un entorno del punto x0=1. Encuentre la ecuación EXPLICITA de la recta tangente a la curva definida por f en el punto x0.

Más detalles

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre

MATEMATICAS III (Lic. en Economía. 14/07/04) Convocatoria adelantada de Septiembre Departamento de Métodos Cuantitativos en Economía y Gestión Universidad de Las Palmas de G.C. MATEMATICAS III (Lic. en Economía. 14/7/4) Convocatoria adelantada de Septiembre 1. (*) Sea f(x, y) : { ax

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 7 de febrero de 008 1. Definiciones básicas Sean a, b puntos de R n (donde n N) con coordenadas: a = (a 1, a,, a n ); b = (b 1, b,, b n ) Se define la distancia euclídea entre

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

1. Sensibilidad en caso de restricciones de igualdad

1. Sensibilidad en caso de restricciones de igualdad FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57B Optimización No Lineal. Semestre 2007-1 Profesor: Héctor Ramírez C. Auxiliar: Oscar Peredo. Clase Auxiliar #4 Análisis de Sensibilidad en Optimización

Más detalles

Tema 4 Funciones convexas y optimización convexa

Tema 4 Funciones convexas y optimización convexa Tema 4 Funciones convexas y optimización convexa José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 4 Repaso de algunos resultados sobre optimización de funciones.

Más detalles

Material para exámen final

Material para exámen final Cálculo 3, FAMAT-UG, aug-dic, 2006 Material para exámen final Fecha del exámen: 5 dic, 2006 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Clase 5: Multiplicadores de Lagrange

Clase 5: Multiplicadores de Lagrange OPT Clase 5: Multiplicadores de Lagrange 1 Clase 5: Multiplicadores de Lagrange Ignacio Ramírez 29 de agosto de 2016 1. Introducción Consideremos un problema con restricciones, en principio de igualdad,

Más detalles

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3 CÁLCULO III (05) 0/06/09 a Estudie la curva de ecuación vectorial t t r(t) =,, + t + t tomando en cuenta: dominio, cortes con los ejes, signo, simetrías, asíntotas, puntos asintóticos, tangentes, puntos

Más detalles

Licenciatura en Administración y Dirección de Empresas

Licenciatura en Administración y Dirección de Empresas Licenciatura en Administración y Dirección de Empresas Programación Matemática 19 de junio de 006 Ejercicio 1 3 pt. Considera la función fx, y = x y en la región factible R = {x, y R : x 1 + y 1; y x 1

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN

TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN TEMA 12 INTRODUCCIÓN A LA OPTIMIZACIÓN Preparación y Requisitos Objetivos Distinguir extremos locales de globales Utilizar las condiciones necesarias y/o suficientes para calcular los extremos de funciones

Más detalles

Optimización Clásica. Yolanda Hinojosa

Optimización Clásica. Yolanda Hinojosa Optimización Clásica Yolanda Hinojosa Contenido Optimización no lineal sin restricciones. Condiciones necesarias y suficientes de óptimo Optimización no lineal con restricciones de igualdad. Condiciones

Más detalles

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para:

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para: Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemática Listado 1 Cálculo III (2025) PLEV 2018 1. Hallar adherencia, interior, conjunto de puntos de acumulación

Más detalles

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29

Optimización lineal. Diego A. Patino. 2 de septiembre de Pontificia Universidad Javeriana 1/ 29 Optimización lineal Diego A. Patino Pontificia Universidad Javeriana 2 de septiembre de 2016 1/ 29 Introducción Formulación del problema Herramientes del análisis convexo Formas de las restricciones 2/

Más detalles

Se desea resolver el problema. P : mín f(x) (5.1)

Se desea resolver el problema. P : mín f(x) (5.1) Capítulo 5 Teoría Lagrangiana 5.1. Condiciones para problemas con restricciones de igualdad. Se desea resolver el problema P : mín f(x) (5.1) s.a : h i (x) = 0 i = 1, 2..., m donde f : IR n IR y h i :

Más detalles

Ejercicios recomendados: Cálculo III

Ejercicios recomendados: Cálculo III Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Método de Multiplicadores de Lagrange: Una Versión Animada.

Método de Multiplicadores de Lagrange: Una Versión Animada. Método de Multiplicadores de Lagrange: Una Versión Animada. José D. Flores, PhD. Professor of Mathematics The University of South Dakota jflores@usd.edu Noviembre 2004 Abstract Resúmen: En este trabajo

Más detalles

Discusión de sistemas

Discusión de sistemas Discusión de s 3x + y z = 1 1. Discutir según los valores del parámetro k el x y + z = 3 kx + 5y 4z = 1 x + my + z = m +. Discutir según los valores del parámetro m el x + y + mz = (m + 1) mx + y + z =

Más detalles

Introducción a la Programación Matemática. Yolanda Hinojosa

Introducción a la Programación Matemática. Yolanda Hinojosa Introducción a la Programación Matemática Yolanda Hinojosa Contenido Planteamiento general de un problema de programación matemática. Convexidad. ANEXO: Derivadas Sucesivas. Fórmula de Taylor. Clasificación

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas II. Junio de 2011. Apellidos: Nomre: DNI: Titulación: Grupo: DURACIÓN DEL EXAMEN: 2h NO se permite el uso de calculadoras.

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones

1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones Capítulo 2 Funciones de varias variables. Diferenciabilidad 1. Derivadas direccionales y derivadas parciales En este apartado generalizaremos la noción de derivada introducida para las funciones reales

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

Soluciones de los ejercicios del primer examen parcial

Soluciones de los ejercicios del primer examen parcial Matemáticas III (GIC, curso 2015 2016) Soluciones de los ejercicios del primer examen parcial EJERCICIO 1. Determina en qué ecuación se transforma la ecuación en derivadas parciales z yy + 3z xy + 2z xx

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

PROGRAMACIÓN LINEAL ENTERA MULTIOBJETIVO Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela

PROGRAMACIÓN LINEAL ENTERA MULTIOBJETIVO Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela 15 de Febrero de 2017 PROGRAMACIÓN LINEAL ENTERA MULTIOBJETIVO Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Teoría de Toma de Decisiones José Luis Quintero

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Subsección de Matemáticas Esquemas teóricos de la asignatura de las licenciaturas en Economía

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función

Más detalles

Clase 8 Nociones Básicas de Convexidad

Clase 8 Nociones Básicas de Convexidad Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 8 Nociones Básicas de Convexidad ICS 1102 Optimización Profesor : Claudio Seebach Apuntes

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY

RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY 25 de Junio de 2012 RESOLUCIÓN DE MODELOS DE PROGRAMACIÓN ENTERA MÉTODOS DE CORTE CORTES DE GOMORY Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Programación

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Variedades diferenciables

Variedades diferenciables Capítulo 10 Variedades diferenciables 1. Variedades diferenciables en R n A grandes rasgos, una variedad diferenciable es un conjunto que, localmente, es difeomorfo al espacio euclideano. En este capítulo

Más detalles

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal

CAPÍTULO 2 PROGRAMACIÓN NO LINEAL. Programación No Lineal CAPÍTULO 2 PROGRAMACIÓN NO LINEAL Programación No Lineal Capítulo 2: Programación No Lineal mín (ó máx)f(x) s.a. x S R n No existe un método que permita resolver cualquier problema de programación no lineal.

Más detalles

Análisis de Sensibilidad de los Resultados

Análisis de Sensibilidad de los Resultados Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 22 Análisis de Sensibilidad de los Resultados ICS 02 Optimización Profesor : Claudio Seebach

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

PROGRAMACIÓN MATEMÁTICA

PROGRAMACIÓN MATEMÁTICA PROGRAMACIÓN MATEMÁTICA TEMA 1. INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA. CONJUNTOS CONVEXOS. CONVEXIDAD DE UNA FUNCIÓN. PLANTEAMIENTO FORMAL DEL PROBLEMA DE PROGRAMACION MATEMATICA. - Función Objetivo:

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo.

). Derivando e igualando a cero: u (x) = 0. x = 4 y = 4. 2 La segunda derivada: u (x) = u (4) = < 0, luego en 18 el punto (4,4) hay un máximo. TEMA.- OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD El problema consiste en optimizar una función de n variables z = f(x, x,..., x n ) sujeta a las m condiciones: g (x, x,..., x n ) = b g (x, x,..., x n

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

1. Sea g(x, y) =. Determine, la Derivada Direccional de la función compuesta g(g(x, y),g(x, y)) en el punto (2,1) en la dirección tangente a la curva C definida implícitamente por g(x, y)=0 en el punto

Más detalles

Clase 6: Multiplicadores de Lagrange II

Clase 6: Multiplicadores de Lagrange II ONO Clase 6: Multiplicadores de Lagrange II 1 Clase 6: Multiplicadores de Lagrange II Ignacio Ramírez 31 de agosto de 2016 Estos apuntes son preliminares y en buena parte están incompletos, pero sirven

Más detalles

Valores extremos de una función

Valores extremos de una función Valores extremos de una función Puntos crí5cos Máximos y mínimos Mul5plicadores de Lagrange Lilia Meza Montes Ins5tuto de Física BUAP Una variable: Máximos y mínimos donde la derivada se anula y =0 =0

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

9. Diferenciación de funciones reales de varias variables reales

9. Diferenciación de funciones reales de varias variables reales 9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +

Más detalles

Diez ejemplos de clasificación de puntos críticos cuando el hessiano es nulo.

Diez ejemplos de clasificación de puntos críticos cuando el hessiano es nulo. Diez ejemplos de clasificación de puntos críticos cuando el hsiano nulo. 1. Consideramos el campo calar f(x, y) = x 2 y 3 definido sobre R 2. Su gradiente f(x, y) = ( 2xy 3, 3x 2 y 2), y los puntos críticos

Más detalles

Multiplicadores de Lagrange y dualidad

Multiplicadores de Lagrange y dualidad Multiplicadores de Lagrange y dualidad Problemas con solo restricciones de igualdad Sea x* un mínimo local y regular ( : son linealmente independientes), entonces existen tales que: Interpretación y ejemplos.

Más detalles

Unidad didáctica 1. Introducción a las funciones de varias variables 9. Objetivos de la Unidad... 11

Unidad didáctica 1. Introducción a las funciones de varias variables 9. Objetivos de la Unidad... 11 ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a las funciones de varias variables 9 Objetivos de la Unidad... 11 1. Conceptos básicos de topología en R n... 12 1.1.

Más detalles

10. Aplicaciones del cálculo diferencial.

10. Aplicaciones del cálculo diferencial. 10 Aplicaciones del cálculo diferencial 101 Teorema de la función implícita Habitualmente, estamos acostumbrados a trabajar con funciones denidas de forma explícita, es decir, tales que la variable dependiente

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Tema 5 Aplicaciones del cálculo diferencial

Tema 5 Aplicaciones del cálculo diferencial Tema 5 Aplicaciones del cálculo diferencial 1. APLICACIONES EN UNA VARIABLE 1.1. Extremos relativos. Proposición 1.1: Monotonía Sea f : [a, b] R continua en [a, b] y derivable en (a, b), entonces: (1)

Más detalles

2. Encuentra y analiza TODOS los puntos críticos de la función

2. Encuentra y analiza TODOS los puntos críticos de la función Nombre: Matrícula: Indicaciones: Este quiz consta de 5 reactivos, cada uno con un valor de 20 puntos. Cada ejercicio debe tener procedimiento ordenado y completo que justifique adecuadamente la respuesta

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

Optimización estática

Optimización estática Capítulo 5 Optimización estática 5.1. Conceptos básicos La teoría de optimización clásica o programación matemática está constituida por un conjunto de resultados y métodos analíticos y numéricos enfocados

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1. CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1. CÁLCULO DIFERENCIAL EN VARIAS VARIABLES TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES 11 CONCEPTOS BÁSICOS Definición La norma de un vector x =

Más detalles

Powered by TCPDF (

Powered by TCPDF ( Powered by TCPDF (www.tcpdf.org) Análisis Matemático II - Curso 2018 Nota sobre formas cuadráticas y aplicación al análisis de extremos de una función Breve resumen acerca de las formas cuadráticas Necesitamos

Más detalles

Multiplicadores de Lagrange

Multiplicadores de Lagrange Funciones de R n en R 1 Multiplicadores de Lagrange Para entender el método de los multiplicadores de Lagrange ilustraremos las ideas con un ejemplo Ejemplo Sea f : R 2 R dada por fx, y) = x + 1) 2 + y

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

S-25: Extremos Absolutos

S-25: Extremos Absolutos S-25: Extremos Absolutos P3) Estudia los extremos absolutos y relativos de la función f x, y = x 4 + xy 2 y 3 en el conjunto A = x, y R 2 : y 2, y x 2 Solución Frontera de A y 2 Interior de A A y x 2 2

Más detalles

Economía Matemática. Martín Brun - Diego Fernández - Mijail Yapor. Agosto - Diciembre, 2016

Economía Matemática. Martín Brun - Diego Fernández - Mijail Yapor. Agosto - Diciembre, 2016 Martín Brun - Diego Fernández - Facultad de Ciencias Económicas y de Administración - UdelaR Agosto - Diciembre, 2016 Índice 1 Programa 2015 2 Bibliografía 3 Problemas de Optimización: comentarios iniciales

Más detalles

Conjuntos y funciones convexas

Conjuntos y funciones convexas Conjuntos y funciones convexas Un conjunto X R n se dice convexo si para todo par de puntos x 1 y x 2 en X, λ x 1 + ( 1- λ) x 2 X, para todo λ [0,1] Qué significa esto geométricamente? Un punto λ x 1 +

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3 Universidad Nacional de Colombia Departamento de Matemáticas 2015555- Álgebra Lineal Básica - Grupo Taller (1) Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio

Más detalles