Capítulo 6 Esfuerzos de contacto
|
|
|
- Emilia Torres Santos
- hace 9 años
- Vistas:
Transcripción
1 7/0/009 Capítulo 6 Esfuezos de contacto Pofeso: Libado Vanegas Diseño I acultad de Ingenieía Mecánica Univesidad Tecnológica de Peeia de octube de 009 Esfuezos de contacto: casos típicos Los esfuezos de contacto ocuen cuando se tansmiten cagas a tavés de supeficies que pesentan contactos puntuales o a lo lago de una línea Líneas de contacto Puntos de contacto
2 7/0/009 Elasticidad áeas - esfuezos Tes tipos de contacto (a) Convexo - convexo (b) Convexo - cóncavo (c) Convexo - plano
3 7/0/009 Esfuezos de Hetz Los esfuezos de contacto tatados en este capítulo se conocen como esfuezos Hetzianos, debido al investigado Hetz (88) Condiciones: Las cagas aplicadas sobe los cuepos cean en la zona de contacto sólo defomaciones elásticas sujetas a la ley de Hooke Cagas nomales a las supeficies de contacto, en eposo o en odadua pua Mateiales homogéneos e isótopos El áea de contacto es muy pequeña compaada con la supeficie de los cuepos que se tocan El contono de la supeficie de contacto es en geneal una elipse. En casos paticulaes la supeficie de contacto toma foma cicula o ectangula. Casos estudiados: esfea - esfea (huella cicula) y cilindo - cilindo (huella ectangula) Elipse Cículo Rectángulo Contacto esfea - esfea Cóncava Plano Distibución de esfuezos semi-elipsoidal Convexa a (a) Elementos esféicos en contacto bajo la acción de una fueza de compesión (b) Áea de contacto cicula de adio a, y distibución del esfuezo de compesión a S smax ( ( 0.75 / / a (/ / ) ( ( pcmax ( ) ( ) ( ) 9 z a 7 Si = = 0. (po ejemplo, aceo) / E / E a 0.88 / / a S 0. 4 smax ) / / 0.66 (/ E / E z 0. 6a
4 7/0/009 Contacto cilindo - cilindo Cóncavo Plano Convexo b b w Distibución de esfuezos: pisma semi-elíptico (a) Elementos cilíndicos en contacto bajo la acción de una fueza de compesión (b) Áea de contacto ectangula de ancho w, y distibución del esfuezo de compesión Si = = 0. (po ejemplo, aceo) w 4 b 4 wb ( ( / / b ( / / ( w.5 b / E / E / / 4 / / 0.59 wb b(/ E / E ) S smax z 0. 4w atiga supeficial Algunas gietas se desaollan en el inteio, ya que el esfuezo cotante máximo ocue a cieta pofundidad (z ) de la supeficie La esistencia a la fatiga supeficial existe paa vida finita Ejemplo: S c@0 8 Supeficies en contacto Gieta saliendo a la supeficie, debido a la acción continua de los esfuezos y el lubicante atapado en ella omaxl/index.php?site=balz ERS_EN_suface_fatigue /images/cat/images/ 5/5_5/ls40_44.jpg t+epaiwelding&lang=en entwoks&lang=en 4
5 7/0/009 Desgaste de los elementos de máquinas El odamiento de las supeficies en contacto genealmente va acompañado de deslizamiento elativo: Resbalamiento po sobecaga Deslizamiento geomético Deslizamiento elástico Deslizamiento elástico Deslizamiento geomético Plazo de sevicio de las máquinas La vida útil de muchas piezas de máquinas queda estingida po el desgaste de sus supeficies de tabajo. Po ejemplo, debido a: atiga supeficial Desgaste po adheencia Desgaste abasivo Desgaste coosivo Desgaste po sobecaga Peíodos de tabajo Peíodo de asentado Peíodo de explotación o tabajo nomal Peíodo de desgaste catastófico (a) Peíodo de Asentado (b) Peíodo de Tabajo Nomal igua 6.8 Pogeso del desgaste en elementos de máquinas 5
6 7/0/009 Algunos factoes que indicen en el desgaste La velocidad de desgaste depende de: Los mateiales de las supeficies en contacto Magnitud y caácte de la caga Velocidad de deslizamiento Lubicación Refigeación Actividad física y química del medio Algunos mateiales antificción son: Babbit Bonce Hieo fundido Cietas fundiciones plásticas Vías constuctivas paa aumenta la vida útil La diección del flujo de las fuezas debe se tal que el mayo volumen de la pieza tome pate en la pecepción de éstas. La foma de la pieza debe asegua la tansmisión de la caga po toda la supeficie de contacto poyectada, peo sólo po ésta. Al constui una pieza, deben evitase las tansiciones buscas, es deci, cambios buscos en la foma (ya que son sitios de concentación de esfuezos, pejudiciales con cagas cíclicas). La esistencia mecánica debe se en lo posible igual en todas sus secciones. Conviene sepaa el flujo de fueza de la zona popensa a la concentación de la caga. Esto tiene el fin de distibui unifomemente el flujo de fueza po el volumen de la pieza. Distibui unifomemente la fueza po toda la supeficie de contacto, paa favoece la exclusión de los sitios de posible concentación de esfuezos 6
7 7/0/009 Bibliogafía DOBROVOLSKI, V.. Elementos de Máquinas. Moscú: MIR, 98. Tecea edición. NORTON, Robet L.. Diseño de Máquinas. México: Ed. Pentice-Hall (Peason), 999. AIRES, V. M.. Diseño de Elementos de Máquinas. México: Editoial Limusa, ª Reimpesión veifica 7
CAPÍTULO 6 ESFUERZOS DE CONTACTO
CAPÍTULO 6 ESUERZOS DE CONTACTO 6. INTRODUCCIÓN Los esfuezos de contacto ocuen en elementos de máquinas cuando se tansmiten cagas a tavés de supeficies que pesentan contactos puntuales o a lo lago de una
IES Menéndez Tolosa Física y Química - 1º Bach Energía potencial y potencial eléctrico I
IS Menéndez Tolosa Física y uímica - º Bach negía potencial y potencial eléctico I Calcula el potencial de un punto de un campo eléctico situado a una distancia de una caga y a una distancia 4 de una caga.
a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación.
FUERZAS 1- NAURALEZA DE LAS FUERZAS a) Concepto Es toda acción de capaz de cambia el estado de eposo o movimiento de un cuepo, o de poduci en el alguna defomación. b) Caácte vectoial Los efectos de una
3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss
Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico
6.1. SUPERFICIE PRISMÁTICA Y PRISMA
6 6.1. SUPERFICIE PRISMÁTICA Y PRISMA 6.. SUPERFICIE PIRAMIDAL Y PIRÁMIDE 6.. CUERPOS REDONDOS. 6.4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemina áeas de supeficies. Detemina volúmenes de sólidos. 14 Inicialmente
APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO
EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía
El método de las imágenes
El método de las imágenes Antonio González Fenández Dpto. de Física Aplicada III Univesidad de Sevilla Sinopsis de la pesentación El teoema de unicidad pemite enconta soluciones po analogías con poblemas
Intensidad de campo eléctrico Se define como la fuerza que actúa por unidad de carga. Es una magnitud vectorial. F q E k q d se mide en N C
Campo eléctico Campo eléctico es la pate el espacio en la ue apaecen fuezas e atacción o e epulsión ebio a la pesencia e una caga. Caacteísticas e las cagas: Hay os tipos e cagas: positivas y negativas.
FUENTES DEL CAMPO MAGNETICO
Auto: Oc. Viginia Sepúlveda Física - Fac. Ciencias Natuales - Sede Telew FUENTES DEL CAMPO MAGNETCO Se tata aquí de estudia las fuentes o causas del campo magnético, su oigen. Las pimeas fuentes de campo
Movimiento de sólidos en Fluidos: Sedimentación.
Moimiento de sólidos en Fluidos: Sedimentación. Física Ambiental. Tema 8. Tema8. FA (pof. AMOS) 1 Tema 8.- Moimiento de sólidos en Fluidos: Sedimentación. Moimientos de objetos en fluidos eales. esistencia
Campo magnético. Introducción a la Física Ambiental. Tema 8. Tema 8.- Campo magnético.
Campo magnético. ntoducción a la Física Ambiental. Tema 8. Tema8. FA (pof. RAMO) 1 Tema 8.- Campo magnético. Campos magnéticos geneados po coientes elécticas: Ley de Biot- avat. Coientes ectilíneas. Ciculación
Procesos de Difusión
Pocesos de Difusión Física Ambiental. ema 4. ema 4. FA Pof. RAMOS ema 4.- " Pocesos de Difusión" Conducción del calo: ley de Fouie, conductividad témica. Convección del calo: ey de enfiamiento de Newton.
ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES
Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática
Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:
Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp
Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de
MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando
MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas
Física 2º Bacharelato
Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna
CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO
CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un
Ecuaciones del movimiento de un fluido
Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles
CAPÍTULO II LEY DE GAUSS
Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio
INDICE. Fuerza sobre una carga situada en un campo eléctrico. Concepto de intensidad de campo.
Campo eléctico 0 de 12 INDICE Repaso Ley de Coulomb Unidades. Fueza sobe una caga situada en un campo eléctico. Concepto de intensidad de campo. Pincipio de supeposición. Enegía potencial electostática
Problema resuelto. Cilindros de pared gruesa
oblema esuelto Cilindos de paed guesa Mecánica de mateiales-cilindos de paed guesa En un laboatoio de pueba de nuevos combustibles, se tiene un tanque con un gas pesuizado. Como el gas es altamente coosivo
X I OLIMPIADA NACIONAL DE FÍSICA
X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1
Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss..
Electostática Clase 2 Vecto Desplazamiento o densidad de flujo eléctico. Ley de Gauss.. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA En cietos casos que se analizan
E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,
L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina
Campo Estacionario. Campos Estacionarios
Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos
Lección 2. El campo de las cargas en reposo: campo electrostático.
Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés
CP; q v B m ; R R qb
Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos
Columna armada del Grupo II (con forros intermedios) sometida a compresión axil y a compresión y tracción axil. Aplicación Capítulos A, B, C, D y E.
73 EJEMPLO N 13 Columna amada del Gupo II (con foos intemedios) sometida a compesión ail a compesión tacción ail. Aplicación Capítulos A, B, C, D E. Enunciado Dimensiona los codones supeioes e infeioes
CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas
ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud
Tema 1: Electrostática en el vacío
Tema : lectostática en el vacío. Caga eléctica Le de Coulomb. Campo eléctico.3 Campo ceado po distibuciones continuas de caga.4 Le de Gauss.5 Potencial electostático.6 negía potencial electostática Masolle
Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 5/7 Potencial eléctrico
Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 5/7 Potencial eléctico La ciculación del campo
MATERIALES DIELÉCTRICOS O AISLANTES
MATERIALES DIELÉCTRICOS O AISLATES 1.- Intoducción Idealmente son unos mateiales donde todos los electones de valencia de los átomos o moléculas, que se aglutinan paa foma el agegado macoscópico (sólido,
Electrostática. Campo electrostático y potencial
Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes
Física y Química 1ºBto. Profesor Félix Muñoz
1. Tes cagas de + 3 µc, µc y + 1 µc se encuentan en el vacío situadas espectivamente en los puntos A (- 3,0), O (0, 0) y B (3, 0). Halla el potencial eléctico en el punto P (0, ). Las longitudes están
Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el
Modelo 2014. Pegunta 3A. El campo electostático ceado po una caga puntual q, situada en el 9 1 oigen de coodenadas, viene dado po la expesión: E = u 2 N C, donde se expesa en m y u es un vecto unitaio
FÍSICA II: 1º Curso Grado de QUÍMICA
FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula
Rodamiento esférico liso Catálogo General
Rodamiento esféico liso Catálogo Geneal A Descipciones de poductos Tipos y caacteísticas... A21-2 Caacteísticas del odamiento esféico liso.. A21-2 Estuctua y caacteísticas... A21-2 Tipos de odamiento esféico
Solución al examen de Física
Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?
FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE
UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 223 EJERCICIOS Cuepos de evolución 1 Cuáles de las siguientes figuas son cuepos de evolución? De cuáles conoces el nombe? a) b) c) d) e) f) g) h) i) Todos son cuepos de evolución, excepto
GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones
CLASIFICAR POLIEDROS. Nombre: Curso: Fecha:
CLASIICAR POLIEDROS OBJETIVO 1 Nombe: Cuso: eca: POLIEDROS poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Los polígonos que limitan al poliedo se llaman caas. Los lados de las
Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.
Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza
Ecuaciones generales Modelo de Maxwell
Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de
Trabajo y Energía I. r r = [Joule]
C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando
q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los
Ley de Fourier. dt k dy. y = Y. t < 0. t = 0. x y = 0 T 0 T 1. t > 0. y Q
Ley de Fouie y = Y t < 0 y x y = 0 t = 0 0 0 Q t > 0 ( t, y 0 Q t y ( 0 y Q Q A* t Y Q ( 0 k A* t Y q d k dy CONDUCCION UNIDIMENSIONAL EN ESADO ESACIONARIO Consideemos la conducción de calo a tavés de
De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos
PROBLEMARIO TEORÍA ELECTROMAGNÉTICA. Samuel Rosalío Cuevas
PROBLEMARIO TEORÍA ELECTROMAGNÉTICA Samuel Rosalío Cuevas 1.- Sean dos cagas puntuales de 1mC y mc localizadas en (3,, 1) m y ( 1, 1, 4) m, espectivamente. Calcula la fueza eléctica sobe una caga de 10
MOMENTOS DE INERCIA. x da
Capítulo V MOMENTOS DE NERCA 8. NTRODUCCÓN En este capítulo desaollaeos un étodo paa deteina el oento de inecia de un áea de un cuepo que tenga una asa específica. El oento de inecia de un áea es una popiedad
TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS
Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5
CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?
UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción
PROBLEMAS DE DINÁMICA
PROBLEMAS DE DINÁMICA 1- Detemina el módulo y diección de la esultante de los siguientes sistemas de fuezas: a) F 1 = 3i + 2j ; F 2 = i + 4j ; F 3 = i 5j ; b) F 1 = 3i + 2j ; F 2 = i 4j ; F 3 = 2i c) F
SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4
SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con
CLASE 1. Fuerza Electrostática LEY DE COULOMB
CLASE Fueza Electostática LEY DE COULOMB FQ Fisica II Sem.0- Definiciones Qué es ELECTRICIDAD?. f. Fís. Popiedad fundamental de la mateia que se manifiesta po la atacción o epulsión ente sus pates, oiginada
Ayudantía 11. Problema 1. Considere un cascarón esférico de radio interno a y radio externo b con polarización
Pontificia Univesidad Católica de Chile Facultad de Física FIS1533 Electicidad y Magnetismo Pofeso: Máximo Bañados Ayudante: Felipe Canales, coeo: [email protected] Ayudantía 11 Poblema 1. Considee un cascaón
Rodamientos de rodillos cruzados
Rodamientos de odillos cuzados RODAMIENOS DE RODILLOS CRUZADOS CARACERÍSICAS Alta igidez y capacidad de caga. Movimiento suave. Sopota cagas en todas diecciones al mismo tiempo. Ahoo de espacio. Vaias
Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones
Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
PROPIEDADES GENERALES DE ANTENAS
PROPIEDADES GENERALES DE ANTENAS ANTENAS MAGNÉTICAS Y ELÉCTRICAS 1 ANTENAS LINEALES Dipolo eléctico hetziano: antena lineal pequeña en vacío (de longitud ). L E λ E H ILe cos( θ ) j j( ωt β) = jβ + ωε
