|
|
|
- Rosario Zúñiga Toledo
- hace 9 años
- Vistas:
Transcripción
1 de 5 Manizales, 5 de Noviembre de 03. Determine una ecuación para la recta que pase por las coordenadas. Con base en la información suministrada realizo el procedimiento para a obtención de la ecuación solicitada., 6 3, x, 3, x,, 6 Reemplazando apropiadamente las coordenadas en la ecuación para cálcular la pendiente: m x x Con el valor de la pendiente una da las dos coordenadas, podre reemplazar en la función pendiente despejar, para obtener la ecuación solicitada: m x x x 9 m 5, 3, 9 5 x 3 9 x 3 5 x x x 7 5 9x x 78 9x x 5 5
2 de 5 Manizales, 5 de Noviembre de 03. Determine una ecuación para la parábola que pase por las coordenadas,. Con base en la información solicitada, reemplazo cada una de las coordenadas en la ecuación. 0, 4 6,, 0 ax bx c a 0 b 0 c 4 a b c a b c Procederé a numerar las ecuaciones: Reemplazo el valor de c 4 36a 6b c 44a b c 0 3 c 4 en las ecuaciones a b a b 36a 6b ab 6 7ab 6 44ab 6 7a a 7 6 Reemplazando el valor de a 6 c 4 en la ecuación. 3.
3 36a 6b c 3 de 5 Manizales, 5 de Noviembre de b b 4 6b 6 4 6b b 6 Finalmente, despues de haber obtenido el valor de todas las incognitas: x x 3. (Punto de equilibrio) Áurea Manuel Ortuño determinan que el punto de equilibrio del mercado para su producto ocurre cuando el volumen de ventas alcanza $70,000. Los costos fijos son $30,000 cada unidad se vende en $40. Determine el costo variable por unidad. Con base en la información suministrada: Punto de equilibrio $70,000 para el volumen de ventas. Costos fijos $300,000 Cada unidad se vende a $40. Si hacemos la relación algebraica de costos sería de forma lineal: Costos Costos CostosVariables CostosFijos CostosFijos Ingresos 40 xx : unidades vendidas En el punto de equilibrio las magnitudes de los costos los ingresos se hacen iguales x x 40
4 4 de 5 Manizales, 5 de Noviembre de 03 x 500 Lo anterior significa que el punto de equilibrio se presenta al vender x 500 unidades. Reemplazando: Costos Costos CostosVariables CostosFijos CostosFijos CostosVariables K * K K K K 80 Lo que significa un costo variable de $80 por unidad 4. (Cercado) Un granjero tiene 500 ardas de cerca con la cual delimitará un corral rectangular. Cuál es el área máxima que puede cercar? Con base en la información suministrada: 500 d de cerca disponible Establezco de forma hipotética que el corral sería rectángular con ancho de x ardas largo de ardas. Con base en la figura propuesta en relación a las dimensiones sugeridas: El perímetro del corral sería:
5 5 de 5 Manizales, 5 de Noviembre de 03 x 500 El área que encerraría el corrar se podría calcular con: Area x Tengo dos ecuaciones con dos incognitas, despejare la variable en la primer ecuación: Reemplazando en despeje de x x 50 x en la ecuación Area x Area x 50 x Area 50x x Hemos obtenido una expresión polinómica de grado dos, la cual es cóncava hacia abajo por ende posee un máximo en el lugar donde se presenta el vértice. Procedo a calcular la magnitud del vértice: x v x v b a 50 x 5 v Con base en la coordenada del vértice en x 5, procedo a evaluar la función del área en éste valor para obtener la magnitud del área máxima: Area 50x x Area Areamáxma 565ardas :
1 de 1 Manizales, 9 de Agosto de 01 1. (VALE POR UN PUNTO) El costo para producir un par de zapatos es de $5700 y depende de la materia prima y de la mano de obra. Si el costo de la materia prima es el
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
Cuaderno de Actividades 4º ESO
Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano)
Rectas y Parábolas Prof. Gabriel Rivel Pizarro Sistemas de coordenadas rectangulares (Plano Cartesiano) El sistemas de coordenadas rectangulares se representa en un plano, mediante dos rectas perpendiculares.
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011
1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Funciones y gráficas. 3º de ESO
Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable
Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas
REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.
Introducción al Análisis Matemático
La guia resuelta Introducción al Análisis Matemático Para Ciencias Económicas A = A1 + A2 = b f ( x) dx + g( x) dx a c b Por consultas comunicate al 4582 0485 o sino enviá un mail a [email protected] 1
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva
Inecuaciones en dos variables
Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
13 FUNCIONES LINEALES Y CUADRÁTICAS
3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante
TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel
TIPOS DE FUNCIONES Repasar los conceptos de dominio, rango, gráfica, elementos esenciales y transformaciones de las funciones: lineal, cuadrática, racional, trigonométrica, exponencial y logarítmica. FUNCIONES
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que
SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN GRÁFICA Y CLASIFICACIÓN
SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN GRÁFICA Y CLASIFICACIÓN (Representación gráfica de sistemas de dos ecuaciones lineales con dos incógnitas) La gráfica de una ecuación de
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones
IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A
IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina
Tema Contenido Contenidos Mínimos
1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los
Sistemas de Ecuaciones Lineales con Dos Incognitas
PreUnAB Sistemas de Ecuaciones Lineales con Dos Incognitas Clase # 9 Agosto 2014 Sistemas de Ecuaciones Lineales con dos Incógnitas Definición Se llama sistema de ecuaciones a un conjunto de dos o más
TEMARIO EXAMEN MATEMÁTICA SÉPTIMO AÑO BÁSICO 2012 3 DE DICIEMBRE
SÉPTIMO AÑO BÁSICO 2012 NÚMEROS Ejercicios combinados con enteros, con y sin paréntesis. Solución de problemas con enteros Solución de problemas, aplicando proporción directa e inversa. Propiedades de
EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA
EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a
Funciones lineales y cuadráticas
10 Funciones lineales y cuadráticas Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas
TEMA 8 GEOMETRÍA ANALÍTICA
Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,
LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:
LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto
Escribe expresiones y ecuaciones
A NOMRE FECHA PERÍODO Escribe expresiones y ecuaciones (páginas 150 152) Los problemas del mundo fuera del salón de clases, por lo general, se dan en palabras. Uno traduce estos problemas en expresiones
Veamos sus vectores de posición: que es la ecuación vectorial de la recta:
T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,
Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal
Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha
10 Funciones polinómicas y racionales
8966 _ 009-06.qd 7/6/08 : Página 9 0 Funciones polinómicas racionales INTRDUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos puntos por
VOCABULARIO HABILIDADES Y CONCEPTOS
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9.doc 1 DE 7 Nombre: Fecha: VOCABULARIO A. Valor absoluto de un número complejo B. Eje de simetría C. Completar el cuadrado D. Número complejo E. Plano de números
Ecuaciones de segundo grado
Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones
Ejercicios Resueltos de Derivadas y sus aplicaciones:
Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)
Las funciones polinómicas
Las funciones polinómicas 1 Las funciones polinómicas Una función polinómica es aquella que tiene por expresión un polinomio. En general, suelen estudiarse según el grado del polinomio: Las funciones afines
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
Problemas Tema 1 Enunciados de problemas de repaso de 1ºBachillerato
página 1/27 Problemas Tema 1 Enunciados de problemas de repaso de 1ºBachillerato Hoja 1 1. Dados tres números reales cualesquiera r 1, r 2 y r 3, hallar el numero real x que minimiza la función D( x)=(r
TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES.
TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. Definición: Una función es una relación entre dos variables x e y de manera que a cada valor de la variable x le corresponde un único valor
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Dadas las coordenadas del punto A(, ). Hallar la ecuación de la recta (r) paralela al eje por dicho punto. Hallar la ecuación de la recta (p) paralela al eje por dicho punto. )
Preparatoria Ciclo 2015-2016
Docente: Patricia Vázquez Vázquez Página: 1 PRODUCTO CARTESIANO Resuelve los siguientes ejercicios 1.Si M={1,2,3,4},P={1,2,3,4,5,6,7,8}.Halla las parejas ordenadas que satisfagan la condición dada del
UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad
La función cuadrática
La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola
1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6
ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media
Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?
82 Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (2y - 6x + ) dy = 0 Será ésta una ecuación diferencial reducible a homogénea? Si observamos la ecuación diferencial, tenemos que 2x 4y = 0 2y 6x +
5. ECUACIONES Y FUNCIONES CUADRÁTICAS
5. ECUACIONES Y FUNCIONES CUADRÁTICAS Hemos analizado hasta el momento las ecuaciones lineales y funciones lineales. Es momento de empezar a introducirnos en las ecuaciones de grado superior. Las ecuaciones
Ecuación de la Recta
PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto
FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS
FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS En esta sección consideramos los efectos de la presión de un fluido, que actúa sobre superficies planas (lisas), en aplicaciones como las ilustradas.
Geometría Analítica Enero 2016
Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos
[email protected]!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
Programa Egresados EM-33 SOLUCIONARIO Taller 3
Programa Egresados EM-33 SOLUCIONARIO Taller 3 STALCEG003EM33-A16V1 TABLA DE CORRECCIÓN Taller 3 PREGUNTA ALTERNATIVA HABILIDAD 1 C E 3 A 4 C 5 B 6 B 7 C 8 C 9 C 10 A 11 B Comprensión 1 D 13 D 14 D 15
ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A
GEOMETRÍA ANALÍTICA CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A G U Í A E X A M E N
GEOMETRÍA ANALÍTICA: CÓNICAS
GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares
RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.
RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio
IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna
PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Polinomios de grado 2 Una ecuación cuadrática es una ecuación
Recuerda lo fundamental
8 Geometría analítica Recuerda lo fundamental Curso:... Fecha:... GEOMETRÍA ANALÍTICA PUNTO MEDIO DE UN SEGMENTO Las coordenadas del punto medio M de un segmento de extremos A y B son: A(x 1 y 1 ) B(x
CARRERA PROFESIONAL DE CONTABILIDAD SILABO
CARRERA PROFESIONAL DE CONTABILIDAD I. INFORMACIÓN GENERAL SILABO 1. Asignatura : Matemática I 2. Carrera Profesional : Contabilidad 3. Duración : 18 semanas académicas 4. Horas semanales : 04 Horas 5.
REACTIVOS MATEMÁTICAS 3
REACTIVOS MATEMÁTICAS 3 1.- Una es una igualdad en la cual hay términos conocidos y términos desconocidos. El término desconocido se llama incógnita y se representa por letras. a) Literal. b) Ecuación.
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área
Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta llamada directriz.
UNIDAD IV: LA PARABOLA. 4.1. Caracterización geométrica. 4.1.1. La parábola como lugar geométrico. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta
MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77
MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)
RESUMEN TEÓRICO DE CLASES
Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;
Explorando la ecuación de la recta pendiente intercepto
Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
Introducción. Objetivos de aprendizaje
Comunica información por medio de expresiones algebraicas Interpretación de expresiones algebraicas equivalentes para expresar el área de rectángulos Introducción Figura 1. Enchape Objetivos de aprendizaje
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se
TEMA 2: DERIVADA DE UNA FUNCIÓN
TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media
1. Ejercicios 3 ; 7 4 6, 270 75, 28
1. Ejercicios 1. Ordena de menor a mayor los siguientes números racionales y represéntalos en una recta numérica: 9 4 ; 2 3 ; 6 5 ; 7 3 ; 7 4 2. Determina, sin hacer la división de numerador por denominador,
Módulo Programación lineal. 3 Medio Diferenciado
Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
TEMA 1: Funciones elementales
MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se
Tema 1 Las Funciones y sus Gráficas
Tema Las Funciones y sus Gráficas..- Definición de Función y Conceptos Relacionados Es muy frecuente, en geometría, en física, en economía, etc., hablar de ciertas magnitudes que dependen del valor de
1. Representa en el plano los vectores: v=(2,3), u=(-1,2), w=3451.
PROBLEMAS DE VECTORES 1. Representa en el plano los vectores: v=(2,3), u=(-1,2), w=3451. 2. )Cuales son las componentes del vector de módulo 4 y argumento 301?. Sol: (2 3,2) 3. Escribe las componentes
Sistemas de ecuaciones
Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados
2. SISTEMAS DE ECUACIONES LINEALES. Introducción
2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente
MATEMÁTICAS - GRADO 11
PRUEBA DE TERCER PERÍODO DE MATEMÁTICAS - GRADO 11 1 La siguiente representación gráfica corresponde a una función, de la cual se puede AFIRMAR que Su pendiente es 3 y corresponde a una función afín creciente.
Funciones de varias variables.
Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES 1 1.- FUNCIONES. CARACTERÍSTICAS Concepto de función. Una función es una forma de hacerle corresponder a un valor x un único
CAPÍTULO IV FUERZA CORTANTE Y MOMENTO FLEXIONANTE EN VIGAS
CAPÍTULO IV FUERZA CORTANTE Y MOMENTO FLEXIONANTE EN VIGAS 4.1 CONCEPTOS BÁSICOS Este capítulo explica cómo las diversas fuerzas aplicadas a una viga llegan a producir fuerza cortante y momento flexionante
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
Potenciación de polinomios Para resolver la potencia de un monomio se deben aplicar las propiedades de la potenciación. n n n ab a b a) 6 x x 9x b) x x 8x c) Cuadrado de un binomio El cuadrado de un binomio
APLICACIONES DE LA DERIVADA I. Ejercicios a resolver en la práctica. = x + 2. Determina y clasifica los puntos o valores
UNIVERSIDAD SIMÓN BOLÍVAR Enero-Marzo 010 DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS MATEMÁTICA I (MA-1111) Fecha de publicación: 0-0-010 Contenido Tercer Parcial APLICACIONES DE LA DERIVADA I Contenidos
unidad 8 Funciones lineales
Cuando dos magnitudes son proporcionales Página Dos magnitudes son proporcionales cuando los valores de una de ellas se obtienen a partir de los de la otra, multiplicándolos por un número fijo llamado
O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.
MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en
EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164
EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación
Sistemas de inecuaciones de primer grado con dos incógnitas
SISTEMAS DE INECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS 1) (Selectividad 2005) Sea el siguiente sistema de inecuaciones: 3y 6; x 2y 4; x + y 8; x 0; y 0. Dibuje la región que definen y calcule sus
Propiedades (páginas 333 336)
A NOMRE FECHA PERÍODO Propiedades (páginas 333 336) Las propiedades son enunciados abiertos que satisfacen todos los valores de las variables. Para multiplicar una suma por un número, Propiedad 3(5 2)
Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2
Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores
Tema 4: Ecuaciones y sistemas de ecuaciones.
Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0
MICROECONOMÍA II. PRÁCTICA TEMA 5: El Modelo de Equilibrio General con Intercambio Puro
MICROECONOMÍA II Problema 1 PRÁCTICA TEMA 5: El Modelo de Equilibrio General con Intercambio Puro PRIMERA PARTE: La Caja de Edgeworth y la Curva de Contrato El conjunto de asignaciones eficientes está
