Matemáticas y Tecnología. Unidad 2 Los números racionales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas y Tecnología. Unidad 2 Los números racionales"

Transcripción

1 CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA Matemáticas y Tecnología Unidad Los números racionales Nota Al final del texto se encuentra la solución de los ejercicios de la página del libro Concepto de fracción Una fracción es una forma de expresar una parte de un objeto que se ha troceado o una parte de una determinada cantidad. Está formada por dos números colocados uno encima de otro y separados por una línea horizontal. El número de abajo, llamado denominador, indica las partes iguales que se han hecho de un objeto o cantidad. El número de arriba, llamado numerador, indica las partes del objeto o cantidad que nos interesan, las que se han cogido o las que se han dejado. Todas las partes en las que se ha dividido un objeto o una cantidad deben ser IGUALES. La figura siguiente representa una tarta que se ha dividido en ocho partes iguales. Numerador Partes de la tarta que se toman o se dejan Parte consumida (en blanco) de tarta de tarta Parte que queda (rayada) Denominador Partes iguales en las que se ha dividido la tarta Las fracciones se leen de la siguiente forma: El numerador, con los números habituales (cero, uno, dos, tres, cuatro, cinco...) El denominador, añadiendo al número la terminación -avo, excepto los denominadores del al 0 que se leen medio, tercio, cuarto, quinto, sexto, séptimo, octavo, noveno y décimo; a partir del diez se leen onceavo, doceavo, treceavo, catorceavo... El denominador de una fracción nunca puede ser cero. Cuando en un objeto o cantidad no se hace ninguna parte, siempre tenemos una parte, que es el objeto o la cantidad entera. Así pues, el es el menor número que puede aparecer en el denominador de una fracción. Página de

2 Fracción de una cantidad Ejemplo Cuánto dinero es de.0? Se dividen los.0 en partes..0 Cada parte ( de.0 ) será:. cada parte partes serán:..0 El ejercicio se resuelve con una división y una multiplicación y se expresa de la siguiente forma: de.0 ;.0 : partes. / parte;. / parte partes.0 Ejercicio Calcula el valor de x: a) de.00 x b) de.00 x c) de.000 x 0 00 Ejemplo En un viaje me he gastado. Esta cantidad supone los Con cuánto dinero salí de casa? Solución: de la cantidad con la que inicié el viaje. El denominador de la fracción () indica que el dinero del viaje se ha dividido en partes iguales. El numerador () indica el número de partes que equivalen a la cantidad gastada,. Cada una de las partes gastada será:. Por lo tanto, todo el dinero ( partes) será:.0. La forma de comprobar si el problema está bien resuelto es calculando los operaciones están bien realizadas se deberá obtener. de.0. Si todas las Página de

3 Ejercicio Calcula el valor de x: 0 a) de x 00 b) de x.0 c) de x MUY IMPORTANTE Los ejemplos anteriores corresponden a dos casos diferentes que es necesario distinguir: Primer caso. Se conoce la cantidad total y se quiere averiguar una o varias partes de esa cantidad (ejemplo ). Segundo caso. Se conoce una o varias partes de una cantidad y se quiere averiguar la cantidad total (ejemplo ). Ejercicio Calcula las cantidades desconocidas. Hay ejercicios de los dos tipos anteriores. Es necesario distinguir cuáles son de cada tipo. a) Un restaurante ha comprado litros de aceite. Al final de la primera semana ha consumido del aceite. Calcula los litros de aceite consumidos. b) Un restaurante ha consumido litros de aceite. Esta cantidad supone del aceite que había comprado. Cuántos litros de aceite compró? c) En un depósito quedan 0 litros. Esta cantidad es igual los de su capacidad. Cuál es la capacidad del depósito? d) En un depósito caben.00 litros de agua. Quedan de su capacidad. Cuántos litros quedan? e) Una familia ha gastado 0 en sus vacaciones. Esta cantidad equivale a de la cantidad presupuestada. Cuánto dinero había destinado a las vacaciones Fracciones iguales que la unidad de tarta de tarta de tarta de tarta tarta completa Un objeto completo o la cantidad total se pueden representar mediante una fracción cuyo NUMERADOR y DENOMINADOR son IGUALES. Página de

4 Fracciones mayores que la unidad La figura siguiente representa tartas divididas cada una de ellas en cinco partes iguales. El conjunto de las tres tartas se puede expresar en forma de fracción: El denominador será, ya que es el número de partes en que se ha dividido cada tarta. Cada parte obtenida es de tarta. El numerador será, que es el número de partes que hay en total. tartas de tarta Los números NATURALES pueden expresarse en forma de fracción Ejercicio a) Escribe la fracción que correspondería a las tartas anteriores en el caso de que cada una de ellas estuviese dividida en: partes partes 0 partes partes 0 partes b) Escribe en forma de fracción los siguientes números naturales: c) A qué número natural equivalen las siguientes fracciones? 0 0 Fracciones mayores que la unidad La imagen siguiente representa tartas iguales que han sido divididas en partes iguales cada una. En color blanco, los trozos consumidos y en color negro, los trozos que quedan. En total se han consumido: 9 de la primera tarta + Una tarta entera son trozos, por lo que se puede escribir: de la segunda tarta de tarta de tarta de tarta + de tarta tarta + de tarta tarta se denomina número mixto, está formado por la suma un número natural y una fracción (se ha omitido el signo +) y es otra forma de expresar fracciones mayores que la unidad. Página de

5 Las fracciones mayores que la unidad pueden expresarse en forma de número MIXTO o número NATURAL Ejercicio a) Sombrea en cada dibujo las partes necesarias para representar la fracción que se indica y escribe el número mixto a que equivale cada fracción. 9 0 b) Pinta en cada dibujo las partes necesarias para representar el número mixto que se indica y escribe la fracción a la que equivale. 0 Ejercicio Escribe la fracción a la que equivale cada uno de los siguientes números mixtos y viceversa: Fracciones equivalentes Fracciones equivalentes son aquellas que tienen el mismo valor pero sus términos son distintos. y son fracciones equivalentes porque representa la misma cantidad, la mitad de un objeto Para obtener fracciones equivalentes a una fracción dada podemos MULTIPLICAR (siempre) o DIVIDIR (a veces) el numerador y el denominador de la fracción por el MISMO número. Ejercicio Escribe los numeradores y denominadores que faltan en las siguientes parejas de fracciones equivalentes. 00 a) a) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) s) 0 t) 0 9 Página de

6 Observa las siguientes fracciones equivalentes: En las fracciones equivalentes se cumple SIEMPRE que el producto del numerador de la primera por el denominador de la segunda ES IGUAL al producto del denominador de la primera por el numerador de la segunda. Ejercicio a) Averigua si las siguientes parejas de fracciones son equivalentes entre sí 9 9 y y y y y. 0 0 Reducción de fracciones a común denominador Observa las siguientes series de fracciones equivalentes: En ambas series hay fracciones con el mismo denominador: Las fracciones denominador: y pueden ser sustituidas por fracciones equivalentes a ellas y que tengan el mismo 0 y 0 y 0 y 0 y 9 9 Esta sustitución recibe el nombre de reducción de fracciones a común denominador. Observa que los denominadores comunes (,,, 9) son múltiplos de y y que el primer denominador común de la serie, el, es el mínimo común múltiplo de y. Reducir varias fracciones a común denominador es SUSTITUIRLAS por otras fracciones EQUIVALENTES a ellas con el MISMO DENOMINADOR Para sumar y restar fracciones es obligatorio que tengan el mismo denominador. Si no es así, es obligatorio reducirlas a común denominador antes de efectuar las operaciones. Asimismo, si se quiere comparar fracciones y la diferencia entre éstas no es suficiente grande como para apreciarse a simple vista, será necesario reducirlas a común denominador para saber con certeza cuál de ellas es la mayor y cuál la menor. Página de

7 Ejemplo Cuál de estas dos fracciones, y, es mayor? 0 A simple vista es difícil saber cuál de las dos es mayor, pero si se reducen a común denominador se apreciará claramente. El denominador común que buscamos es el MCM de 0 y. Para calcularlo basta con escribir los múltiplos de uno de ellos, por ejemplo el, y ver cuál es también múltiplo de 0 (tiene que acabar en cero). Múltiplos de,,,, 0 0 también es múltiplo de 0 y es el múltiplo común a los dos más pequeño (MCM). Ahora escribimos la relación de equivalencia entre las fracciones dadas y las que buscamos: y Ahora hay que calcular los nuevos numeradores. Recuerda que la forma de obtener fracciones equivalentes de una dada es multiplicar ambos términos, numerador y denominador, por el mismo número: 0 a 0; si no se adivina el valor de a, se puede realizar la división 0 : 0 b 0; si no se adivina el valor de b, se puede realizar la división 0 : Ahora se aprecia claramente que la fracción es ligeramente mayor que la fracción Ejercicio 9 Reduce a común denominador las siguientes parejas de fracciones a) 0 9 y b) y c) y Simplificación de fracciones El concepto mitad puede expresarse por infinitas fracciones: 0... Igualmente que el concepto tercera parte :... 9 Las fracciones con los términos más pequeños que expresan los conceptos mitad y tercera parte ( y ) respectivamente) reciben el nombre de fracciones irreducibles. En las series siguientes de fracciones equivalentes Página de

8 y son las fracciones irreducibles de cada serie. No hay ninguna fracción equivalente a ellas que tenga los términos más pequeños. En las fracciones irreducibles (,, y ), sus términos no pueden dividirse por el mismo número; no existe un número que divida a la vez al y al, al y al, al y al, al y al. Simplificar una fracción es sustituirla por la fracción IRREDUCIBLE EQUIVALENTE a ella. Una fracción se puede simplificar si sus términos (numerador y denominador) tienen divisores comunes. Un número es divisor de otro cuando la división entre ambos es exacta. es divisor de porque : (resto 0) es divisor de porque : (resto 0) Así, la fracción se puede simplificar ya que sus términos ( y ) tienen divisores comunes. Estos divisores son los números,,, y. La división de y por cada uno de ellos es exacta. Ejemplo Para simplificar la fracción debemos dividir sus dos términos por un mismo número, un número que 0 sea divisor de los dos a la vez. Este número es el. La fracción Ejemplo es equivalente a : 0 : y es irreducible 0 A veces, para simplificar una fracción no basta con una sola división. Así, para simplificar la fracción 0 se deben realizar varias divisiones: 90 0 : 0 : : 90 : 9 : : Observa que hemos dividido por, por y por, o lo que es lo mismo, por 0 ( 0). Si dividimos los dos términos de la fracción por 0, la simplificación se realiza en un solo paso. 0 : 0 90 : 0 Para simplificar una fracción se divide el NUMERADOR y el DENOMINADOR por un MISMO NÚMERO hasta obtener una fracción irreducible. Ejercicio 0 Simplifica las siguientes fracciones Página de

9 Fracción de una fracción Ejemplo Los de una finca se dedican al cultivo de cereales. Al cultivo del trigo se dedican los dedicada a cereales. Qué parte de la finca se dedica al cultivo de trigo? de la parte finca entera cereales trigo de la finca de la finca de de la finca Para poder saber la fracción de la finca dedicada al trigo, toda la finca debe estar dividida en partes iguales. Se divide, pues, el tercio de la finca que no está dedicado al cultivo del cereal en partes, tal y como cada una de las partes que se dedican al cereal. La finca queda así dividida en partes iguales, de las que partes están dedicadas al cultivo del trigo. Por lo tanto de de la finca es igual a de la finca. trigo de la finca La única forma de obtener ese resultado ( ) es mediante la multiplicación de las fracciones y de de la finca de la finca Ejercicio Calcula: a) de de b) de de.000 km c) de de.000 litros EJERCICIOS RESUELTOS Ejercicio Página 9 de

10 Ejercicio (redacción del problema de la página para que su solución sea la del libro) Una familia destina de su presupuesto mensual a gastos de vivienda y del presupuesto a 0 alimentación, sobrando 0 para otros gastos. A cuánto ascendía el presupuesto? Solución Fracción Cantidad Gastos de vivienda de los ingresos Gastos de alimentación de los ingresos 0 Otros gastos 0 TOTAL + + de los ingresos gastados en vivienda y alimentación (total de ingresos) de los ingresos de los ingresos en otros gastos 0 de los ingresos 0 Ingresos 0 Ejercicio Gasto del dinero que tengo en una cuenta, luego ingreso de lo que queda, pero aún me faltan para tener el saldo inicial. Cuánto tenía? Solución Si gasto del dinero inicial, me quedan del dinero inicial Ingreso de lo que queda, es decir de del dinero inicial del dinero inicial Ahora tengo del dinero inicial + del dinero inicial + del dinero inicial Para tener el dinero inicial me falta (dinero inicial) del dinero inicial del dinero inicial del dinero inicial Dinero inicial 9 Ejercicio Necesito 0 pasos para avanzar 00 metros. Qué fracción de metro avanzo con cada paso? 00 metros de metro por cada paso 0 pasos Cuántos pasos daré si recorro 0 m? 0 pasos 00 metros pasos para andar un metro ( pasos paso y de paso) 0 pasos por metro 0 m 0 0 pasos necesarios para recorrer 0 m Cuántos metros he recorrido si he dado 0 pasos?. 0 de metro por cada paso 0 pasos 0 00 metros Página 0 de

11 Ejercicio Una empresa comercializa jabón líquido en envases de plástico con una capacidad de Cuántos litros de jabón se necesitan para llenar 00 envases? envases de litro cada envase 00 0 litros Cuántos envases se pueden llenar con 00 litros de jabón?. de litro litros : de litro cada envase 00 : : 0 envases EJERCICIOS DE REPASO Y AMPLIACIÓN Ejercicio Calcula el valor de x: de. x de.000 x de x.000 de x Ejercicio Convierte la fracción en número mixto o natural y viceversa Ejercicio Simplifica las siguientes fracciones y escribe, si es posible, la fracción irreducible en forma de número natural o mixto Ejercicio Escribe el término que falta en las siguientes relaciones de equivalencia 0 0 Ejercicio 00 0 En una empresa han repartido beneficios. A uno de los socios le han correspondido.0, que equivalen al de los beneficios totales. Cuál ha sido el beneficio de la empresa? 00 Ejercicio Una empresa de bebidas pone a la venta un refresco de naranja en un envase con una capacidad de de litro. En un año ha vendido.0.0 envases de ese refresco. Cuántos litros de ese refresco ha 9 vendido durante el año? Ejercicio Cada peldaño de la escalera de un edificio tiene una altura de de metro. Entre cada planta del 0 edificio hay peldaños. Qué altura ha subido una persona que se ha desplazado desde la tercera planta hasta la octava planta? Ejercicio Los de una finca se dividen en parcelas iguales para la construcción de chalets. Qué fracción de la finca ocupa cada parcela? 0 Página de

12 Ejercicio 9 Una empresa fabrica remolques de tres tipos: A, B y C. Al finalizar el año obtiene un beneficio de 9.0. La fabricación del remolque del tipo A le ha dado el de los beneficios y la del remolque 0 del tipo B el de los beneficios. 0 a) Expresa en forma de fracción el beneficio obtenido con la fabricación del remolque del tipo C b) Calcula en euros el beneficio obtenido con cada la fabricación de cada tipo de remolque. Ejercicio 0 Una persona ha dejado escrito en su testamento el reparto de su herencia. El dinero que posee debe ser repartido de la siguiente manera: del dinero para la ONG de la que es presidente; del dinero para un hospital infantil; el resto del dinero a repartir en partes iguales entre sus hijos. Qué fracción del dinero se lleva cada hijo? EJERCICIOS RECOMENDADOS DEL LIBRO Ejercicios de la página Ejercicio g. La solución correcta es Ejercicio h. La solución correcta es 9 Ejercicios de la página Ejercicio 0. La solución correcta es., Ejercicio. La solución correcta con los datos del problema es, Ejercicios de la página Este ejercicio sustituye al número de esta página. En estos ejercicios no aparecen números enteros negativos. ) Calcula y simplifica el resultado si es posible. Si la fracción resultante es igual o mayor que la unidad debes expresar el resultado con un número natural o mixto según corresponda. a) + b) + c) + d) + e) 0 f) g) h) + 0 De los ejercicios y se hace solamente los que no tengan números negativos. Página de

13 SOLUCIONES Ejercicios del texto Ejercicio a) de.00. b) de c) de Ejercicio 0 a) de b) de c) de Ejercicio a) 0 litros de aceite consumidos b) Aceite comprado litros c) Capacidad del depósito 90 litros d) Quedan.00 litros e) Había presupuestado.00 Ejercicio a) tartas tartas 9 0 tartas 0 tartas 0 tartas 0 b) c) Ejercicio a) b) Ejercicio Página de

14 Ejercicio 0 00 a) a) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) s) 0 t) 0 a cualquier número 9 0 a Ejercicio a) Averigua si las siguientes parejas de fracciones son equivalentes entre sí 9 9 y SI y SI y SI y NO y. NO 0 0 Ejercicio a) y y b) y y c) y y Ejercicio Ejercicio a) 0 de de de.000 de b) de de.000 km de.000 km de.000 km km c) de de.000 litros de.000 litros de.000 litros.00 litros Ejercicios repaso y ampliación Ejercicio de..9 de de de Ejercicio Ejercicio Ejercicio Página de

15 Actividad.000 Actividad.0 litros Actividad Ha subido 0 peldaños, metros en total Actividad de la finca 0 0 Actividad 9 a) 0 9 de los beneficios b) Tipo A. Tipo B. Tipo C 0. Actividad 0 del dinero de la herencia SOLUCIONES DE LOS EJERCICIOS DE LA PÁGINA DEL LIBRO ) Ejercicio que sustituye al del libro a) b) c) + 0 d) + e) 0 f) g) 0 h) ) Soluciones del ejercicio del libro a) b) c) 0 d) g) h) i) 0 0 j) 0 e) 0 k) f) l) Página de

16 d) : : : ( ) ( ) Página de

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos.

FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos. Código Centro 80080 C/ Valderribas, 7 C.P. 8007 Tfno/fax 989 FRACCIONES Una fracción es un número representado por otros dos separados por una línea recta horizontal. Al número de abajo le llamamos denominador

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

Fracciones equivalentes

Fracciones equivalentes Fracciones equivalentes Las fracciones equivalentes representan la misma parte de la unidad. Si dos fracciones son equivalentes, los productos de sus términos en cruz son iguales.. En cada caso, escribe

Más detalles

2º ESO. matemáticas IES Montevil tema 3: NÚMEROS RACIONALES curso 2010/2011

2º ESO. matemáticas IES Montevil tema 3: NÚMEROS RACIONALES curso 2010/2011 º ESO. matemáticas IES Montevil tema : NÚMEROS RACIONALES curso 00/0 nombre: apellidos: números racionales El conjunto de los números racionales es el que está formado por los números que se pueden expresar

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad.

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad. Teoría er Ciclo Primaria Página 9 FRACCIONES FRACCIÓN es una o varias partes iguales en que se divide la unidad. La fracción está formada por dos números naturales a y b colocado uno encima del otro y

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS COMPRENDER OBJETIVO EL CONCEPTO DE RACCIÓN. IDENTIICAR SUS TÉRMINOS NOMBRE: CURSO: ECHA: Para expresar una cantidad de algo que es incompleto o partes de un total sin usar números o expresiones numéricas,

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. 1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales

Más detalles

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES º lección TEMA.- LAS OPERACIONES CON FRACCIONES Para calcular la fracción de una cantidad, dividimos la cantidad entre el denominador y el resultado lo multiplicamos por el numerador. -. Calcula: Ejemplo

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

Fracciones. Contenidos. Objetivos. 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones

Fracciones. Contenidos. Objetivos. 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones Fracciones Contenidos 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones 2. Fracciones con igual denominador Reducción a común denominador Comparación de fracciones 3. Operaciones con fracciones

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

Lección 11: Fracciones. Equivalencia y orden

Lección 11: Fracciones. Equivalencia y orden GUÍA DE MATEMÁTICAS I LECCIÓN Lección : Fracciones. Equivalencia y orden Fracciones equivalentes No siempre podemos trabajar con unidades divididas decimalmente; con frecuencia nos conviene partir de otra

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas.

Colegio Portocarrero. Curso Departamento de matemáticas. Colegio Portocarrero. Curso 0-0. Fracciones, con solución Marta ha comido los de la tableta de chocolate y su hermano los, quién ha comido más? Basta observar que y son equivalentes luego los dos han comido

Más detalles

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales)

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Vamos a recordar los conjuntos numéricos estudiados hasta el momento. (1.) Conjunto de los números Naturales Son aquellos que utilizamos

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57).

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57). DIVISION: Dividir es repartir un número en grupos iguales (del tamaño que indique el divisor). Por ejemplo: 45/ 5 es repartir 45 en grupos de 5. Los términos de la división son: Dividendo: es el número

Más detalles

Fracciones + + EJERCICIOS resueltos. Operaciones combinadas + = Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones:

Fracciones + + EJERCICIOS resueltos. Operaciones combinadas + = Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones: Operaciones combinadas Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones: La misión de los paréntesis es la de unir o "empaquetar" aquello a lo que afectan. Los signos de

Más detalles

Tema 6: Fracciones. Fracciones

Tema 6: Fracciones. Fracciones Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta

Más detalles

ELABORACIÓN DE MATERIALES DIDACTICOS DE MATEMÁTICAS, FÍSICA Y QUÍMICA Y CIENCIAS NATURALES PARA ALUMNOS ACNES DE 1º Y 2º ES.O.

ELABORACIÓN DE MATERIALES DIDACTICOS DE MATEMÁTICAS, FÍSICA Y QUÍMICA Y CIENCIAS NATURALES PARA ALUMNOS ACNES DE 1º Y 2º ES.O. LAS FRACCIONES Lorena González Grande Grupo de trabajo: 209 ELABORACIÓN DE MATERIALES DIDACTICOS DE MATEMÁTICAS, FÍSICA Y QUÍMICA Y CIENCIAS NATURALES PARA ALUMNOS ACNES DE 1º Y 2º ES.O. 1 ÍNDICE 1. Las

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Los números naturales sirven para numerar. Por ejemplo, decimos que una alumna es la 15º (decimoquinta) de la lista.

Los números naturales sirven para numerar. Por ejemplo, decimos que una alumna es la 15º (decimoquinta) de la lista. MATEMÁTICAS ºACT TEMA. REPASO. NÚMEROS NATURALES. Cuando contamos los alumnos y alumnas de una clase o el número de losetas que hay en el suelo, lo contamos con los números naturales. Los números naturales

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

Las fracciones y sus términos

Las fracciones y sus términos Las fracciones Las fracciones y sus términos Comparación de fracciones con la unidad Comparación de fracciones entre sí Fracciones decimales La fracción de una cantidad Fracciones equivalentes Simplificar

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

4º lección TEMA 4.- LAS FRACCIONES

4º lección TEMA 4.- LAS FRACCIONES º lección TEMA.- LAS FRACCIONES -. Los términos de una fracción son el numerador y el denominador. -. El numerador indica el número de partes que se toman de esa unidad. -. El denominador indica el número

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Actividad introductoria: Repartición de dos pasteles en una familia

Actividad introductoria: Repartición de dos pasteles en una familia Grado 6 Matemáticas De los símbolos a la búsqueda del concepto: El conjunto de los números naturales TEMA: USO DE LA FRACCIÓN EN DIFERENTES CONTEXTOS Nombre: Grado: Actividad introductoria: Repartición

Más detalles

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son

Más detalles

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. UNIDAD 6: FRACCIONES 6. Conocimiento de fracciones Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. 6.. Términos Los términos

Más detalles

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador La adición de fracciones con diferente denominador la podemos definir como: Sean, entonces, donde es

Más detalles

NÚMEROS RACIONALES. Tendremos en cuenta el cociente de potencias de la misma base: ( b ) b 12 ( 6)

NÚMEROS RACIONALES. Tendremos en cuenta el cociente de potencias de la misma base: ( b ) b 12 ( 6) NÚMEROS RACIONALES 3 4 2 3 1. ( b ) /( b ) es igual a: a) b -18 b) b 18 c) b -6 (Convocatoria junio 2001. Examen tipo E) Tendremos en cuenta el cociente de potencias de la misma base: 3 4 12 3 4 2 3 (

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

PRIORIDAD DE OPERACIONES:

PRIORIDAD DE OPERACIONES: PRIORIDAD DE OPERACIONES 1º Hay que resolver o quitar los paréntesis. º Se hacen las multiplicaciones y divisiones en el orden que aparezcan de izquierda a derecha º Se hacen las sumas y las restas en

Más detalles

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO)

PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO) PLAN DE RECUPERACIÓN DE MATEMÁTICAS 1º ESO (Para alumnos de 2º de ESO) 1 NOMBRE: Para aprobar las matemáticas pendientes de cursos anteriores es obligatorio realizar el plan de recuperación correspondiente

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

Operaciones con fracciones

Operaciones con fracciones Operaciones con fracciones Para efectuar operaciones con fracciones, o con números enteros y fracciones, no podemos actuar como cuando todos los números que intervienen son enteros; hemos de tener en cuenta

Más detalles

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:...

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:... FRACCIONES. - Observa el gráfico y responde: a) Cuántos cuadrados ves? b) Cuántos cuadrados negros hay? c) Qué fracción del conjunto representan los cuadrados negros? d) Qué fracción del conjunto representan

Más detalles

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes :

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : Las fracciones Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : En un partido de baloncesto, que está dividido en cuatro tiempos

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS: 1. Operaciones con números fraccionarios. 2. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

TEMA 1: NÚMEROS ENTEROS Y RACIONALES

TEMA 1: NÚMEROS ENTEROS Y RACIONALES TEMA : NÚMEROS ENTEROS Y RACIONALES. Números naturales Actividades página 9. Calcula a) 0 0 0 0 000 c) f) 000000 0 0 0 0 Tareas -09-0: todos los ejercicios que faltan del.. Números enteros Ejemplo de valor

Más detalles

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas?

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas? FRACCIONES Y DECIMALES ) Qué fracción de año representan meses? Y meses? Y meses? ) Un grifo llena un depósito en horas. Qué parte del depósito llenará: primero, en horas; segundo, en horas, y tercero,

Más detalles

Potencias y radicales

Potencias y radicales Potencias y radicales Contenidos 1. Radicales Potencias de exponente fraccionario Radicales equivalentes Introducir y extraer factores Cálculo de raíces Reducir a índice común Radicales semejantes. Propiedades

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador.

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador. FRACCIONES FRACCION Una fracción es una epresión formada por dos números separados por una raa horizontal, al número de abajo se le llama denominador nos indica el número de partes iguales en que se divide

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO

ENCUENTRO # 4 TEMA: Operaciones con números racionales, resolución de problemas. DESARROLLO ENCUENTRO # TEMA: Operaciones con números racionales, resolución de problemas. CONTENIDOS:. Operaciones con números fraccionarios.. Resolución de problemas aritméticos. DESARROLLO Ejercicio Reto. Un terreno

Más detalles

CURSO COMPLEMENTARIO

CURSO COMPLEMENTARIO Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED Para ser matemático sólo se necesita un lápiz, un papel y dedicarle tiempo a la construcción de los más simples

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

UNIDAD 1 Fracciones y decimales

UNIDAD 1 Fracciones y decimales UNIDAD Fracciones y decimales Algunos conceptos y procedimientos de divisibilidad. Cálculo del mínimo común múltiplo de dos números. Página DIVISORES Escribe todos los divisores de cada uno de estos números:

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

UNIDAD 5: LA DIVISIÓN.

UNIDAD 5: LA DIVISIÓN. UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales. 5.1.1 Términos de la división 5.1.2 Palabras clave de la división 5.1.3 Prueba de la división 5.1.4 Tipos de divisiones según

Más detalles

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS RACIONALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS RACIONALES Evaluación A 1. Ordena de menor a mayor estas fracciones: 1 2, 9 20, 18 25, 3 5 Ten en cuenta Para ordenar fracciones, expresamos la solución mediante las fracciones iniciales, no las

Más detalles

Fracciones CLAVES PARA EMPEZAR

Fracciones CLAVES PARA EMPEZAR CLAVES PARA EMPEZAR a) Cuatro quintos. b) Cinco séptimos. c) Tres décimos. d) Ocho treceavos. e) Trece diecisieteavos. f) Veintiún treintaidosavos. a) d) b) e) c) f) 101 a) d) b) e) c) f) VIDA COTIDIANA

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales.

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales. Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Números racionales Mapa conceptual Cómo representar un número con muchos decimales? Racionales Matemática Por ejemplo, aproximando a la

Más detalles

Enteros. Fracciones. Ecuaciones y sistemas de primer grado. Problemas

Enteros. Fracciones. Ecuaciones y sistemas de primer grado. Problemas I.E.S. Fernando de Mena Matemáticas º ESO (Opción B) Enteros. Fracciones. Ecuaciones y sistemas de primer grado. Problemas Ejercicios. Hallar el máximo común divisor y el mínimo común múltiplo de las siguientes

Más detalles

Numerador = Denominador = 2.- Copia y representa la parte coloreada con una fracción, en cada caso. Indica cómo se leen. Numerador = Denominador =

Numerador = Denominador = 2.- Copia y representa la parte coloreada con una fracción, en cada caso. Indica cómo se leen. Numerador = Denominador = TEMA 6 : LAS FRACCIONES Página 1 1.- Escribe estas cantidades con una fracción. Señala el numerador y el denominador. seis novenos = tres octavos = un medio = siete décimos = cuatro quintos = dos treceavos

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

CLASIFICACIÓN DE LOS NÚMEROS

CLASIFICACIÓN DE LOS NÚMEROS LOS NÚMEROS REALES.. FRACCIIONES CLASIFICACIÓN DE LOS NÚMEROS Los números surgen de la necesidad de contar. Pero el Hombre no se limitó sólo a contar, sino que acumulaba o intercambiaba o repartía bienes.

Más detalles

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Un optimista ve una oportunidad en toda calamidad, un pesimista ve una calamidad en toda oportunidad Winston Churchill TABLA DE

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 9 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 9 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO Instrucciones. Lee cuidadosamente los conceptos, los ejemplos y desarrolla los ejercicios propuestos. No olvides guardar esta guía de trabajo en tu

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

6º lección TEMA 6.- LAS FRACCIONES

6º lección TEMA 6.- LAS FRACCIONES º lección TEMA.- LAS FRACCIONES -.Los términos de una fracción son el numerador y el denominador. -. El denominador indica el número de partes iguales en que se divide la unidad. -. El numerador indica

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

REPASO. Nombre: Fecha: Curso: siete doceavos. dos novenos. cinco octavos < 1 = 1 > 1

REPASO. Nombre: Fecha: Curso: siete doceavos. dos novenos. cinco octavos < 1 = 1 > 1 REPASO Completa la tabla. representación numerador denominador se escribe se lee siete doceavos dos novenos cinco octavos Une con flechas según corresponda. < > Colorea el mosaico según las indicaciones.

Más detalles

CURSO UNICO DE INGRESO 2010

CURSO UNICO DE INGRESO 2010 INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para

Más detalles

El número de arriba de la fracción, el numerador, nos dice cuántas de las partes iguales están coloreadas.

El número de arriba de la fracción, el numerador, nos dice cuántas de las partes iguales están coloreadas. Qué es una fracción? Una fracción es un número que indica parte de un entero o parte de un grupo. El siguiente círculo está dividido en partes iguales de las cuales partes están coloreadas. El número de

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 7 / 07 / 1 Guía Didáctica 2 Desempeño: * Identifica y aplica los conceptos básicos

Más detalles

Fundación Uno. 1. Propiedades de las potencias de exponente racional. DESARROLLO

Fundación Uno. 1. Propiedades de las potencias de exponente racional. DESARROLLO ENCUENTRO # 8 TEMA:Radicales. Propiedades. CONTENIDOS:. Propiedades de las potencias de exponente racional.. Radicales. Propiedades.. Simplificación de radicales.. Operaciones con radicales. EJERCICIO

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO NÚMEROS RACIONALES Los números racionales son todos aquellos

Más detalles

Expresiones Algebraicas Racionales en los Números Reales

Expresiones Algebraicas Racionales en los Números Reales en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido

Más detalles

Matemáticas Orientadas a las Enseñanzas Aplicadas IES

Matemáticas Orientadas a las Enseñanzas Aplicadas IES Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

4 Fracciones. Lectura y escritura. Diecisiete veinticuatroavos. Treinta y cuatro cincuentaidosavos. Cinco séptimos. Cuatro quintos.

4 Fracciones. Lectura y escritura. Diecisiete veinticuatroavos. Treinta y cuatro cincuentaidosavos. Cinco séptimos. Cuatro quintos. Fracciones Lectura y escritura Escribe cómo se lee cada una de estas fracciones. Tres octavos Cinco novenos Un sexto Cuatro onceavos Trece veinteavos Siete décimos Diecisiete veinticuatroavos Treinta y

Más detalles

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5 TEMA FRACCIONES. FRACCIONES EQUIVALENTES Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. 8 Dos fracciones equivalentes tienen el mismo valor numérico. = : = 0, = : 8 = 0,

Más detalles

c) Es 91 múltiplo de 7? y 7 divisor de 91?

c) Es 91 múltiplo de 7? y 7 divisor de 91? UNIDAD 1: NÚMEROS NATURALES (1 pto) Ejercicio nº 1.- a) Escribe los diez primeros múltiplos de 15: IES EL CORONIL b) Todos los divisores del 60 c) Es 91 múltiplo de 7? y 7 divisor de 91? (1 pto) Ejercicio

Más detalles