CAPÍTULO 14 ESTRUCTURAS INTRASLACIONALES
|
|
|
- Eugenio Miguélez Cordero
- hace 9 años
- Vistas:
Transcripción
1 ÍTULO 4 ESTUTUS INTSLIONLES
2 En esistencia de ateriales suele despreciarse las deformación inducida por los esfuerzos axiles y cortantes en estructuras formadas por barras Despreciar el primer tipo de esfuerzo equivale a decir que las barras de la estructura ni se acortan ni se alargan. Directriz sin deformar Directriz deformada
3 ONETO DE NUDO EN UN ESTUTU FOD O S
4 ONETO DE ESTUTU INTSLIONL Los nudos no se desplazan, pero las secciones correspondientes sí giran δ δ D D
5 D
6 LULO DE ESTUTUS INTSLIONLES a) VIGS ONTINUS q E F G D E Viga
7
8
9
10 q G E F D E 3 4E E F G Ecuaciones: Incógnitas:,, 3 y 4 E ( antihoario) ( antihoario) ( antihoario) E ( antihoario) ( antihoario) ( antihoario)
11 Viga
12 E E E q D E E F G E G 3 F 4E
13 ) ( ) ( antihoario antihoario l EI b l ab EI l antihorario EI l EI ql antihorario 6 ) ( 3 ) ( 3 4 ) ( ) ( 6 l b l ab ql + + q l l a b EJELO:
14 ql/ ql/ /l /l b/l a/l /l /l ql l ql + l a l l + b l + l
15 b) SEIÓTIOS l + l ( horario) ( horario) ( horario) 4EI l 3EI ( horario) ( l) ( l) l EI 5 3 5
16 c) ÓTIOS q l D X Y ( horario) ( horario) ( horario) l ( horario) l 3EI ql 3 l 4EI 3EI l 6EI Y ql ql 0 X ql 0
17 ql/ ql/0 ql/0 ql/ ql /0 ql/0 ql/ D D
18 OEFIIENTE DE SEGUIDD Los elementos estructurales o los componentes de máquinas deben ser diseñados de manera tal que las tensiones que se producen en su seno sean menores que la tensión de rotura del material. S S oeficiente de seguridad σ σ adm tensión de rotura tensión admisible El factor de seguridad tiene en cuenta, principalmente: Llas incertidumbres de los valores de las propiedades del material Lla incertidunbre del valor de las cargas actuantes Lla incertidumbre del análisis Eel comportamiento a largo plazo del elemento estructural Lla importancia del elemento considerado en la integridad de la estructura de la que forma parte Lógicamente el factor de seguridad debe ser una cantidad mayor que la unidad
19 ESTUTUS ON ÓTULS La conexión por rótulas permite el giro relativo, que existan fuerzas a ambos lados de la rótula pero NO OENTOS.
20 ESTUTUS INTSLIONLES ON OTULS L/4 3L/4 0 kn D L/8 E D m m m L L D L L L 0 kn/m 30 kn D 50kN.m E G F 0 kn 6 m m 3 m 3 m m m m m
21 arra arra Q Q Q Q Q +Q
22 d d
23 Q Q D Q Q m L m L m 0 kn D m m m Incógnitas: reacción vertical en reacción vertical en reacción vertical en D momento en el empotramiento D Ecuaciones de la estática: () Suma de fuerzas verticales nula () Suma de momentos en un punto igual a cero () omentos en la rótula de una de las partes Igual a cero 4 OLE HIEESTÁTIO DE GDO Ecuación adicional: flecha en igual a flecha en 3
24 L D L L L Incógnitas: reacción vertical en reacción vertical en D momento en el empotramiento momento en el empotramiento D 4 L Q D Q Q Q Ecuaciones de la estática: () Suma de fuerzas verticales nula () Suma de momentos en un punto igual a cero () omentos en la rótula de una de las partes Igual a cero OLE HIEESTÁTIO DE GDO Ecuación adicional: flecha en igual a flecha en 3
25 L L/4 3L/4 Incógnitas: L/8 E D reacción vertical en reacción horizontal en reacción vertical en D reacción horizontal en D momento en el empotramiento momento en el empotramiento D N Q Q N Q NQ D N 6 Ecuaciones de la estática: () Suma de fuerzas verticales nula () Suma de fuerzas horizontales nula () Suma de momentos en un punto igual a cero () omentos en una de las rótulas, de una de las partes de la estructura, igual a cero () omentos en otra de las rótulas, de una de las partes de la estructura, igual a cero OLE HIEESTÁTIO DE GDO Ecuación adicional: desplazamiento horizontal de nulo 5
ESTRUCTURAS RETICULADAS
ESTRUTURS RETIULS Prof. arlos Navarro epartamento de ecánica de edios ontinuos y Teoría de Estructuras En el cálculo estructuras reticuladas suele despreciarse las deformaciones inducidas por los esfuerzos
60kN/m 50kNm 50kNm. 60kN/m. 50kNm D D D CC. C C 2 2 m 5 m
Ejercicio 6.1 Para las vigas de la figura: a) Bosquejar cualitativamente el diagrama momento flector, el diagrama del giro y el diagrama de la deformada. b) Determinar la flecha en C y el ángulo de giro
B) Para la viga de dos vanos con rótula en R, cargada como se muestra en la figura 2, se pide:
Resistencia de Materiales, Elasticidad y Plasticidad. Examen ordinario 27 de mayo de 2014 Apellidos.................................... Nombre........................ Nº... Curso 3º Ejercicio 1. (Se recogerá
PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO
PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran
TEMA 11: ESTRUCTURA DE BARRAS
TEMA 11: ESTRUCTURA DE BARRAS ESTRUCTURAS 1 ENRIQUE DE JUSTO MOSCARDÓ ANTONIO DELGADO TRUJILLOh ANTONIA FERNÁNDEZ SERRANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos, Teoría
8 m. Se trata de una estructura simétrica con carga antisimétrica, por lo tanto, resolveremos sólo la parte antisimétrica.
. eterminar los esfuerzos en todas las barras de la celosía de la figura cuando en el punto hay una carga horizontal de 0kN eterminar además las componentes horizontal y vertical del desplazamiento de
TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR
Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura
Prácticas de Resistencia 12-13
Prácticas de Resistencia 12-13 1) Calcular las reacciones en los apoyos de la viga de la figura 1 para los siguientes dos casos de la carga actuante: parábola de 2º grado con tangente horizontal en C;
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
Tema 9: SOLICITACIONES COMBINADAS
Tema 9: SOLIITIONES OMINDS V M T N x L M V Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 2008 9.1.-En la viga de la figura calcular por el Teorema de los Trabajos Virtuales: 1)
Tema 6.3 FLEXIÓN HIPERESTÁTICA
Tema 6.3 Nota: A continuación se muestra el sistema de coordenadas de todos los problemas donde se definen las condiciones de contorno. Problema 6.3.1 Una viga de 12 m de longitud está construida con una
TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE)
EXAMEN DE TEORÍA DE ESTRUCTURAS 03-09-2009 E.T.S.I. MINAS U.P.M. TITULACIÓN: INGENIERO TÉCNICO DE MINAS (PRIMERA PARTE) Duración: 1 hora 15 minutos Fecha de publicación de las calificaciones provisionales:
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn
Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación
CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL
CONCEPTOS GENERALES DEL ANÁLISIS ESTRUCTURAL Prof. Carlos Navarro Departamento de Mecánica de Medios Continuos y Teoría de Estructuras LAS CONDICIONES DE SUSTENTACIÓN DE UNA ESTRUCTURA LIBERACIÓN DE ESFUERZOS
Sistemas hiperestáticos
Lección 14 Sistemas hiperestáticos Contenidos 14.1. Método de las fuerzas para el cálculo de sistemas hiperestáticos............................. 180 14.2. Sistemas hiperestáticos sometidos a flexión........
mol_ibj^p= ab=bu^jbk=
qblof^=ab=bpqor`qro^p= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk= = `ìêëç=ommulmv= = = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw= = iìáë=_~ μå=_ä òèìéò=e`lif= p~äî~ççê=bëíéîé=séêç =E^plF moþildl= = La
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1
Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A
Mecánica de Sólidos. UDA 4: Fuerza Cortante y Momento Flexionante en Vigas
Mecánica de Sólidos UDA 4: Fuerza Cortante y Momento Flexionante en Vigas Generalidades: FLEXIÓN Y ESFUERZO Ocurre flexión cuando un elemento de sección constante y simétrica respecto al plano donde ocurre
Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas
Aplicación del Principio de las Fuerzas Virtuales a la resolución estática de estructuras hiperestáticas Apellidos, nombre asset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios
Flexión pura y flexión desviada
Lección 9 Flexión pura y flexión desviada Contenidos 9.1. Distribución de tensiones normales estáticamente equivalentes a momentos flectores................ 114 9.2. Flexión pura..........................
Y ahora qué? INDICE Introducción Comparación de desplazamientos (viga conjugada) Vigas continuas Pórticos y cuadros.
Y ahora qué? INDICE 10.1 Introducción. 10.2 Comparación de desplazamientos (viga conjugada). 10.3 Vigas continuas. 10.4 Pórticos y cuadros. PROBLEMAS ESTATICAMENTE DETERMINADOS: pueden resolverse sólo
< momento aplicado sobre un nudo; < carga repartida; < carga concentrada. Movimientos y deformaciones impuestos:
Viga continua con múltiples patologías 1/5 Figura 1 Viga continua con multiples patologías Problema de viga continua Vamos a calcular todos los esfuerzos, reacciones y curvaturas, y a dibujar la deformada
TEMA 3: ENLACES Y EQUILIBRIO
TEMA 3: ENLACES Y EQUILIBRIO ESTRUCTURAS I ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ PURIFICACIÓN ALARCÓN RAMÍREZ Departamento de Mecánica de Medios Continuos, Teoría de Estructuras e Ingeniería
Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura.
11.29.- Calcular la energía de deformación de la viga de rigidez constante EI, simplemente apoyada, indicada en la figura. 30-6-98 11.30.- Calcular en Julios el potencial interno de una viga en voladizo
Prácticas Complementarias de Resistencia 12-13
Prácticas Complementarias de Resistencia 12-13 1) Dibujar sendos croquis con las reacciones acotadas en magnitud y sentido para las vigas de la figura 1: Figura 1 2) Calcular las reacciones del muro y
Estática Profesor Herbert Yépez Castillo
Estática 2015-1 Profesor Herbert Yépez Castillo Contenido 8.1 ipos de Estructuras Parte I 8.2 Armadura Parte I 8.3 Marcos y Máquinas 8.4 Uniones simples Nudo simple - Pasador Unión simple - Polea Pasador
Resistencia de Materiales. Estructuras. Tema 11. Inestabilidad en barras. Pandeo. Barra Empotrada-Empotrada.
Resistencia de Materiales. Estructuras Tema 11. Inestabilidad en barras. Pandeo Módulo 6 Barra Empotrada-Empotrada. En los módulos anteriores se ha estudiado el caso del pandeo en la barra articulada-articulada,
El Principio de las Fuerzas Virtuales: ejemplo de aplicación
El Principio de las Fuerzas Virtuales: ejemplo de aplicación pellidos, nombre asset Salom, Luisa ([email protected]) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica
Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales
Obtención del movimiento en un punto de una estructura hiperestática mediante el Principio de las Fuerzas Virtuales pellidos, nombre Basset Salom, Luisa ([email protected]) Departamento entro Mecánica
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10
TEORÍA ( 20% de la nota del examen) Nota mínima de TEORÍA 2.5 puntos sobre 10 1 Es sabido que los materiales con comportamiento dúctil fallan por deslizamiento entre los planos donde se produce la rotura.
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.
RESISTENCIA DE MATERIALES II CURSO EXAMEN DE SEPTIEMBRE
RESISTENCIA DE MATERIAES II CURSO 008-09 EXAMEN DE SETIEMBRE -9-009 Fecha de publicación de la preacta: de Octubre Fecha de revisión: 7 de Octubre.- ( puntos) as vigas carril de un puente grúa están fabricadas
ESTRUCTURAS ESTRUCTURAS HIPERESTATICAS
ESTRUCTURAS I ESTRUCTURAS HIPERESTATICAS F.A.D.U. / UdelaR AÑO 2018 repaso de EQUILIBRIO ESTÁTICO Al analizar estructuras edilicias, estamos estudiando estructuras que se encuentran en equilibrio estático
El modelo de barras: cálculo de esfuerzos
Lección 6 El modelo de barras: cálculo de esfuerzos Contenidos 6.1. Definición de barra prismática............... 78 6.2. Tipos de uniones........................ 78 6.3. Estructuras isostáticas y estructuras
Estructuras 4 TALLER VERTICAL DNC ESTRUCTURAS DE TRANSICIÓN. Trabajo Práctico de PÓRTICO
ESTRUCTURAS DE TRANSICIÓN Trabajo Práctico de PÓRTICO 1 16.80 45.20 2 16.80 45.20 3 4 16.80 45.20 5 t 16.80 45.20 6 7 L= 7,00 Peso del hormigón 8 L= 7,00 9 L= 7,00 10 L= 7,00 11 L= 7,00 12 L= 7,00 13 16,80
PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO
PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 9.1.- Dos hilos metálicos, uno de acero y otro de aluminio, se cuelgan independientemente en posición vertical. Hallar la longitud
El Principio de las Fuerzas Virtuales
El Principio de las Fuerzas Virtuales Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior de Arquitectura
Resolución de estructuras con el Método de Flexibilidades
Resolución de estructuras con el Método de Flexibilidades pellidos, nombre asset Salom, Luisa ([email protected]) Departamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica
Clasificación estática de las estructuras
lasificación estática de las estructuras pellidos, nombre asset Salom, Luisa ([email protected]) epartamento entro Mecánica de Medios ontinuos y Teoría de Estructuras Escuela Técnica Superior de rquitectura
ANALISIS DE VIGAS ESTATICAMENTE INDETERMINADAS
NISIS DE VIGS ESTTICENTE INDETERINDS.. DEFINICIÓN. Se denomina de esta manera a una barra sujeta a carga lateral; perpendicular a su eje longitudinal, en la que el número de reacciones en los soportes
6. ESTRUCTURAS RETICULADAS PLANAS.
6. ESTRUTURS RETIULS LNS. Se califica a una estructura plana de barras de reticulada cuando por estar las barras que confluyen en un mismo nodo empotradas entre sí formando un ángulo constructivo invariable,
Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos
Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones
Mecánica de Sólidos. UDA 2: Miembros Cargados Axialmente.
Mecánica de Sólidos UDA 2: Miembros Cargados Axialmente. UDA 2: Estructuras sometidas a Cargas Axiales Principio de Saint Venant Debido a la carga, la barra se deforma como lo indican las línes dibujadas
Análisis de Tensiones.
RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 8 Análisis de Tensiones. Problema 1 Se tiene una estructura perteneciente a un graderío que soporta una carga de 1 tonelada en el punto
Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos
Aplicación del Principio de Conservación de la Energía y del Teorema de la Carga Unidad para la obtención de movimientos Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica
E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada
E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de
Problemas de la Lección 6: Flexión. Tensiones
: Flexión. Tensiones Problema 1: Para las siguientes vigas hallar los diagramas de esfuerzos cortantes y momentos flectores. Resolver cada caso para los siguientes datos (según convenga) P = 3000 kg ;
EJERCICIOS PROPUESTOS
IIND 4.2 ESTRUCTURS EJERCICIOS ROUESTOS 1. a figura representa una estructura constituida por barras unidas entre sí y al suelo (plano horizontal XOZ) mediante rótulas. a Y 2 1 a) Comprobar si dicha estructura
El Método de Rigideces: ejemplo de aplicación
El Método de Rigideces: ejemplo de aplicación Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior
Cálculo cinemático de una estructura isostática
Cálculo cinemático de una estructura isostática pellidos, nombre asset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior
Powered by TCPDF (www.tcpdf.org)
Powered by TCPDF (www.tcpdf.org) > Ecuación de Transformación para la Deformación Plana. Relaciona el tensor de deformaciones de un punto con la medida de una galga en ese punto con un ángulo φ del eje
Introducción a la Materialidad Taller II Jorge García- Federico García G Teórica : Flexión I
Hasta ahora vimos: esfuerzos axiales simples: Tracción y Compresión. Flexión: esfuerzo compuesto, Tracción y Compresión en un mismo sólido distanciados por un brazo de palanca (z). A través de la comprensión
El esfuerzo axil. Contenidos
Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos
1.1. La barra de la figura tiene un incremento de temperatura, Δt, en el tramo BC. Calcular el esfuerzo axil en el tramo AB.
Nombre: Grupo: jercicio 1. (6 puntos). minutos. l primer ejercicio consta de una serie de problemas teórico prácticos. Sólo se permite el uso de calculadora. NO desgrapar las hojas. IMORTANT: l resultado
PROBLEMA 1 (10 puntos)
RESISTENCIA DE MATERIALES EXAMEN FINAL / PRUEBA DE EVALUACIÓN CONTINUA 3 CURSO 017-18 17-01-018 PROBLEMA 1 (10 puntos) Fecha de publicación de la preacta: de febrero de 018 Fecha de revisión del examen:
Ejercicio nº 4 + 5 : El pórtico simple desplazable. 3 t/m 2 I. 8 m
Ejercicio nº 4 + 5 : El pórtico simple desplazable t t/m 4 m ecuaciones generales de equilibrio y 6 incógnitas Grado Hiperestático (método de las fuerzas) El problema se puede afrontar en primera aproximación,
ESTRUCTURAS SIMETRICAS
ESTRUCTURAS SIMETRICAS Las estructuras reales presentan con mucha frecuencia diseños que tienen la característica de ser simétricas con relación a algún plano, como por ejemplo las estructuras de muchos
EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0.
EJERCICIOS DE APLICACION EJERCICIO 1. razar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada. θ.8 m y x 15. m p.1 m θ.1 m La carga axial
Departamento de Ingeniería Mecánica Estructuras y Construcciones Industriales 4 IIND. Examen Diciembre 2013
Departamento de Ingeniería Mecánica Examen Diciembre 13 Departamento de Ingeniería Mecánica Apellidos y Nombre: Examen Diciembre 13 EJERCICIO 1;.5 PUNTOS a viga de acero la figura EI=378 knm ; EA= 1638
Análisis de Tensiones.
RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 8 Análisis de Tensiones. Problema 1 Se tiene una estructura perteneciente a un graderío que soporta una carga de 1 tonelada en el punto
Cálculo estático de una estructura isostática
Cálculo estático de una estructura isostática Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior
Puede ser que haya algún error de mecanografiado.
quí están las soluciones a los ejercicios de los distintos examenes del mes de junio. Puede ser que haya algún error de mecanografiado. lguno de los ejercicios no es exactamente igual que el que había
TEMA 4: ESFUERZOS Y SOLICITACIONES
TEMA 4: ESFUERZOS Y SOLICITACIONES ESTRUCTURAS 1 ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ JAVIER LOZANO MOHEDANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos,
Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.
Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION
Cálculo de estructuras con SAP2000 ANEXO. MEF vs Matricial.
Cálculo de estructuras con SAP2000 ANEXO. MEF vs Matricial. Cálculo de Estructuras con SAP2000 ÍNDICE ÍNDICE... 3 1. Fundamento matemático del MEF... 4 1.1. Principio de los trabajos virtulaes.... 7 1.2.
SISTEMAS HIPERESTÁTICOS DE NUDOS RÍGIDOS
SISTEMAS HIPERESTÁTICOS DE NUDOS RÍGIDOS ÍNDICE 1. Hiperestatismo 2. Concepto de rigidez 3. Métodos de análisis Pendiente deformación Cross Rigideces HIPERESTATISMO Hipostático Isostático Hiperestático
Deflexiones de vigas y marcos
Deflexiones de vigas y marcos Cuando se carga una estructura, sus elementos esforzados se deforman. Cuando esto ocurre, la estructura cambia de forma y sus puntos se desplazan. Aunque estas deflexiones
ESTRUCTURAS I F.A.D.U. / UdelaR AÑO 2018
ESTRUCTURAS I F.A.D.U. / UdelaR AÑO 2018 REPASO DE EQUILIBRIO ESTÁTICO La estructura de una obra arquitectónica debe encontrarse en equilibrio estático: la estructura se mantiene quieta con respecto a
E.T.S. Ingenieros de Caminos, Canales y Puertos
E.T.S. Ingenieros de aminos, anales y Puertos Universidad de Granada ONVOATORIA JUNIO TEORÍA DE ESTRUTURAS 1 JULIO 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES
ANÁLISIS DE ESTRUCTURAS INDETERMINADAS POR EL MÉTODO DE LAS FLEXIBILIDADES Introducción El método de las flexibilidades, también conocido como método de las deformaciones consistentes, o el método de la
5.3. Qué se debe saber al terminar este tema. 2. Ensamblar la matriz de rigidez global de una estructura
Capítulo 5 Método matricial 5.1. Contenido El concepto de rigidez. Matriz de rigidez de una viga. Método directo de la rigidez. Vector de cargas. Sistemas de coordenadas. Transformación de sistemas de
LEE ATENTAMENTE ANTES DE COMENZAR!
LEE ATENTAMENTE ANTES DE COMENZAR! El examen consta de TRES ejercicios. Empieza cada ejercicio en la hoja de su enunciado y no olvides poner tu nombre en la misma. La entrega del examen se realizará con
Modelizado y cálculo de solicitaciones. 1. La estructura
1 Modelizado y cálculo de solicitaciones 1. La estructura Se trata de una marquesina de madera. Como se aprecia en la imagen. Se trata de 8 pórticos paralelos entre ellos. Son vigas de gran luz que forman,
Energía debida al esfuerzo cortante. J. T. Celigüeta
Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =
CAPÍTULO 4 Modelo de cálculo
CAPÍTULO 4 Modelo de cálculo Alejandro Cases Hernández 1 4.1 - Geometría y características de los materiales Para modelizar la estructura y realizar los cálculos se ha utilizado el programa de elementos
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
Estructuras de Edificación: Tema 20 - La pieza recta
Resumen Estructuras de Edificación: Tema 20 - La pieza recta David Herrero Pérez Departamento de Estructuras y Construcción Universidad Politécnica de Cartagena Grado en Ingeniería de Edificación Segundo
1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo
1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.
Nivel III Titular: Ing. Jorge E. Faréz. Martes: Arq. Estela Ravassi Ing. Luciano Faréz Viernes: Ing. Raúl Rimoldi Arqta.
Taller de Estructuras N 1 Prof. Titular Ordinario Ing. Ernesto R. Villar Nivel IV Prof. Titular Ordinario Ing. Jorge E. Faréz Nivel III Prof. Adjunto Ing. Miguel Lozada Nivel II Prof Adjunta interina Ing.
Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm
Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente
Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************
.- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima
Método de las Fuerzas: Estructura hiperestática con tensor
Método de las Fuerzas: Estructura hiperestática con tensor Determinar los esfuerzos de M Q y N para la siguiente estructura, aplicando el método de las fuerzas. Datos: P = 2 tn q = tn m Ω t = 6 cm 2 E
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 0: Desplazamientos en vigas isostáticas Ejercicio : Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
Celosías espaciales. J. T. Celigüeta
Celosías espaciales J. T. Celigüeta Celosía espacial. Definición Estructura reticular. Barras rectas de sección despreciable Barras articuladas en las 3 direcciones del espacio en ambos extremos: rótulas
El Principio de los Desplazamientos Virtuales (PDV)
El Principio de los Desplazamientos Virtuales (PDV) Apellidos, nombre Basset Salom, uisa ([email protected]) Departamento Centro Mecánica de Medios Continuos y Teoría de Estructuras Escuela Técnica Superior
TEMA 3: ESTRUCTURAS PLANAS CONCEPTOS GENERALES
EMA 3: ESRUCURAS PLANAS CONCEPOS GENERALES Las estructuras planas son aquellas estructuras compuestas por una serie de elementos, contenidos en el plano, unidos entre sí en sus extremos, de forma que constituyan
Resistencia de Materiales TORSIÓN
Resistencia de ateriales TORSIÓN Introducción Torsión en perfiles circulares. Tensiones y Giros Energía de deformación. Resolución de problemas hiperestáticos en torsión. Torsión en vigas de sección cualquiera
Sistema Estructural de Masa Activa
Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,
