5.- Problemas de programación no lineal.
|
|
|
- Enrique Robles Méndez
- hace 9 años
- Vistas:
Transcripción
1 Programación Matemática para Economistas Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación no lineal seguiremos una serie de pasos: En primer lugar intentaremos representar gráficamente nuestro conjunto de oportunidades y las curvas de nivel de la función objetivo. El segundo paso consistirá en comprobar la aplicabilidad de los Teoremas de Weierstrass y Local - Global, de tal forma que podamos tener seguridad de la eistencia de solución global a nuestro problema, y si dichas soluciones que obtengamos con las técnicas aplicadas son las soluciones globales. En tercer lugar obtendremos las soluciones a nuestro problema mediante las condiciones de punto estacionario, aunque en este caso podemos seguir dos vías para la resolución del sistema que se genera. Una, corresponde a la resolución de dicho sistema teniendo en cuenta las distintas ramas que se presenten y otra, basada en la determinación, con la ayuda de la representación gráfica, de las restricciones activas en el óptimo y reducir de esa manera las distintas posibilidades del caso anterior. Posteriormente deben analizarse las condiciones de segundo orden tanto necesaria como suficientes, para poder afirmar si dichos puntos estacionarios son óptimos, y si lo son, si son locales o globales.
2 Programación Matemática para Economistas 8 El conjunto de oportunidades, como podemos observar en la gráfica, es un conjunto cerrado, acotado, conveo y no vacío, mientras que la función objetivo es continua y convea, luego por el Teorema de Weierstrass podemos asegurar que eiste un mínimo global y por el Teorema Local - Global, todo mínimo local es global. En consecuencia, nos bastaría con determinar los mínimos locales y directamente obtendremos los globales pero, como se verifican las condiciones suficientes para que un punto estacionario sea mínimo global, sólo necesitamos encontrar los puntos estacionarios. Para ello, podemos hacerlo de dos formas posibles, directamente a través de las condiciones de punto estacionario, o bien, a través de la gráfica analizando las restricciones activas en el mínimo. Veamos los dos procedimientos comenzando por el de punto estacionario. Para resolver el problema a través de las condiciones de punto estacionario, para construir la función de Lagrange deberemos modificar nuestra función objetivo de acuerdo con la relación: Min ( ) + (y ) = - Ma - ( ) - (y ) Y entonces, la función de Lagrange vendrá dada por L(, y, λ, λ ) = ( ) ( y ) λ ( 9) λ ( 5 5 y) + Observemos que la segunda restricción ha debido adaptarse a la forma.
3 Programación Matemática para Economistas 9 Las condiciones de punto estacionario vienen dadas por: () = ( ) λ + 5λ = 0 () = ( y ) λ y λ = 0 y () = ( λ (4) = ( λ (5) λ ( () λ ( (7) λ 0 (8) λ ) 0 5 ) 0 9) = 0 5 ) = 0 λ = 0 (5a) = 9 (5b) λ = 0 (a) 5 = 5(b) Para resolver ese sistema que contiene ecuaciones e inecuaciones comenzaremos resolviendo las ecuaciones y posteriormente, comprobaremos el cumplimiento de las inecuaciones. Así, determinaremos los puntos que verifican (), (), (5) y (). Para ello, pueden formarse cuatro sistemas que vienen dados por las ecuaciones (), (), (5a) o (5b) y (a) o (b). Posteriormente, comprobaremos si las soluciones verifican las inecuaciones (), (4), (7) y (8) y dichos puntos serán los puntos estacionarios para nuestro problema de mínimo. Pasamos a estudiar cada una de las cuatro posibilidades que surgen al combinar las distintas ramas. a) λ = λ = 0 -(-) = 0 = -(y-) = 0 y = Punto que no verifica la primera restricción luego no sería factible. b) λ = 0-5 = - 5 ( ) -(-) + 5 λ = 0 λ = 5 -(y-) - λ = 0 λ = ( y ) Igualando las dos epresiones que surgen para λ y despejando la variable obtenemos que
4 Programación Matemática para Economistas 40 y = con lo cual tenemos que 5y ( ) = 5 epresión de la que podemos obtener el valor de la variable y valor que nos genera el siguiente resultado que no verifica la condición (8). c) = 9 λ = 0 y = 5+ 5 λ = + 5 ( ) < 0 -(-) - λ = 0 λ = y -(y-) - yλ = 0 λ = y Igualando las dos epresiones obtenidas para λ y despejando la variable obtenemos que = y que al sustituir en la ecuación de la circunferencia nos genera dos valores para la varible y con lo cual llegaríamos a que y = ± = ± Si tomamos los valores positivos y sustituimos en cualquiera de las epresiones obtenidas para λ obtenemos
5 Programación Matemática para Economistas 4 0 λ = + > 0 con lo cual encontramos el punto 9 0, 0 0, +, 0 En cambio, si tomamos los valores negativos obtenemos el siguiente valor de λ y no se verificaría la condición (7). d) = 9-5 = - 5 λ = 0 < Resolviéndose el sistema que surge con estas dos restricciones se obtienen dos resultados = y = 5 = -/ y = -4 5 / Si tomamos el primero, al sustituir en las demás igualdades nos quedaría 0 4λ + 5λ = 5λ λ = ( 5 ) sistema del que se puede derivar que λ = 8 5 < 4 con lo cual lo tendríamos que desechar al no poder tomar esa variable un valor negativo. Igual ocurriría si tomamos la segunda posibilidad cosa que puede comprobar fácilmente el lector. Vistas ya las cuatro posibilidades que surgen de las condiciones de punto estacionario y resumiendo las conclusiones que se derivan de las mismas sólo nos quedamos 9 0 con un único punto, 0, 0, +, 0, que verifica las ecuaciones e inecuaciones correspondientes y, por consiguiente, es punto estacionario. Otra forma, en el caso de problemas de dos variables, es a través de la gráfica, analizando las restricciones activas en el mínimo, con lo que sabremos que los multiplicadores correspondientes a las restricciones inactivas serán cero, y en las 0
6 Programación Matemática para Economistas 4 restricciones activas se verifican las ecuaciones con igualdad. De esta forma reducimos sustancialmente el número de subsistemas a resolver. En nuestro caso tenemos que la restricción () es activa y, por tanto, en la condición de holgura complementaria debe verificarse la condición (5b), mientras que la restricción (4) es inactiva y debe verificarse la condición (a). Por consiguiente, nuestro sistema vendrá dado por (), (), (5b) y (a), es decir, sustituyendo la cuarta en las dos primeras queda: sustituyendo en la cuarta tenemos: + λ = 0 ( + λ) = = + λ y + λ y = 0 y( + λ) = y = + λ + = 9 + λ + λ 0 = 9( + λ ) 0 λ = 9 desechamos el valor negativo de la raíz cuadrada pues deriva un multiplicador negativo, y de ese obtenemos que: = 9 = 0 0 y = luego, nuestro punto es 0, 0, +, 0 que además verifica las condiciones (), (4), (7) y (8). Por tanto, es punto estacionario que además coincide con el obtenido de la resolución de los cuatro sistemas por el primer procedimiento. La siguiente pregunta que debemos contestar para finalizar la resolución de este problema es si este punto estacionario es un mínimo global. La respuesta sería sí, ya que, como ya hemos visto, se verifican las condiciones suficientes para que un punto estacionario sea mínimo global.
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
Base y Dimensión de un Espacio Vectorial
Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos
Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos 4.1-1 Resolver las siguientes desigualdades: a) 57; b) 41; c) 10; d) 431; e) 5; 3 f) 434 a) 5 7 1 S / 1 1, b) 1 1 1 4 1 S /, 1 1 1 c) 10 S /,
Clase 9 Programación No Lineal
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker
. En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función
Ecuaciones de primer grado y de segundo grado
Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla
Anexo 1 ( Momentos de segundo orden )
.1 neo 1 ( Momentos de segundo orden ) 1. Momento de inercia En muchas de las fórmulas empleadas en ingeniería aparecen epresiones analíticas de la forma ρ d, siendo ρ la distancia de un elemento diferencial
Tema 4: Sistemas de ecuaciones e inecuaciones
Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado
POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES.
POST-OPTIMIZACIÓN Y SENSIBILIDAD EN PROBLEMAS LINEALES. Una de las hipótesis básicas de los problemas lineales es la constancia de los coeficientes que aparecen en el problema. Esta hipótesis solamente
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
Derivadas Parciales (parte 2)
40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
EJERCICIOS REPASO 2ª EVALUACIÓN
MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos
Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1
Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...
CÁLCULO DE DERIVADAS
TEMA 4 CÁLCULO DE DERIVADAS Contenidos Criterios de Evaluación 1. Función derivada.. Derivadas sucesivas. 3. Derivadas elementales. 4. Álgebra de derivadas. 5. La Regla de la Cadena. 6. Continuidad y derivabilidad.
m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)
Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente
Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.
Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto
Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices
UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos
Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo
Máximos y mínimos. Anteriormente estudiamos métodos para obtener los extremos de funciones de una variable. Extenderemos esas técnicas a funciones de dos variables. Sea una función de dos variables, definida
GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA
LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones
INECUACIONES. Por ejemplo 2 3 x 6.
INECUACIONES 1. Desigualdades Una desigualdad es una expresión en la que interviene uno de los signos: ,. Por ejemplo, 3 + 10, que es una desigualdad cierta. 3+ > 5 es una desigualdad falsa.. de primer
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(
Fabio Prieto Ingreso 2003
Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
Ejercicios resueltos de microeconomía avanzada
Ejercicios resueltos de microeconomía avanzada Ejercicios resueltos de microeconomía avanzada Vicente aúl Pérez Sánchez Ejercicios resueltos de microeconomía avanzada Vicente aúl Pérez Sánchez ISBN: 978
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:
UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la
a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:
Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
Programación Lineal. El modelo Matemático
Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Herramientas 6 1.1. Factorización
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias
EL PROBLEMA GENERAL DE OPTIMIZACION
EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas
MATEMÁTICAS II CC III PARCIAL
UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una
Cálculo en varias variables
Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad
Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica
Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica Cuántas veces hemos pensado para qué sirven cosas tan raras de las matemáticas como la ecuación de segundo grado, por ejemplo.
PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX
Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,
Ecuaciones, inecuaciones y sistemas
Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones
FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES
FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución
Tema 3: Ecuaciones. Tema 3: Ecuaciones. Ecuaciones de primer grado. Ecuaciones de segundo grado. Ecuaciones polinómicas de grado superior
Tema 3: Ecuaciones Ecuaciones Igualdades de expresiones algebraicas Polinómicas Racionales Primer grado ax=b Segundo grado ax 2 + bx+c=0 Bicuadradas ax 4 + bx 2 +c=0 solución Determinada: Indeterminada:
Guía de Ejercicios: Funciones
Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función
Se distinguen tres métodos algebraicos de resolución de sistemas:
MÉTODOS DE RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Se distinguen tres métodos algebraicos de resolución de sistemas: Sustitución Igualación Reducción Notas: 1) Es importante insistir en que la solución
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES
UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES
Identificación de inecuaciones lineales en los números reales
Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado
Ecuaciones de primer grado
Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
Tema 11: Integral definida. Aplicaciones al cálculo de áreas
Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área
Objetivo General: Plantean y resuelven problemas que involucran desigualdades.
Liceo Polivalente Juan Antonio Ríos Quinta Normal NIVEL : TERCERO MEDIO Guía de aprendizaje Nº 4 Unidad Temática: Desigualdades e Inecuaciones Objetivo General: Plantean y resuelven problemas que involucran
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes
Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación
MAXIMOS Y MINIMOS RELATIVOS
MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial
APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA
Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x
Programación NO Lineal (PNL) Optimización sin restricciones
Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de
5 Sistemas de ecuaciones
Sistemas de ecuaciones INTRODUCCIÓN La resolución de problemas es uno de los fundamentos de las Matemáticas. A la hora de resolver muchos problemas reales se hace patente la necesidad de los sistemas de
TEMA 5.6 PROGRAMACIÓN NO LINEAL
TEMA 5.6 PROGRAMACIÓN NO LINEAL 5.6.. INTRODUCCIÓN 5.6.. CONCEPTOS BÁSICOS 5.6.. MÉTODO O DE NEWTON ONSN SIN RESTRICCIONES S 5.6.4. MÉTODO DE NEWTON CON RESTRICCIONES. FUNCIONES DE PENALIZACIÓN. INTRODUCCIÓN
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites
L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S
L O G A R I T M O S, E C U A C I O N E S E I N E C U A C I O N E S. L O G A R I T M O S En los cálculos con potencias se pueden dar situaciones en las que se conozcan la base de la potencia y el resultado,
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
Determinación de la trasformada inversa mediante el uso de las fracciones parciales
3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones
EJERCICIOS RESUELTOS DE NÚMEROS REALES
EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-
Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:
CONOCIMIENTOS PREVIOS. Inecuaciones.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución de ecuaciones
GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE
Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio
Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1
ÁREA: Algebra COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ASIGNATURA: Matemática. NIVEL: Duodécimo grado ( CIENCIAS ) PROFESOR: José Alexander Echeverría Ruiz TRIMESTRE: I TÍTULO DE LA UNIDAD DIDÁCTICA: 1.
Profr. Efraín Soto Apolinar. Lugares geométricos
Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos
Parciales Matemática CBC Parciales Resueltos - Exapuni.
Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre
Matemáticas Aplicadas a las Ciencias Sociales II Soluciones
Prueba etraordinaria de septiembre. Matemáticas Aplicadas a las Ciencias Sociales II Soluciones.- Un sastre dispone de 8 m de tela de lana y m de tela de algodón. Un traje de caballero requiere m de algodón
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN
May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p
+ 5x. Objetivos Simplificar expresiones algebraicas racionales. Sumar, restar, multiplicar y dividir expresiones algebraicas racionales.
COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor Epresiones algebraicas racionales Objetivos Simplificar epresiones algebraicas racionales Sumar, restar, multiplicar y
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
ECUACIONES. Ecuaciones. Indicadores. Contenido ECUACIÓN
Indicadores ECUACIONES Determina el conjunto solución de una ecuación. Resuelve ecuaciones de primer y segundo grado, así como sistemas de ecuaciones Contenido Ecuaciones De primer grado Sistemas de ecuaciones
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
Tema 2.- Formas Cuadráticas.
Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas
Clase 10: Extremos condicionados y multiplicadores de Lagrange
Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función
Tema 2 Resolución de EcuacionesNo Lineales
Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación
EJERCICIOS RESUELTOS DE INECUACIONES
EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando
Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:
INECUACIONES. Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:, se lee" menor que",se lee" menor o igual que",se lee" mayor que",se lee
