PROBLEMA: SISTEMA DIÉDruCO.
|
|
|
- Luis Miguel Domínguez Correa
- hace 9 años
- Vistas:
Transcripción
1 OPCÓN A PROBLEMA: SSTEMA DÉDruCO. Dadas las trazas del plano P, las proyecciones del punto C y las proyecciones verticates de tos puntos A y B, se pide: 1. Representar las proyecciones del triángulo equilátero de vértices os puntos A, B y C. 2. Dibujar las proyecciones del tetraedro regular de cara ABC, situado en el primer diedro. 3. Representar as proyecciones de la sección que produce en el poliedro el plano P. 4. Determinar la verdadera magnitud de a sección. Apartado 1 Apartado 2 Apartado 3 Apartado 4 Puntuación máxima: 4,0 puntos
2 OPCÓN A PROBLEMA: SSTEMA DÉDMSO. Dadas as proyecciones de as rectas perpendiculares,r'y's; yd$:segnrentorab deja rech:s;se,pide: '1.- Dibujar las trazas del planop definidopor,jas rectas R y S. 2.' Representar las proyecciones,del cuadrado ABCD, situado en el.prt'ner diedro, sabiendo que.el lado AD se encuentra en la recta R. 3.' Determinar las proyecciones de la pirárnide,regular, situada en elprinrer: diedro, de base ABCD y G0 mm de altura. lfr,lh :/: [D1 r&! Puntuación: Apartado 1: (P') Apartado 2: : Apartado 3: Líneas vistas y ocultas: Puntuación máxima: '.r 1,5 puntos 1,5 puntos 4,0 puntos
3 OPCÉN B EJERCCO 1O: SSTEMA DÉDRrcO. Dadas las proyecciones de los vértices del triángulo ABC, se pide: 1.- Determinar las proyecciones de su baricentro. 2.' Representar as proyecciones de la recta R perpendicular al triángulo ABC por su baricentro. 3.- Determinar las proyecciones del punto V, situado sobre la recta R, que dista 65 mm del baricentro y posee la mayor cota posible. 4.- Representar las proyecciones de la pirámide de base ABC y vértic v. b -l Apartado 1: Apartado 2: Apartado 3: Apartado 4: Puntuación máxima: 1,0 Buntos 3,0 puntos
4 OPCÉN A PROBLEMA: SSTEMA UÉDRrcO. Dadas las trazas del plano P y la proyección horizontal del segmento AB, se pide: 1.- Representar las proyecciones del triángulo equilátero ABC, contenido en el plano horizontal de proyección, de lado AB y vértice C con mayor alejamiento posible. 2.- Dibujar las proyecciones del tetraedro regular de cara ABC, situado en el primer diedro. 3.- Representar las proyecciones de la sección que produce en el poliedro el plano p. 4.- Determinar la verdadera magnitud de la sección. Puntuación: Apartado 1 Apartado 2 Apartado 3 Apartado 4 Puntuación máxima 1,5 puntos 4,0 puntos
5 OPCóN A PROBLEMA: SSTEMA DEDRrcO. Dadas la kaza vertical del plano horizontal H, las proyecciones de la recta R y la proyección horizontal de la chcunferencia de centro O situada en el plano H, se pide: 1.- Determinar las proyecciones del centro de la esfera que contiene la circunferencia indicada y es tangente al plano horizontal de proyección. 2.- Representar las proyecciones de la esfera. 3.- Determinar las proyecciones de los puntos de intersección de la recta R con la esfera. 4.- Representar las proyecciónes de las partes vistas y ocultas de la recta R. H' Apartado 1: Apartado 2: Apartado 3: Apartado 4: Puntuación máxima: 2,0 puntos 4,0 puntos
6 OPGÓN A PROBLEMA: SSTEMA DÉDRCO. Dadas latraza horizonta! del plano P y las proyecciones del punto o, se pide: 1. Representar las proyecciones del hexágono regular, situado en el plano horizontal de proyección, de centro el punto 0, lado 35 mm y dos lados paralelos al plano vertical de proyección. 2. Dibujar las proyecciones de la pirámide regular de base el hexágono y altura 80 mm, situada en el primer diedro. 3. Determinar latraza vertical del plano P, sabiendo que contiene el punto medio de a altura de ta pirámide. 4, Representar las proyecciones de la sección que produce en fárqirámide et ptano P. 5. Determinar la verdadera magnitud de la sección. "'', {' r-. U t ' J t b'!' *s' 2''' 1T.,! i t i l Puntuación: Apartado 1: Apartado 2: Apartado 3: Apartado 4: Apartado 5: Puntuación máxima: 4,0 puntos
7 OPCÓN B EJERCCO O: S STEMA DÉDRrcO. Dadas latraza vertical de un plano P y las proyecciones de! punto A, se pide: 1.- Representar la traza horizontal del plano P sabiendo que es perpendicular al primer bisector. 2.- Dibujar las proyecciones de la circunferencia situada en el plano P, que contiene al punto A y es tangente a los planos de proyección, determinando los ejes de as cónicas resultantes. (b) (c) {&} -*+-*-T Puntuación: Apartado 1: Apartado 2: Ejes cónicas Proyecciones de la cónica Puntuación máxima: 3,0 puntos
8 OPCÓN B EJERCCO 1O: SSTEMA DÉDRGO. Dadas las proyecciones del triángulo ABC, se pide: Representar las proyecciones del cuadrado de 30 mm de lado, situado en el interior del triángulo y en el mismo plano, de forma que el centro del cuadrado coincida con el baricentro del triángulo y dos lados del cuadrado sean paralelos al ado AB del triángulo. - }.-- : l : Puntuación: Determinación del Trazado del cuadrado Puntuación máxima: tb) 2,0 puntos 3,0 puntos
9 OPCÚNA PROBLEA SSTEMA DÉDREO. Dadas la taza horizonhl y la faza vertical abaüda de un plano P, el abatimiento del segmento AB y las prcyecciones del punto N, se pide: 1. Deteminar la tnaza veilical del plano P. 2. Representar las proyecciones del triángulo equilátero ABC, contenido en el plano P y en el primer diedrc. 3. Dibuiar las proyecciones del prisma regular de base ABC, situado en el primer diedro, cuya altura es igual a la distancia del punto N al plano P. Y [c)' Apartado Apartado 2 Apailado 3 Líneas vistas y ocultas Funtuación máxima:,l,5 puntos 1,5 puntos 4,0 puntos
10 OPCóN B EJERCCO 1O: SSTEMA UÉDR CO. Dadas latraza horizontal de un plano P y la proyección horizontal de un segmento AB, se pide: 1. Dibujar latraza vertical del plano P, siendo el ángulo que forman sus trazas Representar las proyecciones del rombo ABCD, contenido en el plano P y situado en el primer diedro, sabiendo que uno de sus ados se encuentra en el plano horizontal de proyección.,,,,, P, (dr Apartado Apartado 2 Puntuación máxima 2,0 puntos 3,0 puntos
11 OPC6N B EJERCCO O: SSEA DÉDRrcO Dada la taza horizontal del plano P, se pkle: 1. Represenhr su tsaza vertical sabiendo que d plano forma un ángulo de 600 con el plano horizontal de proyección. 2. Determinar las proyecciones del punto A contenido en diáo plano, que posee 35 mm de alejamiento y 55 mm de coh. 3._Dibuiar las pmyecciones del cr adrado ABCD, sihrado en el plano P y en el primerdiedm, sabiendo que los lados AB y CD sor hcizonhles y que el vértice B está en el plano vertical de proyección.,.. '... ta i t! Í Í t ' i.' /p' i"l,l d"--- /i 1 b; artado Apartado 2 Apartado 3 1,5 puntos Punluacién máxima: 3,0 punlos
12 OPCÚN B EJERCCO O: SSTEMA UÉDRrcO. Dadas la traza horizontal de un plano P y la proyecc ón vertical de un cuadrilátero ABCD, se p de: 1.- Representar la traza vertical del plano P, sabiendo que el vértice C del polígono está contenido en dicho plano y que se encuentra en el plano vertical de proyección. 2.- Dibujar la proyección horizontal del cuadrilátero ABCD contenido en el plano P. 3.- Determinar la verdadera magnitud del polígono. ttl ' tx) Sr (t') Puntuación: Apartado 1 Apartado 2 Apartado 3 Puntuación máxima 1,5 puntos 3,0 puntos
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
B22 Homología. Geometría plana
Geometría plana B22 Homología Homología y afinidad Homología: es una transformación biunívoca e inequívoca entre los puntos de dos figuras F y F'. A cada punto y recta de la figura F le corresponde un
MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO JUNIO
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 2015 2016 MATERIA: DIBUJO TÉCNICO II (2) Convocatoria: JUNIO EL ALUMNO DEBE ELEGIR Y DESARROLLAR, OBLIGATORIAMENTE,
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2.004-2.005 - CONVOCATORIA: DIBUJO TÉCNICO EL ALUMNO DEBE ELEGIR Y DESARROLLAR, OBLIGATORIAMENTE, LOS EJERCICIOS DEL BLOQUE I ó LOS DEL BLOQUE II. BLOQUE
PROF: Jesús Macho Martínez
DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos. INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una
Geometría Analítica Agosto 2016
Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
Districte Universitari de Catalunya
Proves d accés a la universitat Convocatòria 2014 Dibujo técnico Serie 3 Indique las opciones escogidas: Ejercicio 1: Opción A Opción B Ejercicio 2: Opción A Opción B Ejercicio 3: Opción A Opción B Qualificació
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO 1º.- Deducir razonadamente el valor del ángulo α marcado en la figura sabiendo que esta representa
EJERCICIOS DE DISTANCIAS PROCEDIMIENTOS DE EJECUCIÓN
EJERCICIOS DE DISTANCIAS PROCEDIMIENTOS DE EJECUCIÓN 1-2-3.- Procedimiento: - Explicados en teoría 1) 2) 3) 4.- Procedimiento: - Trazar el plano P perpendicular a la recta R, pasando por el punto A, ayudándome
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
TEMA 9 CUERPOS GEOMÉTRICOS
Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Piden: Dato: Piden: Dato: Piden: Dato:
SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
SISTEMA DIÉDRICO II INTERSECCIONES PARALELISMO Y PERPENDICULARIDAD ANA BALLESTER JIMÉNEZ
SISTEMA DIÉDRICO II INTERSECCIONES PARALELISMO Y PERPENDICULARIDAD 1 SISTEMA DIÉDRICO: INTERSECCIONES. r s: Dos rectas se cortan cuando tienen un punto en común. A2 r2 y s2 A1 r1 y s1 α β: Dos planos que
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASE GENERAL Y ESPECÍFICA OPCIÓN A
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASE GENERAL Y ESPECÍFICA CURSO 2013-2014 CONVOCATORIA: JULIO MATERIA: DIBUJO TÉCNICO EL ALUMNO DEBE ELEGIR Y DESARROLLAR, OBLIGATORIAMENTE, LOS
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
1 SITÚA LOS PUNTOS. Mide las coordenadas de cada punto desde O. X positivo del punto 3. Z positivo del punto 3. Y positivo del punto 3
SOLUCIÓN 1. Sitúa los puntos Mide la primera coordenada (X) en la dirección de la Línea de Tierra, empezando desde la izquierda La segunda coordenada (Y) en perpendicular a la LT, con las positivas hacia
SELECTIVIDAD VALENCIA SEPTIEMBRE 1982.
SELECTIVIDAD VALENCIA SEPTIEMBRE 1982. Sistema diédrico:(el PUNTO) Observa detenidamente las proyecciones diédricas de lso puntos; A, B, C y D. Indica en que cuadrantes se hayan situados dichos puntos.
PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta
PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
A RG. Diédrico 13. Abatimientos Hoja 1/2
menor cota, es horizontal; 2 - El otro vértice, él E, contiguo al A esta en el P; 3 - El pentágono está en el 1º A G R F 2 A 2 F 1 E B 1 2 A LA D 1 0 1 B 1LB 0 menor cota, es horizontal; 2 - El otro vértice,
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS
Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas
Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.
Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las
Problemas métricos. Ángulo entre rectas y planos
Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
Conceptos geométricos II
Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada
Carlos Quesada Dominguez ANEXO AL LIBRO DE SISTEMA DIEDRICO
ANEXO AL LIBRO DE SISTEMA DIEDRICO 1 RECTA Y PLANO Dadas dos rectas (r y s) que se cortan y sus trazas están fuera de los limites del papel. Hallar las trazas del plano que determinan. 1º.- Trazar una
95 EJERCICIOS de RECTAS
9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.
1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la
geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia
geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia CBC TALLER DE DIBUJO Cátedra Arq. VÍCTOR MURGIA 2008 3 INTRODUCCIÓN AL LENGUAJE GEOMÉTRICO línea recta Este texto trata sobre conceptos básicos
CRITERIOS DE VALORACIÓN
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...
Geometría. Descripción. Índice general. Capítulo 1. Capítulo 2. Pág. N. 1. Generalidades. Ángulos. Francisco Ramos Ttito ISBN:
Pág. N. 1 Geometría Familia: Editorial: Autor: Ciencias Básicas Macro Francisco Ramos Ttito ISBN: 978-612-304-117-5 N. de páginas: 512 Edición: 1. a 2013 Medida: 17.5 x 24.8 Colores: 1 Papel: Material
congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida
COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
Polígono. Superficie plana limitada por una línea poligonal cerrada.
POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
Sistema Diédrico (I). Verdadera magnitud. Abatimientos
Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
ejerciciosyexamenes.com GEOMETRIA
GEOMETRIA 1.- Dado el vector AB= (2,-1,3) y el punto B(3,1,2) halla las coordenadas del punto A. Sol: A =(1,2,-1) 2.- Comprobar si los vectores AB y CD son equipolentes, siendo A(1,2,-1), B(0,3,1), C(1,1,1)
ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS
ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.
Geometría
Geometría Geometría www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2012 Contenido 1. Geometría 2 1.1. Definiciones....................................... 2 1.2. Postulados........................................
Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.
Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo
α 2 Dibujar las proyecciones y verdadera magnitud, de la sección que produce el plano α, al cilindro recto dado. α 1
Dibujar las proyecciones y verdadera magnitud, de la sección que produce el plano α, al cilindro recto dado. α s 2 x e2 r e H x2 H s2 D s r B x e M N O H A x L H s e0 (α ) 2 0 r0 C α Procedimiento por
Preguntas Propuestas
reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de
INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS
GEOMETRIA POLÍGONOS (1) Si un polígono tiene un ángulo central de 45º Cuántos lados tiene? (2) Inscribir en distintas circunferencias los siguientes polígonos: a) Triángulo equilátero b) Pentágono regular
11 POLIEDROS EJERCICIOS. 6 Cuántas caras, vértices y aristas hay en los siguientes poliedros? a) b) c)
11 POLIEROS EJERIIOS 1 ibuja una línea recta en tu cuaderno. escribe algún segmento real en el techo de la clase que se cruce con la línea que has dibujado. 6 uántas caras, vértices y aristas hay en los
EJERCICIOS DE PUNTOS EN EL ESPACIO
EJERCICIOS DE PUNTOS EN EL ESPACIO 1.- Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
Districte Universitari de Catalunya
Proves d Accés a la Universitat. Curs 2012-2013 Dibujo técnico Serie 4 Indique las opciones escogidas: Ejercicio 1: Opción A Opción B Ejercicio 2: Opción A Opción B Ejercicio 3: Opción A Opción B Etiqueta
Unidad 11. Figuras planas
Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares
Unidad 1. Trazados fundamentales en el plano.
MATERIA: CURSO: DIBUJO TÉCNICO 2º BACHILLERATO CONTENIDOS MÍNIMOS Unidad 1. Trazados fundamentales en el plano. Suma de segmentos. Diferencia de segmentos. Trazado de la mediatriz de un segmento. Trazado
Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS
Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5
10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.
Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
Construcciones. Proporciones. Áreas
Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y
25. SISTEMA DIÉDRICO.- EL PLANO.
25. SISTEMA DIÉDRICO.- EL PLANO. 25.1. Representación del Plano. Trazas del plano Se llaman trazas de un plano a las rectas que resultan de la intersección de este plano con los planos de proyección. Por
Geometría Básica 43 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL
Geometría Básica 43 POLIGONOS UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL SEGMENTOS CONCATENADOS Y CONSECUTIVOS Consideremos los segmentos ab y bc, donde
MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes
MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?
Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas
EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS
Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.
IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos
Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares
CRITERIOS DE EVALUACIÓN Resolver problemas geométricos valorando el método y el razonamiento de las construcciones, su acabado y presentación.
ASIGNATURA: DIBUJO TÉCNICO II Actualización: FEBRERO DE 2009 Validez desde el curso: 2009-2010 Autorización: COPAEU Castilla y León PROGRAMA Análisis del currículo y acuerdos para las Pruebas de Acceso
ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto
Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen
Soluciones Primer Nivel - 5º Año de Escolaridad
Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden
PERSPECTIVA ISOMÉTRICA. INTERSECCIONES CON RECTAS Y PLANOS. SECCIONES PLANAS.
PERSPECTIVA ISOMÉTRICA. INTERSECCIONES CON RECTAS Y PLANOS. SECCIONES PLANAS. 1. INTERSECCIÓN ENTRE PLANOS DADOS POR SUS TRAZAS. 1.1. INTERSECCIÓN DE DOS PLANOS CUALESQUIERA. Es la recta común a los dos
a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.
PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que
Ejercicios para 1 EMT geometría (extraídos de los parciales y exámenes)
Ejercicio 1 Construya con regla y compas un triángulo ABC conociendo: { Indicar programa de construcción. Ejercicio 2 Dado ABC tal que: { se pide a) Construir todos los puntos P que cumplan simultáneamente:
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
Índice. Prólogo. Capítulo 1. Generalidades...1
Índice Prólogo Capítulo 1. Generalidades...1 1.1. Introducción...1 1.2. Proyecciones...2 1.2.1. Paralelismo en la proyección cilíndrica... 5 1.2.2. Perpendicularidad en la proyección cilíndrica... 6 1.3.
B5 Lugares geométricos
Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,
CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.
CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos
5. CURVAS TÉCNICAS Y CURVAS CÓNICAS.
IUJO TÉNIO HILLERTO Láminas resueltas del TE 5. URVS TÉNIS Y URVS ÓNIS. epartamento de rtes lásticas y ibujo 1.- onstruir el óvalo según el mayor dado. 2.- onstruir el óvalo dado el menor siguiente: O1
Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger
Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose
