Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 3"

Transcripción

1 Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, 010 Soluciones Taller 3 1. Pruebe usando contradicción que: + 6 < 15. (Sin usar calculadora, sólo operaciones con enteros.) Supongamos que Puesto que ambos lados de la desigualdad son positivos, elevando al cuadrado a ambos lados se preserva la desigualdad y se obtiene y de aquí ( ) ( 6) ( 15) Restando 8 en ambos lados y elevando al cuadrado de nuevo se obtiene de donde ( 1) 7, Esto último es una falsedad. Por lo tanto, lo asumido, es también falso. Así que + 6 < 15.. Pruebe que: Para todo entero n, si n es impar, entonces n es impar. Probamos el contrapositivo: si n es par entonces n es par. Supongamos que n es par, entonces por definición n = k para algún entero k. Elevando al cuadrado se obtiene n = (k) = 4k = (k ). Pero l = k es entero, por lo tanto n = l es par. 3. Pruebe lo siguiente: Para cualquier número entero, si 3n + es impar entonces n es impar. Probamos el contrapositivo: 1

2 Si n es par entonces 3n + es par. Suponemos que n es par. Entonces existe un entero k tal que n = k y reemplazando se obtiene 3n + = 3(k) + = (3k + 1). Puesto que l = 3k + 1 es un entero, entonces 3n + = l es par. 4. La propiedad de un número entero de ser par o impar se denomina paridad. Dos enteros tienen la misma paridad si ambos son pares o ambos son impares, y tienen paridad opuesta si uno es par y el otro impar. Pruebe lo siguiente: Dos números enteros consecutivos cualesquiera tienen paridad opuesta. casos: Sean n y n + 1 dos enteros consecutivos. Consideramos dos n es par: Entonces existe un entero k tal que n = k y por lo tanto n + 1 = (k) + 1 = k + 1, el cual es un entero impar por definición. n es impar: Entonces existe un entero k tal que n = k + 1 y por lo tanto n + 1 = (k + 1) + 1 = k + = (k + 1). Puesto que l = k + 1 es entero, entonces n + 1 = l es un entero par por definición. Hemos obtenido en ambos casos que n y n+1 tienen paridad opuesta. 5. Pruebe lo siguiente Para m y n enteros, si m y n tienen la misma paridad entonces m + n es par. Sean m y n enteros. Consideramos dos casos: m y n son pares: Entonces existen enteros k 1 y k tal que m = k 1 y n = k. Por lo tanto m + n = k 1 + k = (k 1 + k ). Puesto que l = k 1 + k es entero, entonces m + n = l es par por definición.

3 m y n son impares: Entonces existen enteros k 1 y k tal que m = k y n = k + 1. Por lo tanto m + n = (k 1 + 1) + (k + 1) = k 1 + k + = (k 1 + k + 1). Puesto que l = k 1 + k + 1 es entero, entonces m + n = l es par por definición. Hemos obtenido en ambos casos que m + n es par. 6. Considere la siguiente proposición: Para todo par de enteros m, n, si 7m + 5n = 147, entonces m es impar ó n es impar. (a) Escriba el converso de esta proposición. Si m es impar ó n es impar entonces 7m + 5n = 147. (b) Escriba el contrapositivo/contrarecíproco de esta proposición. Si m es par y n es par entonces 7m + 5n 147. (c) Para cada uno de los anteriores, pruébelo ó de un contraejemplo. El converso es falso: por ejemplo con m = n = 1, ambos son impares pero 7m + 5n 147. El contrapositivo es equivalente a la afirmación original, y es verdadero. Probamos el contrapositivo: Sean m y n enteros pares. Entonces existen enteros k 1 y k tal que m = k 1 y n = k. Entonces 7m + 5n = 7(k 1 ) + 5(k ) = (7k 1 + 5k ). Puesto que l = 7k 1 + 5k es entero, entonces 7m + 5n = l es entero par. Pero 147 = es impar. Por lo tanto 7m + 5n Para dos enteros m y n se dice que son iguales módulo k, y se denota m = n(modk) ó m n(modk), si existe un entero l tal que n m = kl. Pruebe que si m = x(modk) y n = y(modk) entonces m + mn = x + xy (modk). (Este es quizás un poco más complicado que el promedio.) Asumimos que m = x(modk) y n = y(modk). Por definición, existen enteros l 1 y l tal que m x = kl 1 y n y = kl 3

4 Ahora con el propósito de llegar a la conclusión deseada, consideramos la diferencia (m + mn) (x xy) = (m x ) + (mn xy). Para el primer témino tenemos que m x = (m x)(m + x) = (kl 1 )(m + x) = k(l 1 (m + x)). Para el segundo término tenemos que, sumando y restando xn, mn xy = mn xn+xn xy = n(m x)+x(n y) = nkl 1 +xkl = k(nl 1 +xl ). Entonces (m +mn) (x xy) = k(l 1 (m+x))+k(nl 1 +xl ) = k(l 1 (m+x)+nl 1 +xl ). Puesto que el factor multiplicando k en el último término es entero, entonces por definición m + mn = x + xy (modk). 8. Si a y b son números reales, se define max{a, b} como el máximo de a y b ó el valor común si son iguales. Esto se puede escribir como { a si a b max{a, b} = b si b > a Probar que: Para todo los números reales x 1, x, m, y, se tiene que si m = max{x 1, x } y y m, entonces y x 1 y y x casos: Primero veamos que m x 1 y m x considerando los dos x 1 x : Entonces m = x 1. Por lo tanto m x 1. Por otra parte m = x 1 y x 1 x implican m x. x 1 < x : Entonces m = x. Por lo tanto m x. Por otra parte m = x y x > x 1 implican m x 1. Ahora, asumimos y m. Puesto que m x 1 y m x entonces y x 1 y y x por transitividad de. 9. Use prueba por casos para demostrar que max{x, y} = x + y + x y. Consideramos dos casos: 4

5 x y: Entonces max{x, y} = x. x y = x y. De aquí que x + y + x y = que es entonces igual a max{x, y}. x + y + (x y) = x = x, x < y: Entonces max{x, y} = y y x y = y x. De aquí que x + y + x y = que es entonces igual a max{x, y}. x + y + (y x) = y = y, En ambos casos la ecuación dada se satisface. 10. Se define el signo de un número real x, escrito sgn(x), como 1 si x > 0 sgn(x) = 0 si x = 0 1 si x < 0 Use prueba por casos para verificar que sgn(xy) = sgn(x)sgn(y) para todos los números reales x, y. 11. Pruebe lo siguiente Para todos los números reales x, y, si x + y > 100 entonces x > 50 ó y > 50. Probamos el contrapositivo: Si x 50 y y 50 entonces x + y 100. Sean x y y reales positivos con x 50 y y 50. Sumando y en ambos lados de la desigualdad x 10 se obtiene x + y 50 + y. Similarmente, sumando 50 en ambos lados de la desigualdad y 50 se obtiene y De estas dos desigualdades se obtiene x + y 100 usando la transitividad de la desigualdad. 1. Pruebe lo siguiente Para todos los números reales positivos x, y, si xy > 100 entonces x > 10 ó y > 10. 5

6 Probamos el contrapositivo: Si x 10 y y 10 entonces xy 100. Sean x y y reales positivos con x 10 y y 10. Multiplicando la desigualdad x 10 por y a ambos lados, se obtiene xy 10y donde la desigualdad no cambia porque y > 0. Similarmente, multiplicando la desigualdad y 10 por 10 a ambos lados, se obtiene De estas dos desigualdades se obtiene 10y 100. xy 100 usando la transitividad de la desigualdad. Nota: Se podría pensar que x y y positivos es parte de la premisa original, y de acuerdo con esto el contrapositivo sería Si x 10 y y 10 entonces x 0 ó y 0 ó xy 100. Pero la verificación de esto sería esencialmente la misma porque si no se tiene x 0 ó y 0, entonces ambos deben ser positivos y entonces se puede concluir xy 100. Lo que se ha hecho en la solución es considerar ser positivo como parte de la cuantificación y por lo tanto no aparece en el contrapositivo. De ambas maneras, la prueba de validez para el contrapositivo es esencialmente la misma. 13. Pruebe lo siguiente Para todos los números reales positivos x, y y z, si xy > z entonces x > z ó y > z. Probamos el contrapositivo: Si x z y y z entonces xy z. Sean x y y reales positivos con x z y y z. Multiplicando la desigualdad x z por y a ambos lados, se obtiene xy zy donde la desigualdad no cambia porque y > 0. Similarmente, multiplicando la desigualdad y z por z a ambos lados, se obtiene zy z z = z. De estas dos desigualdades se obtiene xy z usando la transitividad de la desigualdad. 6

7 14. Sean s and t números reales y sea A = s + t (el promedio). Entonces al menos uno de los números s y t es mayor o igual que A. (a) Reescriba el enunciado en palabras haciendo explícitos los cuantificadores involucrados. Para todos los números reales s, t, A, si A = (s+t)/ entonces s A ó t A. Ó simbólicamente: s, t, A R : ((A = (s + t)/) ((s A) (t A))) (b) Escriba un prueba (detallada) de la validez del enunciado. Por contradicción, asumimos que s < A y t < A, entonces A = 1 (s + t) por definición < 1 (A + t) porque s < A < 1 (A + A) porque t < A = A de lo que se concluye que A < A, lo que es una falsedad. (c) Pruebe que además si uno de los números es estrictamente mayor que A entonces el otro es estrictamente menor que A. De nuevo, por contradicción. Se tienen dos casos dependiendo de cual, s ó t es estrictamente mayor que A. Supongamos s > A. La negación de la conclusión es t A. Entonces A = 1 (s + t) por definición > 1 (A + t) porque s > A 1 (A + A) porque t A = A de lo que se concluye que A > A, lo que es una falsedad (contradicción) y por lo tanto t < A. En el otro caso suponemos t > A y la negación de 7

8 la conclusión es s A. Procediendo en forma completamente análoga se obtiene (podría omitirse ya que es bastante claro que sigue dado el caso anterior) A = 1 (s + t) por definición > 1 (s + A) porque t > A 1 (A + A) porque t A = A y se llega a la contradicción A > A y por lo tanto se concluye s < A. Como conclusión de la prueba por casos, si uno de los números es estrictamente mayor que A entonces el otro es estrictamente menor que A. 15. Sean a y b números racionales con a 0. Pruebe lo siguiente: Para cualquier número real x, x es racional si y sólo si ax + b es racional. Por qué se necesita la condición a 0? 16. Para cada una de las siguientes afirmaciones identifique si es verdadera o falsa. En el primer caso dé una prueba (detallada) y en el segundo caso dé un contraejemplo (un ejemplo que muestra la falsedad de la afirmación). Note que en las afirmaciones implícitamente se está cuantificando universalmente. (a) El producto y división (con divisor no nulo) de números racionales es racional. (b) El producto de un número racional diferente de cero y de un número irracional es irracional. Sugerencia: Considere contradicción y parte (a). (c) El producto de dos números irracionales es irracional. En notas de clase. 17. Pruebe las siguientes afirmaciones. (a) Para todo los enteros m, n, l, si l m y l n entonces l (m + n) y l (m n). (Recuerde que x y significa que x divide y.) Escribimos una prueba directa (para la suma, el caso de la diferencia es completamente análogo): 8

9 Sean m, n, l enteros tal que l m y l n. existen enteros p y q tal que Por definición, Entonces sumando obtenemos m = pl y n = ql. m + n = pl = ql = (p + q)l. Puesto que p + q es entero concluímos que l (m + n). (b) Para todo los enteros m, n, l, si l m y l n entonces l (m+n). (x y significa que x no divide y.) Sugerencia: Use prueba por contradicción y (a). Sean m, n, l enteros tal que l m y l n. Para probar por contradicción asumimos que l (m + n). Consideremos n escrito como n = (m + n) m Puesto que l (m + n) y l m, usando el resultado de la parte (a) se concluye que l n. Pero de acuerdo con la hipótesis l n. Así que tenemos una contradicción y por lo tanto podemos concluir que l (m + n). 9

Capítulo II. Pruebas en Matemáticas

Capítulo II. Pruebas en Matemáticas Capítulo II Pruebas en Matemáticas Ahora nos concentramos en afirmaciones matemáticas y sus pruebas. Se encuentra que tratar de escribir pruebas justificando cada paso se vuelve rápidamente inmanejable,

Más detalles

Demostración Contraejemplo. Métodos Indirectos

Demostración Contraejemplo. Métodos Indirectos DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un

Más detalles

MÉTODOS DE DEMOSTRACIÓN

MÉTODOS DE DEMOSTRACIÓN 2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es

Más detalles

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 5

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 5 Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, 00 Soluciones Taller 5. Pruebe por inducción que n 3 = 3 + 3 + 3 3 + + (n ) 3 + n 3 = = ( ) n(n + ) Caso base:

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles

Tarea 3 Matemáticas Discretas Soluciones

Tarea 3 Matemáticas Discretas Soluciones Tarea 3 Matemáticas Discretas Soluciones. (a) Pruebe por inducción que n n < n! para n suficientemente grande (esto es existe un n 0, tal que la desigualdad es cierta para n n 0 ). Como parte de la prueba

Más detalles

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar 1.4 MÉTODOS DE DEMOSTRACIÓN Designamos en esta forma las estrategias o esquemas más generales que identificamos en los procesos deductivos. Estos modelos están fundamentados lógicamente en teoremas o reglas

Más detalles

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles

0.1 Axioma del supremo

0.1 Axioma del supremo 0.1 Axioma del supremo El conjunto de los números racionales cumple con la propiedades de cuerpo y de orden que se cumplen en, sin embargo en tal conjunto no podemos dar respuesta a la existencia de un

Más detalles

Capítulo I ELEMENTOS PREVIOS

Capítulo I ELEMENTOS PREVIOS Capítulo I ELEMENTOS PREVIOS Antes de iniciar lo referente a Criterios de Divisibilidad, recordaremos algunos conceptos y propiedades previas que nos permitirán comprender de mejor manera el contenido

Más detalles

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Clase 2: Algoritmo de Euclídes

Clase 2: Algoritmo de Euclídes Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos

Más detalles

Capítulo III. Inducción y Recursión

Capítulo III. Inducción y Recursión Capítulo III Inducción y Recursión III.1. Inducción Figura III.1: La caída de dominós en cadena ilustra la idea del principio de inducción: si el primer dominó cae, y si cualquiera al caer hace caer al

Más detalles

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN INDUCCIÓN MATEMÁTICA EDUARDO SÁEZ, IVÁN SZÁNTÓ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA. INTRODUCCIÓN El método deductivo, muy usado en matemática, obedece a la siguiente idea:

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2016/2017. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

Propiedades de la igualdad

Propiedades de la igualdad M3 Propiedades de la igualdad Imagina que tienes una balanza y quieres pesar un kilogramo de azúcar. De un lado de la balanza colocas un contrapeso que te indique el peso deseado, es decir un kilogramo.

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números Elaborado por: Jeff Maynard Guillén Eliminatoria II Julio, 2011 Introducción a la Teoría de Números A manera de repaso vamos a recordar algunos conjuntos N = {1, 2,

Más detalles

1. NÚMEROS PRIMOS Y COMPUESTOS.

1. NÚMEROS PRIMOS Y COMPUESTOS. . NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

Si el producto de dos números es cero

Si el producto de dos números es cero Matemáticas I, 2012-I Si el producto de dos números es cero Empezamos con un acertijo: Silvia tiene dos números. Si los multiplica sale 0 y si los suma sale 256. Cuáles son estos dos números que tiene

Más detalles

V F F V V V F F F F V F F F V V F F F F V F F V. Este método de demostración esta basado en la equivalencia lógica

V F F V V V F F F F V F F F V V F F F F V F F V. Este método de demostración esta basado en la equivalencia lógica por Reducción al absurdo Observa las siguientes tablas de verdad Q Q V V V F V V Q Q V V V F F F V V V F F F Este método de demostración esta basado en la equivalencia lógica Absurdo Q Q Un absurdo es

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Solución de Ecuaciones Algebraicas Ecuación Cuadrática

Solución de Ecuaciones Algebraicas Ecuación Cuadrática Solución de Ecuaciones Algebraicas Ecuación Cuadrática Dr. Julián Gpe. Tapia Aguilar juliangpe@yahoo.com.mx U V M Villahermosa Mayo de 2011 Índice 1. Resolviendo Ecuaciones Cuadráticas una Variable 1 2.

Más detalles

y exámenes. Temas 3 y 4

y exámenes. Temas 3 y 4 U N I V E R S I D A D D E M U R C I A Ejercicios DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2017/2018. de talleres y exámenes. Temas 3 y 4 Se recuerda que la resolución de algunos de estos ejercicios

Más detalles

SGUICES020MT21-A16V1. SOLUCIONARIO Generalidades de números reales

SGUICES020MT21-A16V1. SOLUCIONARIO Generalidades de números reales SGUICES020MT21-A16V1 SOLUCIONARIO Generalidades de números reales 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA GENERALIDADES DE NÚMEROS REALES Ítem Alternativa 1 D 2 C 3 C 4 E 5 E 6 A 7 D 8 D 9 A 10 D 11 C 12 B

Más detalles

Sucesiones acotadas. Propiedades de las sucesiones convergentes

Sucesiones acotadas. Propiedades de las sucesiones convergentes Sucesiones acotadas. Propiedades de las sucesiones convergentes En un artículo anterior se ha definido el concepto de sucesión y de sucesión convergente. A continuación demostraremos algunas propiedades

Más detalles

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA.

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. La Conjetura de Goldbach cegp@utp.edu.co La Conjetura de Goldbach afirma que todo número par mayor o igual

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 EL LENGUAJE MATEMÁTICO Actividad 1 Cuando hablamos o escribimos en Matemáticas lo hacemos en nuestra lengua habitual, el español, pero utilizamos frases con palabras que designan objetos y símbolos que

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos

Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos 12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

Lógica Proposicional, Teoremas y Demostraciones

Lógica Proposicional, Teoremas y Demostraciones Lógica Proposicional, Teoremas y Demostraciones Manuel Maia 19 de marzo de 2012 1 Proposiciones Una proposición es una oración declarativa o una expresión matemática que es verdadera o es falsa, pero no

Más detalles

Modalidad virtual. Matemática

Modalidad virtual. Matemática EXPRESIONES ALGEBRAICAS, FÓRMULAS, ECUACIONES 1 En matemática es habitual trabajar con relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se denominan incógnitas o

Más detalles

Solución de Ecuaciones Algebraicas Ecuación Lineal

Solución de Ecuaciones Algebraicas Ecuación Lineal Solución de Ecuaciones Algebraicas Ecuación Lineal Dr. Julián Gpe. Tapia Aguilar juliangpe@yahoo.com.mx U V M Villahermosa Mayo de 0 Índice 1. Resolviendo Ecuaciones una Variable 1 1.1. Ecuaciones de Primer

Más detalles

Seminario de problemas. Curso Hoja 20

Seminario de problemas. Curso Hoja 20 Seminario de problemas. Curso 014-15. Hoja 0 13. Dada una semicircunferencia de diámetro AB = R, se considera la cuerda CD de longitud fija c. Sea E la intersección de AC con BD y F la intersección de

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Propiedades del valor absoluto de números enteros (ejercicios)

Propiedades del valor absoluto de números enteros (ejercicios) Propiedades del valor absoluto de números enteros (ejercicios) 1. Ejemplos. Rellene los espacios: 6 6, 8 8, 23 23, 0 0, 5 5. 4 lomon, 15 loomoon, 120 loooomoooon, 0 lomon. 2. Definición formal. El valor

Más detalles

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas LAS MATEMÁTICAS Y SU LENGUAJE Entender, demostrar y resolver matemáticas El trabajo matemático Utilización de un lenguaje peculiar de significados precisos. Cuidado! A veces similar al cotidiano pero con

Más detalles

Propiedades de la igualdad

Propiedades de la igualdad FAL-0_M3AA1L1_Igualdad Versión:Septiembre01 Revisor:SandraElviaPérez Propiedadesdelaigualdad Por:SandraElviaPérez Imagina que tienes una balanza y quieres pesar un kilogramo de azúcar. De un lado de la

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. Guía de estudio Métodos de demostración Unidad A: Clase 3 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.. Inferencias y métodos de

Más detalles

9 Expresiones racionales

9 Expresiones racionales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #9: viernes, 10 de junio de 2016. 9 Epresiones racionales 9.1 Fracciones

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

D) 15 E) imposible saberlo

D) 15 E) imposible saberlo Práctica. Se tienen números naturales consecutivos, el mayor de los cuales es impar. La suma de los números pares que hay entre los vale a. Entonces, el menor de los números es a a A) B) a C) a D) E) imposible

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD

UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD AUTORAS: PATRICIA CUELLO Y ADRIANA RABINO 1. Múltiplo de 7 A una persona cuya edad oscila entre 9 y 100 años se le pide que escriba su edad 3 veces consecutivas,

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x

Más detalles

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4.

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES.- DEFINICION.- Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que solo se verifica para determinados valores de la incógnita o incógnitas.

Más detalles

GUÍA DE EJERCICIOS. Área Matemática - Polinomios

GUÍA DE EJERCICIOS. Área Matemática - Polinomios GUÍA DE EJERCICIOS Área Matemática - Polinomios Resultados de aprendizaje. Realizar operaciones entre polinomios. Aplicar Regla de Ruffini, para determinar raíces de un polinomio. Aplicar los procedimientos

Más detalles

CURSO PROPEDÉUTICO 2017

CURSO PROPEDÉUTICO 2017 CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a

Más detalles

Exponentes, Raíces y Radicales. Números Reales

Exponentes, Raíces y Radicales. Números Reales Exponentes y Exponentes Fraccionarios, Raíces y Exponentes, Raíces y en los Números Reales Carlos A. Rivera-Morales Precálculo I Exponentes, Raíces y Tabla de Contenido Contenido Exponentes y Exponentes

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

4 Conjunto de los números reales

4 Conjunto de los números reales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #4: viernes, 3 de junio de 2016. 4 Conjunto de los números reales 4.1

Más detalles

(x ) (x ) = x 2 + px + q. ( + ) = p = q: El método de completamiento de cuadrado aplicado al polinomio. P (x) = ax 2 + bx + c. P (x) = a x + b 2.

(x ) (x ) = x 2 + px + q. ( + ) = p = q: El método de completamiento de cuadrado aplicado al polinomio. P (x) = ax 2 + bx + c. P (x) = a x + b 2. PROBLEMAS CUADRÁTICOS DE OLIMPIADAS Francisco Bellot Rosado Presentamos a continuación una serie de problemas de Olimpiadas con la característica común de hacer intervenir en ellos, en mayor o menor medida,

Más detalles

Números reales. por. Ramón Espinosa

Números reales. por. Ramón Espinosa Números reales por Ramón Espinosa Existe un conjunto R, cuyos elementos son llamados números reales. Los números reales satisfacen ciertas propiedades algebraicas y de orden que describimos a continuación.

Más detalles

Números reales Conceptos básicos Ejercicios resueltos. 2. Responder las siguientes preguntas. Justificar su respuesta. (a) Cuánto debe añadirse a 2 9

Números reales Conceptos básicos Ejercicios resueltos. 2. Responder las siguientes preguntas. Justificar su respuesta. (a) Cuánto debe añadirse a 2 9 Números reales Conceptos básicos Ejercicios resueltos 1. Establecer cuáles de las siguientes sentencias son verdaderas y cuáles son falsas. En las falsas proporcionar un contraejemplo. En las verdaderas

Más detalles

La aritmética es la ciencia que se ocupa de analizar con objetos concretos, esto es, el uso de los números.

La aritmética es la ciencia que se ocupa de analizar con objetos concretos, esto es, el uso de los números. Aritmética vs. Álgebra Aritmética y álgebra La aritmética es la ciencia que se ocupa de analizar con objetos concretos, esto es, el uso de los números. El álgebra son las operaciones matemáticas analizadas

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción Matemática Discreta Números, inducción y recursión: principio de inducción Números, inducción y recursión 1. Sistemas numéricos 2. Principio de inducción 3. Definiciones recursivas 4. División entera y

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Los números naturales. Definición y propiedades

Los números naturales. Definición y propiedades Los números naturales. Definición y propiedades Con la idea de abrir boca para empezar los estudios de matemáticas en bachillerato, en un artículo anterior se hablaba sobre la introducción al número real

Más detalles

MATE 3040: Teoría de Números. Solución: Aplique el Algoritmo de Euclides para obtener 8 = gcd(56, 72) = 56(4) + 72( 3).

MATE 3040: Teoría de Números. Solución: Aplique el Algoritmo de Euclides para obtener 8 = gcd(56, 72) = 56(4) + 72( 3). Solución Asignación 3. Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico MATE 3040: Teoría de Números 1. Determine todas las soluciones

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Auxiliar 2: Conjuntos

Auxiliar 2: Conjuntos Profesora: María Leonor Varas Profesora auxiliar: Ivana Bachmann Fecha: 28 de marzo de 2013 Auxiliar 2: Conjuntos niversidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Axiomas del Cálculo de Predicados

Axiomas del Cálculo de Predicados Axiomas del Cálculo de Predicados Si bien el cálculo proposicional nos permitió analizar cierto tipo de razonamientos y resolver acertijos lógicos, su poder expresivo no es suficiente para comprobar la

Más detalles

PRODUCTOS, COCIENTES NOTABLES Y FACTORIZACIÓN 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA

PRODUCTOS, COCIENTES NOTABLES Y FACTORIZACIÓN 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA 36 CAPÍTULO 1 CONCEPTOS FUNDAMENTALES DE ÁLGEBRA Otros polinomios pueden tener tres variables, por ejemplo x, y, z o bien, para el caso, cualquier número de variables. La adición, sustracción y multiplicación

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8 Teorema del Residuo Si un polinomio P (x) se divide entre x c, entonces, el residuo de la división es P (c). Sin realizar

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA PROLEMS RESUELTOS DE L ECUCIÓN DE L RECT 1) Hallar la pendiente el ángulo de inclinación de la recta que pasa por los puntos (-, ) (7, -) 1 m 1 m 7 1 comom tan entonces 1 1 tan 1,4 ) Los segmentos que

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

14.2 Simplificar expresiones con exponentes racionales y radicales

14.2 Simplificar expresiones con exponentes racionales y radicales Nombre Clase Fecha 14.2 Simplificar expresiones con exponentes racionales y radicales Pregunta esencial: Cómo puedes escribir una expresión radical como una expresión con un exponente racional? Resource

Más detalles

open green road Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo .cl

open green road Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo .cl Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo.cl . Introducción Hemos escuchado muchas veces que una potencia es la multiplicación abreviada de un término por sí mismo un

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

Cómo hacer demostraciones

Cómo hacer demostraciones Cómo hacer demostraciones Lic. Ramiro Choque C. April 5, 2007 Contenido 1 Introducción 2 2 Elementos de un problema por demostrar 2 2.1 Hipótesisytesis... 2 2.2 Interpretaciónsimbólica... 3 3 Demostración

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las

Más detalles

Utilizar los productos notables y algunas técnicas de factorización en las operaciones con polinomios.

Utilizar los productos notables y algunas técnicas de factorización en las operaciones con polinomios. DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Iniciación al Cálculo Productos notables y factorización Presentación Las siluetas de los objetos que nos rodean y los procesos que surgen en diferentes campos de aplicación

Más detalles

Soluciones. Abril de 2010

Soluciones. Abril de 2010 FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA00- Introducción al Cálculo Semestre 00-0 Profesor: Jorge San Martín Auxiliares: Natalia Ruiz - Alfredo Torrico Soluciones Abril de 00 P a) Demuestre

Más detalles