CONTACTO ENTRE SOLIDOS
|
|
|
- José Ángel Alcaraz Iglesias
- hace 9 años
- Vistas:
Transcripción
1 CNTACT ENTRE SLIDS Índice 1. Apoyos y enlaces entre sólidos 2 2. Acciones en apoyos y enlaces lisos Contacto liso puntual Solidos en contacto puntual Contacto liso no puntual Rótula esférica Empotramiento perfecto Árbol circular en cojinete Acciones en apoyos y contactos reales Modelo de Coulomb y Morin de las acciones de contacto reales Fuerza de Resistencia al deslizamiento Momento de Resistencia a la rodadura Momento de Resistencia al pivotamiento
2 1. Apoyos y enlaces entre sólidos En Mecánica se consideran exclusivamente sistemas mecánicos de un número finito de grados de libertad, cuyo caso más frecuente es un conjunto finito de sólidos en contacto. Lo que vamos a tratar son las diversas formas de apoyo y enlace entre sólidos en contacto que pueden aparecer. Para que se produzca un movimiento de sólidos en contacto (cinemática) debe existir una interacción entre los mismos (dinámica), que se manifiesta a través de una serie de acciones/reacciones de contacto entre ellos de naturaleza electromagnética. Nuestro interés estriba en analizar el sistema de incógnitas introducidas para modelizar dicha interacción. 2. Acciones en apoyos y enlaces lisos 2.1. Contacto liso puntual Hipótesis básica del contacto liso puntual: cuando las superficies de dos sólidos se tocan en un punto, la acción de uno sobre el otro es una fuerza perpendicular al plano tangente común en dicho punto Solidos en contacto puntual Fuerza normal al plano tangente común cuando el plano tangente esté definido o fuerza con cualquier dirección cuanto el plano tangente permanezca indefinido. Figura 1: Casos de contacto puntual 2.2. Contacto liso no puntual Si el contacto entre sólidos se realiza en un conjunto de puntos aislados, el tratamiento es análogo al contacto puntual: en cada punto consideramos una reacción incógnita normal al plano tangente común local. Si el contacto no se da en una serie de puntos aislados, este deberá darse en un conjunto denso (incluido en una variedad unidimensional o bidimensional). Aparece entonces una distribución incógnita que asocia a cada punto de la variedad de contacto una reacción elemental (por unidad de longitud o por unidad de superficie) normal al plano tangente local. La Mecánica no es capaz de calcular la distribución incógnita de reacciones normales en la zona de contacto. Sin embargo, lo que puede calcular es la reducción de la distribución incógnita en un punto, es
3 decir, la resultante y el momento en ese punto. Variedad unidimensional Variedad bidimensional d (u) = n l (u)ds(u) d (u 1,u 2 ) = n s (u 1,u 2 )dσ(u 1,u 2 ) = d = d C Σ M = M d M = M d C El número de incógnitas que resultan de esa reducción puede estar entre 1 y 6. Las incógnitas que no aparecen son aquellas de las que se sabe con certeza que son nulas a priori y están asociadas a ciertos grados de libertad del movimiento relativo entre ambos sólidos. El procedimiento de análisis es el siguiente: se efectúa un estudio cuidadoso de las acciones normales a lo largo de la zona de contacto. Σ Rótula esférica Reducción al centro de la esfera: = X ı+y j+z k, M = 0 x x x x Figura 2: Rótula esférica Empotramiento perfecto Reducción a un punto P: = F x ı+f y j+f z k, MP = M x ı+m y j+m z k x x x x x P x x x Px x M P Figura 3: Empotramiento Perfecto
4 Árbol circular en cojinete Caso general Reducción a un punto del eje z: = F x ı+f y j, M = M x ı+m y j F x M y F y M x Figura 4: Cojinete simple Caso con restricción axial Reducción a un punto del eje z: = F x ı+f y j+f z k, M = M x ı+m y j x x x x x x x x x x F x x M y F y M x Fz Figura 5: Cojinete con impedimento axial Caso de cojinete infinitesimal u oscilante Reducción a un punto del eje z: = F x ı+f y j, M = 0 x Fy x x Fx x x Figura 6: Cojinete oscilante
5 3. Acciones en apoyos y contactos reales Los contactos reales entre sólidos no responden al sencillo modelo de contacto liso por las siguientes causas: Las superficies no son completamente lisas porque la rugosidad macroscópica y microscópica introduce reacciones tangenciales Debido a la elasticidad macroscópica y microscópica de los sólidos reales se produce contacto en todo un área y que además no tiene por qué ser plana. Supongamos un contacto entre sólidos en el que alguno está definido por una variedad bidimensional. Consideremos un sistema de referencia cuyos versores u 1 y u 2 están en el plano tangente común en M y u 3 es perpendicular al plano tangente en M. En general, la reducción a un punto M de las acciones de contacto reales sobre uno de los sólidos produce una fuerza resultante y un momento resultante M M generales y los opuestos en el otro (ver figura 10). La resultante de fuerzas se descompone en: x x 1 u 1 M u 3 v M 20 u una componente normal al plano tangente común = N u 3, denominada reacción normal. una componente tangencial FR = T 1 u 1 + T 2 u 2, denominada fuerza de rozamiento (o de resistencia al deslizamiento). = T 1 u 1 +T 2 u }{{} 2 +N u }{{} 3 El momento en M de las fuerzas M M se descompone en: una componente normal al plano tangente común M p = M 3 u 3, denominada momento de resistencia al pivotamiento. una componente tangencial Mr = M 1 u 1 + M 2 u 2, denominada momento de resistencia a la rodadura. M M = M 1 u 1 +M 2 u }{{} 2 +M 3 u }{{} 3 M r M p En caso de que el contacto sea entre partícula M y curva la cosa cambia ligeramente: = + = F R t = N n n+n b b t b b M n C M M = 0 n Se han propuesto toda una serie de modelos matemáticos de procedencia empírica para abordar las reacciones de contacto reales entre sólidos. El más sencillo, y sin embargo suficientemente aproximado en muchas ocasiones, es el de los franceses Coulomb y Morin. Lo introducimos a continuación porque será el que usemos en nuestros análisis a partir de ahora.
6 3.1. Modelo de Coulomb y Morin de las acciones de contacto reales Fuerza de Resistencia al deslizamiento Sea el movimiento de dos sólidos (S 2 y S 0 ) en contacto puntual en M: Hay que distinguir dos casos: 1. No hay deslizamiento: v 20 M = 0 T 1 y T 2 son incógnitas. Además, para que sea posible el movimiento sin deslizamiento debe satisfacerse la siguiente condición dinámica de no-deslizamiento: f donde f es una constante adimensional no negativa, de procedencia experimental, denominada coeficiente de rozamiento. La caracterización geométrica de la condición anterior es la siguiente: la reacción debe estar en el interior del cono de rozamiento, un cono con vértice en el punto M, cuyo eje es la normal común en M y con semiángulo cónico ϕ = arctanf ϕ M FR Figura 7: Cono de rozamiento 2. Hay deslizamiento: v 20 M 0 En este caso la fuerza de rozamiento satisface la siguiente ecuación: = f vm 20 v M 20 donde de nuevo f es un coeficiente de rozamiento constante que generalmente toma un valor distinto del caso anterior, aunque muy próximo, por lo que se suele tomar idéntico para simplificar.
7 Momento de Resistencia a la rodadura Hay que distinguir dos casos: 1. No hay rodadura: ω 20 r = 0; M 1 y M 2 son incógnitas. Además, para que sea posible el movimiento sin rodadura debe satisfacerse la siguiente condición dinámica: M r δ δ donde δ es una constante no negativa con dimensiones de longitud y de procedencia experimental denominada coeficiente de resistencia a la rodadura. La caracterización geométrica de la condición anterior es la siguiente: la linea de acción de la reacción solo puede desplazarse un brazo de longitud δ del punto M. 2. Hay rodadura: ω r 20 0 M r Figura 8: Geometría de la resistencia a la rodadura En este caso el momento de resistencia a la rodadura satisface la siguiente ecuación: M r = δ ωr 20 ω 20 r donde de nuevo δ es un coeficiente de resistencia a la rodadura constante que generalmente toma un valor distinto del caso anterior, aunque muy próximo, por lo que se suele tomar idéntico para simplificar Momento de Resistencia al pivotamiento Hay que distinguir dos casos: 1. No hay pivotamiento: ω p 20 = 0; M 3 es incógnita. Además, para que sea posible el movimiento sin pivotamiento debe satisfacerse la siguiente condición: M p ǫ M p δ donde ǫ es una constante no negativa con dimensiones de longitud y de procedencia experimental denominada coeficiente de resistencia al pivotamiento. La reacción real, a la vez que desplazar su línea de aplicación una distancia δ de M, se desvía un pequeño ángulo α respecto al plano perpendicular al momento de rodadura: = cosα, = sinα α. M p = δα ǫ = δα M r α Figura 9: Geometría de la resistencia al pivotamiento 2. Hay pivotamiento: ω p 20 0 En este caso el momento de resistencia al pivotamiento satisface la siguiente ecuación: M p = ǫ ωp 20 ω p 20 donde ǫ es un coeficiente de resistencia al pivotamiento constante que toma un valor distinto del caso anterior, aunque muy próximo, por lo que se suele tomar idéntico para simplificar.
8 M M M p M r M 3 M 1 M 2 M T 2 T 1 Figura 10: Esquema de acciones de contacto del sólido 0 sobre el 2 Cuadro 1: Modelo de Coulomb y Morin de acciones de contacto Modelo Caso Incógnitas Ecuaciones Condición (número) adicionales de existencia Sin deslizamiento T 1,T 2 (2) v M 20 = 0 f Con deslizamiento v M 20 (2) FR = f vm 20 v M 20 v M 20 0 M r Sin rodadura M 1,M 2 (2) ω r 20 = 0 M r δ Con rodadura ω r 20 (2) Mr = δ ωr 20 ω r 20 ω r 20 0 M p Sin pivotamiento M 3 (1) ω p 20 = 0 M p ǫ Con pivotamiento ω p 20 (1) Mp = ǫ ωp 20 ω p 20 ω p 20 0
CAPÍTULO 2. RESISTENCIAS PASIVAS
CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.
CONSIDERACIONES GENERALES SOBRE ESTÁTICA
CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
Cuarta Lección. Principios de la física aplicados al vuelo.
Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.
PRINCIPIOS DE LA DINÁMICA
Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)
Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo
( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada
UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO
DISEÑO MECÁNICO RODAMIENTOS NORMALIZACIÓN DE LOS RODAMIENTOS CINEMÁTICA DISTRIBUCIÓN DE CARGA EN EL RODAMIENTO REPRESENTACIÓN SIMPLIFICADA DE LOS RODAMIENTOS 2 q q q q q q q q q 3 q q q q q q q q q q q
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
CONCEPTO DE TRABAJO. 2. Trabajo de las fuerzas aplicadas sobre un sistema de partículas Generalización del concepto de función de fuerzas...
NEPT DE TRABAJ Índice 1. Trabajo de una fuerza sobre una partícula 2 1.1. Definición de trabajo elemental........................... 2 1.1.1. Nomenclatura................................. 2 1.1.2. Propiedades..................................
Tema 2.- Formas Cuadráticas.
Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN
May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p
Contenidos. Importancia del tema. Conocimientos previos para este tema?
Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca
Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Última modificación: 1 de agosto de
Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico
Superficies Curvas. Guía de clase elaborada por Ing. Guillermo Verger
Superficies Curvas Guía de clase elaborada por Ing. Guillermo Verger www.ingverger.com.ar Superficie cilíndrica Es aquella generada por una recta llamada generatriz que se mueve en el espacio manteniendose
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
E 1.3. LA LEY DE GAUSS
E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una
3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p
ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia
1 Funciones de Varias Variables
EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,
LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3
Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los
Formulario PSU Parte común y optativa de Física
Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS
Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta
MECANICA DE LOS FLUIDOS
MECANICA DE LOS FLUIDOS 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA Ing. Alejandro Mayori 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA 6.1 Introducción - Teoría matemática y resultados experimentales
LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA
Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.
Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
DPTO. FISICA APLICADA II - EUAT
Práctica 1 Estática en el plano 1.1. Objetivos conceptuales Comprobar experimentalmente las ecuaciones del equilibrio de la partícula y del sólido rígido en el plano. 1.2. Conceptos básicos Un sistema
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar
Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011
Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga
ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:
ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer
Guía de algunas Aplicaciones de la Derivada
Guía de algunas Aplicaciones de la Derivada 1.1. Definiciones Básicas. Recordemos que : 1. Recta Tangente y Normal La ecuación de la recta tangente a la curva y = en el punto P = (x 0, y 0 ) es de la forma:
Capitulo VI. VI.1 Introducción a los engranajes. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica
Capitulo VI VI.1 Introducción a los engranajes 1 Capítulo VI Engranajes VI.1 Introducción n a los engranajes. Introducción. n. Axoides. Clasificación de los engranajes. Ruedas de fricción. Nomenclatura
Uso no comercial 12.4 CUERPOS REDONDOS
1.4 CUERPOS REDONDOS Designamos en general como cuerpos redondos el conjunto de puntos del espacio obtenido cuando una figura gira alrededor de una recta, de tal forma que cada punto de la figura conserva,
MATEMÁTICAS 2º DE BACHILLERATO
MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.
MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e
ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano
ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV
INDICE Geometría Analítica Plana Capitulo Primero Artículo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5 5. Carácter de la geografía
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Elementos Uniaxiales Sometidos a Carga Axial Pura
Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).
TEMA 6 ESTÁTICA. Bibliografía recomendada:
TEMA 6 ESTÁTICA 0 > Introducción. 1 > Equilibrio. Tipos de equilibrio. 2 > Principios fundamentales y ecuaciones cardinales de la Estática. 3 > Estática de sistemas planos. 3.1 > Reacciones en apoyos y
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
Matemáticas II Magisterio (Primaria) Curso Problemas de repaso
Matemáticas II Magisterio (rimaria) urso 2013-2014 1. alcula la medida del ángulo a de la figura. roblemas de repaso 116 105 a Sol: a = 49. 2. Sabiendo que los puntos, y R están sobre una circunferencia
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
TEMA 9 CUERPOS GEOMÉTRICOS
Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular
Ecuaciones diferenciales de Equilibrio
Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),
Translaciones, giros, simetrías.
Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
2. Continuidad y derivabilidad. Aplicaciones
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto
ELEMENTOS DE MÁQUINAS Cálculo de engranajes rectos
Dimensiones adecuadas - sin interferencia - grado recubr. adecuado - bajo nivel ruido - esfuerzos por N transmitida - choques - desgaste Cálculo geométrico Cálculo resistente D ext, D int Grado recub.
TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS
HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.
Derivada de la función compuesta. Regla de la cadena
Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de
CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE
UNIERSIDD NION DE O FUTD DE INGENIERÍ EÉTRI Y EETRÓNI ESUE PROFESION DE INGENIERÍ EÉTRI ENTRO DE GREDD, ENTRO DE MS Y ENTROIDE ING. JORGE MONTÑO PISFI O, 2010 ENTRO DE GREDD, ENTRO DE MSYY ENTROIDE ENTRO
Funciones reales. Números complejos
Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica
INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA
Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)
ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de
Tasa de variación. Tasa de variación media
Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama
Bloque 1. Las magnitudes físicas y su medida
Bloque 1. Las magnitudes físicas y su medida El sistema métrico decimal El sistema internacional de unidades Conversiones de unidades con factores de conversión. Unidades compuestas Magnitudes escalares
Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia
Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Derivación. Aproximaciones por polinomios.
Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición
Instituto de Física Universidad de Guanajuato Agosto 2007
Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que
SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.
SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general
Superficies paramétricas
SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando
* e e Propiedades de la potenciación.
ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,
CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
