Ejemulo 2: s(s+lxs+5)+kp. Considere el sistema mostrado a continuación: .1(" + IX" + S) PID. Haciendo Ti = 00 y. Td = O, se obtiene la FTLC :

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejemulo 2: s(s+lxs+5)+kp. Considere el sistema mostrado a continuación: .1(" + IX" + S) PID. Haciendo Ti = 00 y. Td = O, se obtiene la FTLC :"

Transcripción

1 Ejemulo 2: Considere el sistema mostrado a continuación: t 1(" + IX" + S) C(s) PID Como la planta tiene un integrador, se emplea el siguiente método Haciendo Ti = 00 y Td = O, se obtiene la FTLC : -= C(s) R(s) Kp s(s+lxs+5)+kp Fig 21 Respuesta temporal del sistema con Kp=1 ante un escalón unitario

2 Cálculo de Kcr - criterio de Routh La ecuac SJ+6S2+5s+Kp=O SJ 1 52 Si Kp 6 Kcr JD SO Kp , 1 08 oe O" 02 O O tiempo Fig 22 Respuesta temporal del sistema con Kp=30 ante un escalónunitario Sistema Críticamente estable Cálculo de la frecuencia de oscilación sostenida Se reemplaza s = jw en la ecuación característica (jw)j + 6(jW)2 + S(jw) + 30 = O 6(5-w2) + jw(5-w2) = o de donde: W2= 5 ~ w =,f5 Pcr =-- 2/r - 21r " s = - 2,81 W"" :J

3 Cálculo de Kp,Ti, Td(Ziegler Kp Ti Td - 0,6 Kcr 0,5 Pcr O, 125Pcr - Nichols) ,405 0,35124 : Gc = 1 ~1+ 1,~5S +0,35124,5) Cálculo de la FfLC y respuesta temporal e % ,811 R = ,32238% ,111 1~ ~ ~ r(t) O O tiempo Fig 23 Respuesta temporal del sistema controlado con un PID ante un escalón unitario

4 Representación en variables de estado(facilita la respuesta temporal computacional) Xt=C X4=X3 '+ 19t9338 X2= XI XJ = X2-6,3223u,, u=r t ~ y = e = Xl = o o o o XI O Xl 1 x3-6 x + o 6, ,9338 u 60,8308 XI Y = [1 O O O X2 X3 x

5 [ emulo 3 : Considere al sistema mostrado en la figura 1, donde un motor DC mueve una válvula de control lo cual suple un flujo a una máquina hidráulica, corriente abajo de la válvula Figura 1 : Control de flujo En estado estacionario VR=6mA para un requerimiento de 20 gavrninf: 5% Cuando el requerimiento es de 100 gal/min ::t 2%, VR=14mA El escalón de 6-14 ma es muy rápido, lo que implica una respuesta rápida del sistema Las características de la válvula pueden asumirse lineales en la medida que la rata de flujo a través de ella varía directamente con el desplazamiento del vastago 100% abierta ~ 150 gpm La carrera del vástago es de 1,5" Para el amolificador/controlador: Este maneja señales estandar en un rango de 4- la salida del controlador VSC = +48V, y Medidor de nuio: es un transductor e Este produce: 4 ma si el flujo es de O ~ valor nunca se alcanza porque el máximo Válvula de Control: La válvula abre vástago a una velocidad de 1 pulglseg ~v Cuando VM l1enta a 20 ma VSC = -48V raíz r moviendose el

6 ltesljuesta de la velocidad del motor de la válvla La respuesla respuesta eu en lier1f)o tiejd4i>o c6d - conjunto ptolor-válvula, obtenida de las especificaciones ~ del equipo es de tr = 5S! 5500 niseg v OK - tr= tiempo tomado por el vástago para tr= tiempo tomado por el vástago pa pasar del 10% - 90% de su máx velocidad =55Omseg =550mseg 11M O t;;z t figura :2 Velocidad del vástago Velocidad del vástago 550 mies -tr- Esuecificaciones de control I-Se desea que el sistema pase de 20gpm a loogpm, (80gpl11=8mA) La válvula deberá permitir a lo más tardar de I sebo un nujo de 100 gpm,lo que implica que t es llteiior o igual que 1 seb 2- t,:s 7oomreg 3- Mp(%):S 10% 4- fj :S 200mfeg 5- A1F ~ 60 Donde tcl: tiempo para alcanzar el 50% del valor en estado estacionario t If*,~ t : lien~po para alcanzar el 100% de1' valor en estado estacionario t t\~ \~ ts: tiempo de estaljlecimielllo - 11 / /1 /' 10 I J : 41 1 ' / I 20 / ' f I I 10 / İ I 00 :01 i U ~td :~ -,r ~ t t U! *'~ c,tu~ e~ (" ~t4nto

7 SOLUC~ Figura 3: Diagrama de bloques de control de flujo Los pasos siguientes se avocan al cálculo de cada una de las funciones de transferencia del diagrama de bloques de la figura 3 Ganancia KcKl del amplificador- controlador (s pan) E\~fI'plificador/controlador se representa por el producto de ganancias KcKI La ganada del amplificador Kc, se calcula según la ecuación que se muestra a continuación: 48 Kc = 48V - V/ 16mA - 3 /ma o 4 La ganancia del controlador K 1, se deja igual a K 1 = 1 por los momentos Parámetros del motor Ganancia del motor Kmv - lpulgl ses o pulg/ 48V' l/v 7V seg Cálculo de Tm : se obtiene a partir de la fig ura 2 donde tr = 550 mseg En h la respuesta del sistema es : para 90% -11/ 1 - e /T En tila respuesta del sistema es: para 10% -11;' 1- e i'r

8 Relacionando a ambas 1/9= e-(11-11) I Tm O 111 = e ~UsITm, Parámetros de la válvula Cálculo de Kr : se relaciona el desplazamiento del vastago con la rata de flujo de salida 150gpm Kr= =100 1,5 plllg entonces gpm/pulg Parámetros del transductor diferencial de presión Cálculo de KT : ganancia del medidor de flujo 16mA = 0,1 ma/gpm KT= 160gpm Tm=O,25 seg Sustituyendo todos los parámetrso encontrados, se construye el diagrama de bloques de control mostrado en la figura 4 Q(I) Figura 4 Diagrama de bloques de control Función de transferencia de lazo abierto (FILA) 0,624 FTLA: G(jw) H(jw)= jw(o,25jw + 1) (1)

9 Función de transferencia de lazo cerrado (FfLC) FTLC: Q(s) 25 (2) Respuesta temporal a lazo cerrado R(s) =8/s por)o que Q(s)= 200 = 200 S(S2 +4s+2,5) ~~s+o,775)(s+3,225) q (t)= 80+25,31e-3,22St-lO5,3eo77s q(t)= q (t)+ 20gpm (3) (4) (5) Step Auto-Scale Graph Figura 6 : Respuesta temporal del sistema a lazo cerrado con KI = 1

10 Situación de los parámetros, obtenidos de las figuras 5 y 6 DISEÑO DE CONTROLADORES Se debe decidir qué tipo de controlador se empleará de manera de alcanzar las especificaciones: P? PI? PD? PID? Análisis: - Eliminamos PI porque el sistema en estudio es del Tipo 1 y excitamos con un escalón, por lo que ess=o - Empezamos con control Proporcional (P) De los datos anteriores se deduce que tenemos a un sistema lento, por lo tanto aumentando la ganancia aumentamos la velocidad de respuesta del sistema Retornando las ecuaciones del sistema en estudio: R(s)=8/s O,(;z,tpK, FTLC= o S + O,624K, 200K : Q(s) = s(s2 +4s+2,SK), w = J2,SK rarseg y 4 ~ = JlOKt -Debemos evaluar K : para varios valores de KI calculamos Wn y -Sabemos que ~ optimos están en el rango 0,4< ~ <0,8 ~

11 Figura 7 Respuesta temporal para varios valores de Kl De la figura 7 se extrae que si aumenta Kl disminuye tr yaumenta Mp -ts se excede del valor especificado Si se construye el Bode de la FTLA= MF == 42 lo cual 6~S jw(o,2sjw + 1) control adicional al P para alcanzar especificaciones se encuentra que el incumple con las especificaciones, entonces necesitamos un

12 Se selecciona el P+D Se deja a K,=10 ya que el efecto derivativo D tiende a estabilizar el sistema Figura 9: Diagrama de bloques de control con PD Recalculando las correspondientes funciones de transferencia de lazo abierto y cerrado correspondientes, se obtiene:

13 (6) FTLA GHc= O,832k](s+ 3kt / k) s(5+4) (7) FfLC= 1 8,32k) (S + 3k1 / k]) s + (4 + 8,32k3 )5+ 2,5k, (8) Wn= j23k-5 (9) ~ = 4 + O,833K) 2~2,5k1 Queremos calcular kj=t, / / Para ello decimos que el cero de FTLA es s=a donde a= -3kdk3 => a=-30/k] : ~= 4-2,5k,/a - 4-2Sk,/a "2~2Sk, - JlOO :O4-2,5/a (11) Si suponemos ~=O,704 e igualamos a (11) encontramos que a ~ -8,14 Y kj ~ 3,7 Si graficamos la respuesta en tiempo con estos resultados encontramos: una escalón de magnitud8 Y Kl=lO

14 De la figura 10 se extraen los parámetros : t~o,2seg tr<o,7seg Mp<lO% ts>lseg Se intenta mejorar la respuesta temporal, de manera de ajustarse a las especificaciones, de manera que los parámetros quedan como: Td=K3=55 td = 012 seg tr= 059 seg ts = 1 seg Mp = a = rad/seg ~ = p Ē O-,960 :Su 40 Sistema Original 20 O O Tiempo Fig 11 Comparación del sistema sin compensar, con controlador P y controladorpd

CAPITULO I. Q(e) Figura 1.1:

CAPITULO I. Q(e) Figura 1.1: 1-1 CAPITULO I 1.1 ACCIONES BÁSICAS DE CONTROL Q(e) h T Qs Figura 1.1: Supongase el sistema mostrado en la figura 1.1, Qué puede hacer un operador sobre la válvula? Abrir la válvula completamente ( o cerrarla

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

Tema 6 Control de sistemas de orientación de antenas y de telescopios

Tema 6 Control de sistemas de orientación de antenas y de telescopios Tema 6 Control de sistemas de orientación de antenas y de telescopios. Métodos de control de sistemas de orientación 2. Métodos de ajuste de PIDs 3. Estudio de las perturbaciones 4. Técnicas y diseño de

Más detalles

MODOS O ACCIONES DEL CONTROLADOR

MODOS O ACCIONES DEL CONTROLADOR MODOS O ACCIONES DEL CONTROLADOR El modo o acción del controlador es la relación que existe entre el error e(t) que es la señal de entrada y la orden al actuador u(t), señal de salida. O sea es como responde

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano

Control Automático. Regulador PID y ajuste del PID. Eduardo Interiano Control Automático Regulador PID y ajuste del PID Eduardo Interiano Contenido Regulador PID PID ideal PID real Ajuste empírico del PID (Ziegler-Nichol Ejemplos Ejercicios Referencias 2 El PID ideal El

Más detalles

Sistemas de Control. UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Electrotecnia y Computación. Docente: Alejandro A Méndez T

Sistemas de Control. UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Electrotecnia y Computación. Docente: Alejandro A Méndez T UNIVERSIDAD NACIONAL DE INGENIERIA Facultad de Electrotecnia y Computación Docente: Alejandro T 009 Prof. Titular FEC - UNI Sistemas de Control Asistente: Yamil O Jiménez L Programa PIED VRAC - UNI Diseño

Más detalles

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL

Más detalles

Acciones básicas de control Clasificación de los controles automáticos

Acciones básicas de control Clasificación de los controles automáticos Acciones básicas de control Clasificación de los controles automáticos 1. Control de dos posiciones o de si-no 2. Controles proporcionales (P) 3. Controles proporcionales e integrales (PI) 4. Controles

Más detalles

HORARIO DE CLASES SEGUNDO SEMESTRE

HORARIO DE CLASES SEGUNDO SEMESTRE HORARIO DE CLASES LUNES MIERCOLES 17 a 18:15 hs 17 a 18:15 hs Ln 14/08/17: CRONOGRAMA DE CLASES y PARCIALES CONTROL I -AÑO 2017- SEGUNDO SEMESTRE Introducción a los sistemas de Control. Definiciones de

Más detalles

TEORÍA DE CONTROL CONTROLADOR PID

TEORÍA DE CONTROL CONTROLADOR PID TEORÍA DE CONTROL CONTROLADOR PID Historia del controlador PID. Nicolás Minorsky 1922 Nicolás Minorsky había analizado las propiedades de los controladores tipo PID en su publicación Estabilidad direccional

Más detalles

Control PID Sintonización Elizabeth Villota

Control PID Sintonización Elizabeth Villota Control PID Sintonización Elizabeth Villota Control PID Control PID una de las formas más comunes de usar realimentación en los sistemas de ingeniería. Control PID se encuentra presente en dispositivos

Más detalles

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA

DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Universidad Nacional de San Juan - Facultad de Ingeniería DEPARTAMENTO DE ELECTRONICA Y AUTOMATICA Carrera: Ingeniería Electrónica Área CONTROL Asignatura: CONTROL I GUIA DE APRENDIZAJE Y AUTOEVALUACION

Más detalles

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho

Más detalles

Control PID. Sintonización e implementación

Control PID. Sintonización e implementación Control PID. Sintonización e implementación Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM Julio 2012 1 Control PID Control PID una de las formas más

Más detalles

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Ingeniería en Control y Automatización TEORÍA DE CONTROL 1: GUÍA PARA EL EXAMEN EXTRAORDINARIO (TEORÍA) Nombre: Grupo

Más detalles

LABORATORIO DE CONTROL

LABORATORIO DE CONTROL ÉCNICAS DE SINONIZACIÓN DE ZIEGLERS - NICHOLS PRIMER MÉODO LABORAORIO DE CONROL Salvador Macías Hernández 717320 Fernando affoya Martinez 456357 Actividad previa A la segunda Práctica 12/6/2002 Si se puede

Más detalles

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS

ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL PARA ROBOTS 1. INTRODUCCIÓN. 2. SISTEMAS REALIMENTADOS EN RÉGIMEN PERMANENTE 2.1 Error de posición 2.2 Error de velocidad 2.3 Conclusiones y Aplicación al Diseño

Más detalles

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL

COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL COLECCIÓN DE PROBLEMAS DE EXÁMENES DE INGENIERÍA DE CONTROL A continuación se incluyen preguntas de examen de los últimos años, tanto de teoría como de problemas. Lo indicado entre paréntesis es la puntuación

Más detalles

IDENTIFICACIÓN DE PROCESOS Y CURVA DE REACCIÓN

IDENTIFICACIÓN DE PROCESOS Y CURVA DE REACCIÓN IDENTIFICACIÓN DE PROCESOS Y CURVA DE REACCIÓN IDENTIFICACIÓN DE PROCESOS Si la planta es tan complicada que no es fácil obtener su modelo matemático, tampoco es posible un método analítico para el diseño

Más detalles

Automá ca. Ejercicios Capítulo7.1.AnálisisFrecuencial(Parte1)

Automá ca. Ejercicios Capítulo7.1.AnálisisFrecuencial(Parte1) Automáca Ejercicios Capítulo7.1.AnálisisFrecuencial(Parte1) JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez DepartamentodeTecnologíaElectrónica eingenieríadesistemasyautomáca

Más detalles

Unidad Temática 9: Análisis y Diseño de Sistemas de Control a Lazo Cerrado

Unidad Temática 9: Análisis y Diseño de Sistemas de Control a Lazo Cerrado Control Automático Ing. Eléctrica Página 1 de 17 Unidad Temática 9: Análisis y Diseño de Sistemas de Control a Lazo Cerrado Algoritmos de Control: Un algoritmo de control se encarga de monitorear el valor

Más detalles

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL 1. Determina el diagrama de bloques del sistema automático de control de líquido de la figura. Determina de nuevo el diagrama de bloques suponiendo que

Más detalles

representa el ángulo de referencia del rayo de sol, y θ denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ

representa el ángulo de referencia del rayo de sol, y θ denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ gran exactitud. La variable θ r representa el ángulo de referencia del rayo de sol, y θ 0 denota el eje del vehículo. El objetivo del sistema rastreador es mantener el error entre θ r, θ 0, α cerca de

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles

Serie 10 ESTABILIDAD

Serie 10 ESTABILIDAD Serie 0 ESTABILIDAD Condición de estabilidad U u Gu U R r + + - Gc Gv Gp C G V G P + c C H G( G (. G (. G (. H ( C V P + G( 0 G( G φ 80 Localización de las raíces Plano s E S T A B L E I N E S T A B L

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

Tema 5 Acciones básicas de control. Controlador PID.

Tema 5 Acciones básicas de control. Controlador PID. Tema 5 Acciones básicas de control. Controlador PID. 1. Control en el dominio del tiempo. PID 2. Estudio del Lugar de las raíces 3. Control en el dominio de la frecuencia. Compensadores Control en el dominio

Más detalles

Tecnicas de diseño y compensación

Tecnicas de diseño y compensación Capítulo 8 Tecnicas de diseño y compensación El objetivo primordial de esta sección es presentar algunos procedimientos para el diseño y compensación de sistemas de control lineales, invariantes en el

Más detalles

TOTAL DE HORAS: SERIACIÓN INDICATIVA ANTECEDENTE: Análisis de Señales y Sistemas SERIACIÓN OBLIGATORIA SUBSECUENTE: Sistemas de Datos Muestreados

TOTAL DE HORAS: SERIACIÓN INDICATIVA ANTECEDENTE: Análisis de Señales y Sistemas SERIACIÓN OBLIGATORIA SUBSECUENTE: Sistemas de Datos Muestreados UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Ingeniería de Control

Más detalles

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es:

El comportamiento de un controlador PID corresponde a la superposición de estas tres acciones, expresado en el dominio del tiempo es: 1.4.1 CONTROLADOR PID A continuación se hace una breve presentación del controlador PID clásico en el dominio continuo y a la vez que se mencionan los métodos de sintonización, de oscilaciones amortiguadas

Más detalles

CAPÍTULO 5. Pruebas y Resultados

CAPÍTULO 5. Pruebas y Resultados CAPÍTULO 5 Pruebas y Resultados 5 Pruebas y Resultados Con este capítulo se concluye el proceso de automatización de la planta piloto de tipo industrial, se presentan las pruebas y resultados del sistema

Más detalles

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD Para un motor de CD controlado por armadura como el mostrado en la figura si suponemos que la corriente del campo se mantiene constante y se aplica un

Más detalles

Escuela de Ingeniería Eléctrica. Departamento de electricidad aplicada. Materia: Teoría de Control (E )

Escuela de Ingeniería Eléctrica. Departamento de electricidad aplicada. Materia: Teoría de Control (E ) Escuela de Ingeniería Eléctrica Departamento de electricidad aplicada Materia: Teoría de Control (E-4.26.1) Publicación E.4.26.1-TE-02-0 Marzo de 2012 CONTENIDO TEMÁTICO 1. INTRODUCCIÓN:... 3 2. CLASIFICACIÓN

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.

Más detalles

Proyecto: Posicionamiento de una Antena Parabólica

Proyecto: Posicionamiento de una Antena Parabólica Capítulo 1 Proyecto: Posicionamiento de una Antena Parabólica 1.1 Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia

Más detalles

0.1. Error en Estado Estacionario

0.1. Error en Estado Estacionario 0. Error en Estado Estacionario 0.. Error en Estado Estacionario La respuesta permanente es aquella que se alcanza cuando el sistema se establece y es muy importante su estudio pues informa lo que sucede

Más detalles

CONTROL BÁSICO CONTROL de PROCESOS

CONTROL BÁSICO CONTROL de PROCESOS CONRO BÁSICO CONRO de PROCESOS EMA: - Diseño de reguladores PID Facultad de Ingeniería UNER Carrera: Bioingeniería Planes de estudio: 1993/008 Integral - Derivativo (PID Consideramos el lazo básico de

Más detalles

PROBLEMAS PROPUESTOS INTRODUCCIÓN AL CONTROL DE PROCESOS

PROBLEMAS PROPUESTOS INTRODUCCIÓN AL CONTROL DE PROCESOS PROBLEMAS PROPUESTOS 1. Un tanque con un serpentín por el que circula vapor se utiliza para calentar un fluido de capacidad calórica Cp. Suponga conocida la masa de líquido contenida en el tanque (M L

Más detalles

ANALISIS DE SISTEMAS DINÁMICOS

ANALISIS DE SISTEMAS DINÁMICOS UACM SAN LORENZO TEZONCO 2014 ANALISIS DE SISTEMAS DINÁMICOS JOSE ALFREDO MARTINEZ PEREZ ANALISIS DE UN SISTEMA DINAMICO DE TERCER ORDEN 17-12-2014 ANALISIS DE UN SISTEMA DINAMICO DE TERCER ORDEN Introducción

Más detalles

Controladores Industriales CONTROLADORES INDUSTRIALES

Controladores Industriales CONTROLADORES INDUSTRIALES CONTROLADORES INDUSTRIALES Los controladores de carácter industrial pueden agruparse en dos categorías: Continuos o Discontinuos. Los primeros se caracterizan por producir cambios continuos en la salida

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

Control Automático Ing. Eléctrica Página 1 de 8 F.R. Tucumán Universidad Tecnológica Nacional Unidad Temática 6: Función de Transferencia

Control Automático Ing. Eléctrica Página 1 de 8 F.R. Tucumán Universidad Tecnológica Nacional Unidad Temática 6: Función de Transferencia Control Automático Ing. Eléctrica Página 1 de 8 Unidad Temática 6: Función de Transferencia Representación de los sistemas. Función de Transferencia. Definición. Propiedades. Los sistemas de control se

Más detalles

Sistema neumático de control de nivel

Sistema neumático de control de nivel ULA. FACULTAD DE INGENIERIA. ESCUELA DE MECANICA. TEORIA DE CONTROL. EJERCICIOS FINAL Ejercicio 1. Primera parte: Modelado y de un tanque de agua, con su sistema de medición de nivel. La figura muestra

Más detalles

Control de Temperatura

Control de Temperatura Control de Temperatura N de práctica: 5 Acciones de Control Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Revisado por: Autorizado por: Vigente desde: Profesor

Más detalles

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida Amplificadores operacionales. Los amplificadores operacionales, también conocidos como amp ops, se usan con frecuencia para amplificar las señales de los circuitos Los amp ops también se usan con frecuencia

Más detalles

SINTONIZACIÓN DE CONTROLADORES INDUSTRIALES

SINTONIZACIÓN DE CONTROLADORES INDUSTRIALES CÁTEDRA: SISTEMAS DE CONTROL (PLAN 2004) DOCENTE: Prof. Ing. Mec. Marcos A. Golato SINTONIZACIÓN DE CONTROLADORES INDUSTRIALES 1 CRITERIOS DE ESTABILIDAD EN EL CONTROL La estabilidad del control es la

Más detalles

Control PID. Ing. Esp. John Jairo Piñeros C.

Control PID. Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Que es PID? Variable Proporcional Variable Integral Variable Derivativa cuando se puede usar un controlador PI, PID?

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB.

SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB. 1 SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB. Fredy Alexander Guasmayan Guasmayan Cedula: 14 590 212 Universidad

Más detalles

1. Diseño de un compensador de adelanto de fase

1. Diseño de un compensador de adelanto de fase COMPENSADORES DE ADELANTO Y RETARDO 1 1. Diseño de un compensador de adelanto de fase El compensador de adelanto de fase persigue el aumento del margen de fase mediante la superposición de la curva de

Más detalles

SISTEMAS DINÁMICOS DE SEGUNDO ORDEN SISTEMAS DINÁMICO DE ORDEN SUPERIOR

SISTEMAS DINÁMICOS DE SEGUNDO ORDEN SISTEMAS DINÁMICO DE ORDEN SUPERIOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN UNIDAD CURRICULAR: DINÁMICA Y CONTROL

Más detalles

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación Análisis de estabilidad Determinar el comportamiento transitorio y estacionario del sistema Especificar e identificar las condiciones de operación El primer paso al analizar un sistema de control es establecer

Más detalles

Proyecto: Posicionamiento de una Antena Parabólica

Proyecto: Posicionamiento de una Antena Parabólica Capítulo Proyecto: Posicionamiento de una Antena Parabólica. Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL 1 0 0 1 2 3 4 5 6 7-1 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8-2 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL OBJETIVO Práctica N

Más detalles

Tema: Controladores tipo P, PI y PID

Tema: Controladores tipo P, PI y PID Sistemas de Control Automático. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas de Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta).

Más detalles

Diseño de Controladores I.

Diseño de Controladores I. Departamento de Ingeniería Eléctrica Universidad de Magallanes. Apuntes del curso de Control Automático Roberto Cárdenas Dobson Ingeniero Electricista Msc. Ph.D. Profesor de la asignatura Este apunte se

Más detalles

Antenas y Telescopios: control y seguimiento. Ejercicios prácticos

Antenas y Telescopios: control y seguimiento. Ejercicios prácticos Antenas y Telescopios: control y seguimiento Ejercicios prácticos EJERCICIO 1 CONTROL PROPORCIONAL(P) r(t)=0.3 t E(s) Kp U(s) s 14) 1)Calcular el error de seguimiento (ess) en función de Kp si la velocidad

Más detalles

Optimización de señal de control en reguladores PID con arquitectura antireset Wind-Up

Optimización de señal de control en reguladores PID con arquitectura antireset Wind-Up Optimización de señal de control en reguladores PID con arquitectura antireset Wind-Up Control signal optimization for PID regulators based on a Wind-Up anti-reset architecture Ingeniero electrónico, magíster

Más detalles

Lazo de control por realimentación (retroalimentación o feedback)

Lazo de control por realimentación (retroalimentación o feedback) Lazo de control por realimentación (retroalimentación o feedback) Objetivo Minimizar el error (diferencia entre la consigna y la variable controlada) para que su valor sea lo más próximo a cero. Estructura

Más detalles

Presentado por: Laura Katherine Gómez Mariño. Universidad Central

Presentado por: Laura Katherine Gómez Mariño. Universidad Central Presentado por: Laura Katherine Gómez Mariño. Universidad Central IMPORTANCIA DEL TEMA ESCOGIDO: Es una herramienta usada en simulación, que es parte crucial en un sistema de control industrial. Un controlador

Más detalles

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD DEFINICIÓN Un Sistema de Control es un conjunto de elementos o componentes relacionados entre si que controlan alguna

Más detalles

CONTROL BÁSICO. Sistemas de Control Realimentados. Coeficientes estáticos de error. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1

CONTROL BÁSICO. Sistemas de Control Realimentados. Coeficientes estáticos de error. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1 CONTROL BÁSICO TEMAS: - Diseño de reguladores en bucle cerrado or método frecuencial Facultad de Ingeniería UNER Carrera: Bioingeniería Planes de estudios: 2008 y 993 Sistemas de Control Realimentados

Más detalles

Sintonización de controladores por ubicación de polos y ceros

Sintonización de controladores por ubicación de polos y ceros Sintonización de controladores por ubicación de polos y ceros Leonardo J. Marín, Víctor M. Alfaro Departamento de Automática, Escuela de Ingeniería Eléctrica, Universidad de Costa Rica Apartado postal

Más detalles

COMPENSACIÓN EN ADELANTO

COMPENSACIÓN EN ADELANTO COMPENSACIÓN EN ADELANTO Produce un mejoramiento razonable en la respuesta transitoria y un cambio pequeño en la precisión en estado estable. Puede acentuar los efectos del ruido de alta frecuencia. Aumenta

Más detalles

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN

EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN EJERCICIOS PROPUESTOS SOBRE SISTEMAS DE 1er y 2do ORDEN 1. Para la función de transferencia G(s), cuya entrada proviene de un controlador proporcional de ganancia A, y que se encuentran en lazo cerrado

Más detalles

Sintonizaciónde controladores. Ing. Victor Aviña

Sintonizaciónde controladores. Ing. Victor Aviña Sintonizaciónde controladores Ing. Victor Aviña Método de sintonización en lazo cerrado Criterio de Ziegler-Nichols(método de la ganancia máxima) Primero se incrementa la ganancia del control proporcional

Más detalles

Ejercicios resueltos 2: Horno de Carbón Cátedra de Control y Servomecanismos

Ejercicios resueltos 2: Horno de Carbón Cátedra de Control y Servomecanismos Ejercicios resueltos : Horno de Carbón Cátedra de Control y Servomecanismos Idea y desarrollo: Ing. Cristian Zujew Corregido por el Dr. Ing. Cristian Kunusch Objetivo: en esta guía práctica se presenta

Más detalles

Automatización Industrial

Automatización Industrial Departamento ngeniería Electromecánica Facultad de ngeniería Automatización ndustrial Guía de Trabajos Prácticos 2010 Dr. ng. Gerardo Acosta ng. Edgardo Beytía A Departamento ngeniería Electromecánica

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

Capítulo 6: Sintonía experimental de controladores. 105 Capítulo 6: Sintonía experimental de controladores.

Capítulo 6: Sintonía experimental de controladores. 105 Capítulo 6: Sintonía experimental de controladores. Capítulo 6: Sintonía experimental de controladores. 105 Capítulo 6: Sintonía experimental de controladores. Capítulo 6: Sintonía experimental de controladores. 106 Capítulo 6: Sintonía experimental de

Más detalles

PRACTICA: MODOS DE CONTROL. Sistemas de Control y Controladores

PRACTICA: MODOS DE CONTROL. Sistemas de Control y Controladores Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Laboratorio de Instrumentación y Control, Código 02 33 905L. Profesor: Tito González. San Cristóbal, Jueves 04 de

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

Análisis de estabilidad en circuitos con amplificadores operacionales

Análisis de estabilidad en circuitos con amplificadores operacionales Capítulo Análisis de estabilidad en circuitos con amplificadores operacionales El objetivo de todo sistema de control consiste en obtener de una determinada planta, G p (s), un cierto comportamiento de

Más detalles

6.1. Condición de magnitud y ángulo

6.1. Condición de magnitud y ángulo Capítulo 6 Lugar de las raíces La respuesta transitoria de un sistema en lazo cerrado, está ligada con la ubicación de los polos de lazo cerrado en el plano complejo S. Si el sistema tiene una ganancia

Más detalles

Escuela de Ingeniería Eléctrica. Materia: Teoría de Control (E )

Escuela de Ingeniería Eléctrica. Materia: Teoría de Control (E ) Escuela de Ingeniería Eléctrica Departamento de electricidad aplicada Materia: Teoría de Control (E-4.26.1) Síntesis de Correctores en Reacción Publicación E.4.26.1-TE-03B-0 Marzo de 2013 Carrera: Ingeniería

Más detalles

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18.1. DIAGRAMAS POLARES En análisis dinámico de sistemas en el dominio de la frecuencia, además de emplearse los diagramas y el criterio de Bode, se utilizan

Más detalles

Diseño de sistemas de control. Teoría de control

Diseño de sistemas de control. Teoría de control Diseño de sistemas de control Teoría de control Introducción Para iniciar el proceso de diseño de un sistema de control, es necesario realizar los siguientes pasos:... Determine que debe hacer el sistema

Más detalles

Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL

Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control. Introducción En esta práctica se realiza

Más detalles

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA

Más detalles

Introducción. Por favor. No olvide bajar el tono a su. Franco E., Rosero E., Ramírez J.M. () SISTEMAS DE CONTROL II GICI / 42

Introducción. Por favor. No olvide bajar el tono a su. Franco E., Rosero E., Ramírez J.M. () SISTEMAS DE CONTROL II GICI / 42 Introducción Por favor No olvide bajar el tono a su teléfono móvil!. Franco E., Rosero E., Ramírez J.M. () SISTEMAS DE CONTROL II GICI 2008 1 / 42 Introducción UNIDAD I ESTABILIDAD DE SISTEMAS DINÁMICOS

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS PROGRAMA SINTÉTICO

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS PROGRAMA SINTÉTICO PROGRAMA SINTÉTICO CARRERA: Ingeniería en Comunicaciones y Electrónica ASIGNATURA: Señales y Sistemas de Control Clásico. SEMESTRE: Sexto OBJETIVO GENERAL: El alumno empleará modelos descriptivos de sistemas

Más detalles

Plataforma de contenidos interactivos. Página Web del libro. Mecatrónica Introducción Origen de la mecatrónica 5

Plataforma de contenidos interactivos. Página Web del libro. Mecatrónica Introducción Origen de la mecatrónica 5 Contenido Plataforma de contenidos interactivos XXI Página Web del libro XXII Prólogo XXVII Capítulo 1 Mecatrónica 1 1.1 Introducción 3 1.2 Origen de la mecatrónica 5 1.2.1 Qué es mecatrónica? 9 Mecatrónica

Más detalles

Tutorial de controladores PID

Tutorial de controladores PID Page 1 of 8 Tutorial de controladores PID Introduccion El controlador de 3 terminos Las caracteristicas de los controladores P, I y D Problema Ejemplo Respuesta de Lazo Abierto al escalon Control Proporcional

Más detalles

Glosario de Términos de Control

Glosario de Términos de Control Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de

Más detalles

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12.

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12. 1. Criterio de estabilidad de Nyquist 1.1 Gráfica de Nyquist Gráfica de L(jω) G(jω)H(jω) en coordenadas polares de Im[L(jω)], Re[L(jω)] con ω variando desde hasta 0. Características: provee información

Más detalles

Ingeniería de Control I Tema 11. Reguladores PID

Ingeniería de Control I Tema 11. Reguladores PID Ingeniería de Control I Tema 11 Reguladores PID 1 Tema 11. Reguladores PID Introducción Especificaciones de funcionamiento Acciones básicas de control Ajuste empírico de reguladores. Métodos de Ziegler-

Más detalles

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

CONTROL DIGITAL Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis Diseño de controladores por el método de respuesta en frecuencia de sistemas discretos. (método gráfico) CONTROL DIGITAL 07--0 Catedrático: Dr. Manuel Adam Medina Alumno: Ing. Jaimes Maldonado José Luis

Más detalles

Control Automático I - Certamen 2 Pauta de Correción

Control Automático I - Certamen 2 Pauta de Correción Control Automático I - Certamen 2 Pauta de Correción 7 de Septiembre 215 1. 1.1. Un sistema electro-mecánico tiene el modelo nominal G (s) = 1 (s+2), cuya salida es la velocidad angular de un eje. Los

Más detalles

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control

TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control TRABAJO PRÁCTICO Nº 3 Instrumentación de los sistemas de control OBJETIVOS: Conocer las características generales de los instrumentos e interpretar información de catálogos. Aprender una metodología general

Más detalles

Tipos de Compensación

Tipos de Compensación - CONTROL DE PROCESOS (segundo cuatrimestre) - CONTROL AVANZADO y AUTOMATISMO Facultad de Ingeniería UNER Carrera: Bioingeniería Planes de estudios: 993 y 2008 Tipos de Compensación + Gc( Gp( + G ( + -

Más detalles

Tema 1. Introducción a los sistemas de control Un poco de historia

Tema 1. Introducción a los sistemas de control Un poco de historia Un poco de historia Control clásico El diseño de sistemas de control durante la Revolución Industrial estaba basado en prueba y error unido con una gran dosis de intuición ingenieril. A mediados de la

Más detalles

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto G p ( s) k s( s + )( s + 5) a)para el sistema en lazo abierto, y suponiendo el valor k : Obtener la expresión analítica

Más detalles

TEMA N 7 ESTABILIDAD DE LOS SISTEMAS DE CONTROL POR REALIMENTACIÓN

TEMA N 7 ESTABILIDAD DE LOS SISTEMAS DE CONTROL POR REALIMENTACIÓN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA N 7

Más detalles

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO

PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO 1. SISTEMA A CONTROLAR El sistema a controlar es el conjunto motor eléctrico-freno conocido de otras prácticas: Se realizarán experimentos de control de posición

Más detalles

Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Tema 5. Análisis de la Respuesta Frecuencial de Sistemas LTI Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido TEMA 5.- Análisis de respuesta en frecuencia 5.1. Análisis de

Más detalles

Ajuste empírico de reguladores PID en cadena cerrada con Matlab

Ajuste empírico de reguladores PID en cadena cerrada con Matlab Ajuste empírico de reguladores PID en cadena cerrada con Matlab JOSÉ LUIS CALVO ROLLE, ÁNGEL ALONSO ÁLVAREZ, RAMÓN FERREIRO GARCÍA Y ISAÍAS GARCÍA RODRÍGUEZ La obtención de los parámetros de un regulador

Más detalles

G(S) H(S) La Función de Transferencia de Lazo Cerrado de este sistema de control sería:

G(S) H(S) La Función de Transferencia de Lazo Cerrado de este sistema de control sería: UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO DE CONTROL Práctica N 7 Laboratorio de Ingeniería de Control Análisis de Sistemas de Control por Lugar Geométrico

Más detalles

[ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13]

[ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13] [ANEXO 4] AJUSTE DE REGULADORES DE TURBINAS HIDRÁULICAS CON TÉCNICAS DE ESTIMACIÓN DE PARÁMETROS [13] Este método se aplica al ajuste de los reguladores de un regulador digital de turbinas hidráulicas.

Más detalles