7. LINEAS DE INFLUENCIA
|
|
|
- Veronica Duarte Toledo
- hace 8 años
- Vistas:
Transcripción
1 7. LINEAS DE INFLUENCIA (Análisis de estructuras isostáticas ante cargas vivas )
2 1. Introducción Hasta ahora se han analizado estructuras isostáticas sometidas a cargas de magnitud conocida y ubicación definida. Un ejemplo de este tipo de carga, llamadas cargas muertas, es el peso propio. Sin embargo, existen otros estados de carga que pueden estar o no estar presentes (sobrecarga) o que pueden cambiar de ubicación (cargas móviles). Estas cargas se conocen como cargas vivas de una estructura. Para los efectos del diseño de una estructura interesa conocer el valor máximo de los efectos que producen las cargas externas en ella. Siempre hay una posición de las carga vivas para la cual se produce el valor extremo de un efecto. Para determinar esta posición con un método analítico se usa la línea o diagrama de influencia.
3 Puente Grúa Cuando el puente grúa cambia su posición sobre los rieles, esto causa variaciones en los efectos que produce en la estructura sobre la cual se apoya.
4 Puente Carretero Cuando los vehículos se desplazan sobre el puente, esto causa variaciones en los efectos que producen en la estructura del puente.
5 Grúas s s s s Cuando la grúa cambia su posición, esto causa variaciones en los efectos que produce en la estructura sobre la cual se apoya.
6 2. Definición La línea de influencia es una curva cuya ordenada muestra la variación del efecto causado por una carga unitaria que se mueve a través de la estructura. Así la ordenada en cualquier punto representa el valor del efecto cuando la carga unitaria esta actuando en el correspondiente punto de la estructura. Ejemplo: Línea de influencia de la reacción en el apoyo A de una viga simplemente apoyada. 1 Ej: Línea de influencia de Ra
7 La unidad de las ordenadas de una línea de influencia corresponde a la unidad del efecto que se cuantifica dividido por la unidad de la fuerza. Así la unidad de la ordenada de la línea de influencia de una fuerza de reacción en un apoyo o de una fuerza de corte en una sección transversal es adimensional. Una línea de influencia está definida si se conoce: -La forma. -La escala. -El signo, para lo cual es necesario escoger una convención de signos.
8 R A A Departamento de Ingeniería Civil- Universidad de Chile 3. Alcance La determinación de las líneas de influencia se hará en estructuras isostáticas simples como es una viga. x 1 Su aplicación se puede extender a las barras de un enrejado, un arco y un marco. x x/l
9 4. Comentarios Una vez que se ha determinado la línea de influencia se puede conocer la posición de la carga unitaria para la cual el efecto alcanza su valor máximo. Si se conoce para cada sección de una viga la línea de influencia de un determinado efecto, se puede dibujar la curva envolvente de las líneas de influencia y de ella se determina la posición de la sección donde debe actuar la carga unitaria para producir el valor máximo maximorum del efecto. Líneas de influencia de los momentos de flexión en distintas secciones de una viga simplemente apoyada
10 Si las ordenadas resultan de un mismo signo, para todas las posiciones de la carga unitaria móvil, el efecto tiene el mismo signo. Ejemplos de L.I. con distinto signo. (+) (-) L.I.: Reacción apoyo A R A L.I.: Fuerza de corte en E. (+) (-) L.I.: Momentode flexión en F.
11 Las líneas de influencia en una estructura isostática son líneas rectas. De este modo la construcción de las líneas de influencia se reduce a determinar las ordenadas de unos pocos puntos de ellas. Cuando la carga móvil que actúa sobre la estructura es una carga concentrada de magnitud P, la magnitud del efecto debido a esta carga es igual al producto de la carga P por la ordenada de la línea de influencia para el efecto considerado en el punto donde se ubica la carga P. Para obtener el máximo valor del efecto, la carga P debe ubicarse en la posición para la cual la ordenada de la línea de influencia es máxima.
12 La línea de influencia de un determinado efecto permite determinar la posición más desfavorable de las cargas vivas, la cual corresponde a la que produce los mayores valores del efecto. Por ejemplo (a) Sobrecargas: b : variable x: variable a b: variable (b) Trenes de cargas que guardan distancias fijas entre sí. x: variable
13 5. Construcción de una línea de influencia 5.1. Método directo El método se basa en la aplicación de las condiciones de equilibrio (Método convencional). Ejemplo: Caso de una viga simplemente apoyada, en la cual la posición de la carga unitaria se mide por la distancia x al apoyo B. a. La línea de influencia de la reacción en A, R A : Por equilibrio se cumple: M B = 0 R A L - 1 x = 0 R A = x/l, para 0 x L línea de influencia de R A 1 (+)
14 b. La línea de influencia de la reacción en B, R B. Por equilibrio se cumple: M A = 0 R B L - 1 (L-x) = 0 R B = (L-x)/L, para 0 x L c. La línea de influencia del corte en la sección C ubicada a la distancia a del apoyo A y a la distancia b del apoyo B, está dada por: x/ L para 0 x b Q (a) = - (L x) / L para b x L A B 1 b a ( + b) (+) a ( a + b) (-) 1 línea de influencia de Q C
15 d. La línea de influencia del momento en la sección C ubicada a la distancia a del apoyo A y a la distancia b del apoyo B, está dada por: M C = b a x L L L ( x) para 0 x b para b x L x/l (L-x)/L R A =x/l (+) línea de influencia de M C R B =(L-x)/L
16 Ejemplo: Caso de una viga simplemente apoyada con un voladizo, la posición de la carga unitaria se mide desde el borde libre D, z. C (12-z) 5 m Ra D Rb Ra>0 Rb>0
17 Línea de influencia del corte en C, sección ubicada a 7m de D. Carga unitaria actuando a la izquierda de C: ( z 2) ( QC ) = RB = para 0 x < 7 10 Carga unitaria actuando a la derecha de C: ( z 12) ( QC ) = RA = para 7 < x < L.L.(Qc) (+) 0. (+) A (-) C B -0.5
18 Línea de influencia del momento en C, sección ubicada a 7m de D. Carga unitaria actuando a la izquierda de C: ( z 2) ( M C ) = RB 5 = para 0 z < 2 7 Carga unitaria actuando a la derecha de C: ( 12 z) ( M C ) = RA 5 = para 7 < z < 12 2 L.I.(Mc) (-) (+) A C B
5. ESFUERZOS INTERNOS EN VIGAS
5. ESFUERZOS INTERNOS EN VIGAS 5.. Introducción En este capítulo se estudiarán las fuerzas internas que existen al interior de un sólido (más específicamente en vigas) y que son las que mantienen unidas
FLEXION COMPUESTA RECTA. As=A s armadura simétrica As A s armadura asimétrica
FLEXION COMPUESTA RECTA 1. Utilización de diagramas de interacción (ABACOS): As=A s armadura simétrica As A s armadura asimétrica 2. Expresiones para el cálculo directo de secciones rectangulares con As
400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn
Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA-
T P Nº 4: SOLICITACIONES (M, Q y N)- CENTROIDES- CENTROS DE GRAVEDAD- MOMENTOS ESTATICOS Y MOMENTOS DE INERCIA- 1. Dadas las siguientes vigas, A) clasificarlas según su sustentación en : empotradas, simplemente
CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) Obligatorio de la Licenciatura en Ingeniería Civil
1 CI 32B ANALISIS DE ESTRUCTURAS ISOSTATICAS 10 U.D. REQUISITOS: FI 21A, MA 22A DH:(3,0-2,0-,5,0) CARACTER: OBJETIVOS: CONTENIDOS Obligatorio de la Licenciatura en Ingeniería Civil Capacitar al alumno
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO
PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran
3.1. Introducción. Capítulo 3. Líneas de Influencia
Para el diseño de puentes, las cargas móviles del trafico vehicular generan fuerzas que varían constantemente, las cuales se pueden describir mejor usando líneas de Influencia 3.1. Introducción. Muchas
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS
ESTÁTICA ESTRUCTURAS ENUNCIADOS EJERCICIOS Tecnología. Enunciados Ejercicios. ESTÁTICA-ESTRUCTURAS. Página 0 σ: tensiones (kp/cm 2 ) ε: deformaciones (alargamientos unitarios) σ t = σ adm : tensión de
Análisis Estructural 1. Práctica 2. Estructura de pórtico para nave industrial
Análisis Estructural 1. Práctica 2 Estructura de pórtico para nave industrial 1. Objetivo Esta práctica tiene por objeto el dimensionar los perfiles principales que forman el pórtico tipo de un edificio
GRUAS Y TRANSPORTE PESADO
GRUAS Y TRANSPORTE PESADO Tienen una torna mesa montada sobre un vehículo de cualquier tipo: orugas, neumáticos, rieles. La tornamesa lleva la pluma, como se denomina el mástil, los huinches y contrapesos
ESTÁTICA DE ESTRUCTURAS COI 303 UNIDAD 5 SISTEMAS ESTRUCTURALES ISOSTATICOS
ESTÁTICA DE ESTRUCTURAS COI 303 UNIDAD 5 SISTEMAS ESTRUCTURALES ISOSTATICOS --- PRIMER SEMESTRE 2015 OBJETIVO DE UNIDAD: -Dominar el concepto de estructura isostática. -Plantear ecuaciones de equilibrio
F= 2 N. La punta de la flecha define el sentido.
DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.
Sistema Estructural de Masa Activa
Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,
TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N)
TRABAJO PRÁCTICO Nº. 5: SOLICITACIONES (M, Q y N) 1. A) Dadas las siguientes vigas, clasificarlas según su sustentación en: empotradas, simplemente apoyadas, en voladizo, continuas, con articulaciones,
CIV302 A y B 5 II-2013 G. Elias Belmonte C. 05/08/ /12/ /07/2013. Tema Objetivo Actividades de Enseñanza Recursos Didácticos
CARTA DESCRIPTIVA (PLANIFICACION DIDACTICA) Materia Grupo Nivel Semestre Docente Fecha de Inicio del calendario acad. Fecha de conclusión calendario acad. Fecha de Elaboración de la carta CIV302 A y B
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
Fuerza y movimiento. Definiciones. Carrocería no resistente a la torsión PGRT
Definiciones Definiciones Es importe realizar correctamente la fijación de la carrocería, puesto que una fijación incorrecta puede producir daños en la carrocería, la fijación y el bastidor del chasis.
1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Resistencia de Materiales. Carrera: Ingeniería en Pesquerías. Clave de la asignatura: PEM 0633
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Resistencia de Materiales Ingeniería en Pesquerías PEM 0633 3 2 8 2.- HISTORIA
Problema 1. Vista general del problema. Modelo - Vista longitudinal. Sección cajón. φ= m m m
Problema 1 Sea el puente de la Figura 1 consistente en una sección cajón de hormigón armado simplemente apoyado en sus extremos y que apoya al centro sobre una columna circular empotrada en la base. La
Pontificia Universidad Católica de Chile Facultad de Física. Estática
Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas
ELEMENTOS TIPOS CERCHA
NL 2013 ELEMENTOS TIPOS CERCHA Ing. Néstor Luis Sánchez Ing. Civil Tw: @NestorL ESTRUCTURAS COMPUESTAS POR ELEMENTOS TIPO CERCHA Este tipo de sistemas tienen la característica de ser muy livianos y con
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior
ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f
ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
Presentación: Ing. Carlos Gerbaudo
Colegio de Profesionales de la Ingeniería Civil de Entre Ríos DISEÑO Y CONSTRUCCIÓN DE PUENTES DE LUCES MEDIAS PARTE 4. METODOS CONSTRUCTIVOS Presentación: Ing. Carlos Gerbaudo UNIVERSIDAD NACIONAL DE
Folio EST VIGAS HIPERESTATICAS. Folio: EST Fecha: Noviembre/2000. Autores: Arqto. Verónica Veas B. Arqto.
Folio EST 0-0 VIGAS HIPERESTATICAS Materia: Estructura II Folio: Fecha: EST -0 Noviembre/000 Autores: Arqto. Verónica Veas B. Arqto. Jing Chang Lou Folio EST -0 MORFOLOGÍA ESTRUCTURAL I.- INTRODUCCION
ESCUELA TECNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS. MADRID CURSO 2010/2011 PUENTES I PRACTICA 1
CURSO 2010/2011 PUENTES I PRACTICA 1 En la figura se muestra la sección transversal de un puente formado por cinco vigas prefabricadas doble T de hormigón pretensado separadas 2,635 metros entre sí. La
ESTABILIDAD II A (6402)
1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso
INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan a continuación dos pruebas: OPCIÓN A y OPCIÓN B, cada una de ellas con un ejercicio y varias cuestiones. Se ha de elegir una prueba entera, no pudiendo,
Proyecto Guao RECTAS PARALELAS Y SECANTES Alguna vez has pensado en el diseño de tu propio parque de patinaje?
RECTAS PARALELAS Y SECANTES Alguna vez has pensado en el diseño de tu propio parque de patinaje? Marco e Isaac están trabajando en un diseño para un nuevo parque de patinaje. La alcaldía ha acordado que
Materia: Puentes Semestre: Noveno I / G.Jiménez/2011
Materia: Puentes Semestre: Noveno I / 2011 G.Jiménez/2011 Cargas en los Puentes Cargar muerta Carga viva + Impacto Viento en la Estructura Sismo Hielo Fuerza de la corriente Empuje y presión de la tierra
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 6.- ESTRUCTURAS TRIANGULADAS. 6.1.- Elementos estructurales isostáticos. Una estructura es un sistema de miembros o barras
CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA
CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA
SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad
CAPÍTULO IX FUERZA CORTANTE Y MOMENTO FLECTOR EN VIGAS. i) Cargas concentradas. Son fuerzas aplicadas en puntos determinados de la viga.
Resistencia de ateriales. Capítulo IX. Esfuerzo cortante momento flector. Tipos de vigas CÍTUO IX FUERZ CORTNTE Y OENTO FECTOR EN IGS Eisten varias formas de ejercer fuerzas sobre una viga. i) Cargas concentradas.
EQUILIBRIO. 1. La suma algebraica de fuerzas en el eje X que se denominan Fx, o fuerzas con dirección horizontal, es cero.
EQUILIBRIO. Un cuerpo está en equilibrio cuando se encuentra en reposo o tiene un movimiento uniforme. Analíticamente se expresa cuando la resultante de las fuerzas que actúan sobre un cuerpo es nula,
Ingeniería Asistida por Computador
Problema No 1: Se desea mecanizar un eje como el que representa en la figura, el elemento debe soportar una carga de 6500N actuando sobre un tramo de la barra, el material considerado para la pieza es
ESTRUCTURAS DEFINICIÓN
ESTRUCTURAS DEFINICIÓN Son conjuntos de elementos colocados de tal forma que permanecen sin deformarse ni desplomarse soportando las fuerzas o pesos para los que han sido proyectadas. 1 PROBLEMAS QUE RESUELVEN
Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:
Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las
Viga continua de 5 tramos: Esfuerzos- Cargas móviles
Nivel iniciación - Ejemplo 6 Viga continua de 5 tramos: Esfuerzos- Cargas móviles En esta práctica se realiza una viga continua de 5 tramos mediante la misma metodología seguida en el ejemplo 5, salvo
ME Capítulo 4. Alejandro Ortiz Bernardin. Universidad de Chile
Diseño de Elementos Mecánicos ME-5600 Capítulo 4 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Constantes de Resorte
CINEMÁTICA: CONCEPTOS BÁSICOS
CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar
INDICE. Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS
INDICE Primera Parte VIGAS CONTINUAS Y ESTRUCTURAS APORTICADAS 1 La barra elástica 1.1 Introducción 1.2 Ley de Hooke. 1.3 Teorema de Mohr 1.4 EI concepto «rigidez de resorte» 1.5 Relación entre rigidez
Estática. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estática Ingeniería Electromecánica EMM - 0517 3 2 8 2.- HISTORIA DEL PROGRAMA
A D ANTONE
A D ANTONE ARQ. MARÍA A. [email protected] GENERAIDADES OSA: Elemento estructural superficial Cargas perpendiculares a su superficie Se deforma según una curvatura Se genera un estado de flexión
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
8. Ensayos con materiales
8. Ensayos con materiales Los materiales de interés tecnológico se someten a una variedad de ensayos para conocer sus propiedades. Se simulan las condiciones de trabajo real y su estudia su aplicación.
* ANÁLISIS DE ESTRUCTURAS
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA (FIEE) ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA * ANÁLISIS DE ESTRUCTURAS ING. JORGE MONTAÑO PISFIL CALLAO, 2010 INTRODUCCIÓN
APLICACIONES DE LA OFERTA Y LA DEMANDA
ALICACIONES DE LA OFERTA Y LA DEMANDA Elasticidad precio de la oferta y la demanda: Mide cuánto varía la cantidad demandada u ofrecida) de un bien cuando varía su precio. Elasticidad precio de la demanda:
TEMA 6 ESTÁTICA. Bibliografía recomendada:
TEMA 6 ESTÁTICA 0 > Introducción. 1 > Equilibrio. Tipos de equilibrio. 2 > Principios fundamentales y ecuaciones cardinales de la Estática. 3 > Estática de sistemas planos. 3.1 > Reacciones en apoyos y
Estática. Fuerzas Internas
Estática 7 Fuerzas Internas Objectivos Método de las secciones para determinar las cargas internas o solicitaciones en un miembro. Describir la tensión interna de corte o cizalla y el momento interno de
Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV
Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,
Análisis Estructural I Método de Cross
El cálculo de un pórtico de vigas continuas constituye un problema común en el calculista de estructuras de edificios, a los fines de obtener el armado final de las mismas. Si las cargas y luces difieren
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago
Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si
La ecuación del salario: W=P F(u,z) Dividiendo los dos miembros por el nivel de precios: W/P=F(u,z)
La ecuación del salario: W=P F(u,z) Dividiendo los dos miembros por el nivel de precios: W/P=F(u,z) La determinación de los salarios implica la existencia de una relación negativa entre el salario real
TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO
TRABAJO PRACTICO Nº 3: APOYOS Y REACCIONES DE VINCULO 1. A) En cada uno de los cinco ejemplos siguientes se presenta en la ilustración de la izquierda el cuerpo a aislar, mientras que a la derecha se presenta
ESFUERZOS Y DEFORMACIONES EN VIGAS DEBIDAS A FUERZAS EN CABLES POSTENSADOS
Cátedra de Análisis Estructural Carrera de Ingeniería Civil ESFUERZOS Y DEFORMACIONES EN VIGAS DEBIDAS A FUERZAS EN CABLES POSENSADOS Marcelo A. Ceballos Carlos A. Prato Año 2003 ESFUERZOS Y DEFORMACIONES
ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.
C U S O: ÍSICA COMÚN MATEIAL: C-08 ESTÁTICA En esta unidad analizaremos el equilibrio de un cuerpo grande, que no puede considerarse como una partícula. Además, vamos a considerar dicho cuerpo como un
Regresar Wikispaces. Siglo XXI
ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp
Centro de gravedad de un cuerpo bidimensional
Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida
Carrera : Arquitectura ARF Participantes Representante de las academias de Arquitectura de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura : Carrera : Clave de la asignatura : Horas teoría-horas práctica-créditos : Estructura de Concreto I Arquitectura ARF-0408 2-4-8 2.- HISTORIA DEL PROGRAMA.
DISTRIBUCIÓN DE CARGAS VIVAS EN VIGAS DE PISO
DISTRIBUCIÓN DE CARGAS VIVAS EN VIGAS DE PISO DISTRIBUCIÓN DE CARGAS VIVAS EN VIGAS DE PISO DEFINICIÓN La distribución de cargas tiene por finalidad estudiar la influencia de la asimetría de la carga móvil
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA. Problemas resueltos de cambios de fase de la materia.
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA Problemas resueltos de cambios de fase de la materia. 1. Qué se entiende por sistema y alrededores? Un sistema se define como cualquier
FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática
FACULTAD DE INGENIERIA ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática 1 Mecánica: Rama de la física que se ocupa del estado de reposo o movimiento de cuerpos sometidos a la
UNIDAD 6 F U E R Z A Y M O V I M I E N T O
UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino
Departamento de Mecánica de Medios Continuos y Teoría de Estructuras. Ingeniería Estructural. Introducción
Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Ingeniería Estructural Introducción Puede definirse, en general, una estructura como:...conjunto de elementos resistentes capaz de mantener
Microeconomía Básica
Microeconomía Básica Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las propuestas
Viga carril de puente grúa. Sección Doble Te de simple simetría. Aplicación Capítulos A, F, K y Apéndices B, F y K.
119 EJEMPLO N 17 Viga carril de puente grúa. Sección Dole Te de simple simetría. Aplicación Capítulos A, F, K Apéndices B, F K. Enunciado: Dimensionar una viga carril para puente grúa con sección armada
Mecánica de materiales p mecatrónica. M.C. Pablo Ernesto Tapia González
Mecánica de materiales p mecatrónica M.C. Pablo Ernesto Tapia González Fundamentos de la materia: La mecánica de los cuerpos deformables es una disciplina básica en muchos campos de la ingeniería. Para
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
CAPÍTULO 3: DISEÑO DE LOSAS
CAPÍTULO 3: DISEÑO DE LOSAS 3.1 Predimensionamiento 3.1.1 Longitud del volado de losa AASHTO, limita la longitud del volado a 1.80 m ó 0.5 S (separación de las vigas) como se muestra en la fig. 3.1. Asimismo,
Presentación: Ing. Carlos Gerbaudo
Colegio de Profesionales de la Ingeniería Civil de Entre Ríos DISEÑO Y CONSTRUCCIÓN DE PUENTES DE LUCES MEDIAS PARANÁ - 3 MARZO 2 016 Presentación: Ing. Carlos Gerbaudo UNIVERSIDAD NACIONAL DE CORDOBA
LECCIÓN Nº 04 LA PARABOLA
LECCIÓN Nº 04 LA PARABOLA Parábola El conjunto de puntos del plano tales que están a la misma distancia de una recta dada y de un punto dado F que no este sobre recibe el nombre de parábola. El punto F
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ESTÁTICA SÍLABO
U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ESTÁTICA SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL : INGENIERÍA MECÁNICA
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.
EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca
1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte
Trabajo Práctico Cálculo de Vigas. 1 Introducción 1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Como se explicó
TEMA 2. FUNDAMENTOS DE RESISTENCIA DE MATERIALES.
Féi C. Gómez de León ntonio Gonzáez Carpena TE. FUNDENTOS DE ESISTENCI DE TEILES. Curso de esistencia de ateriaes y cácuo de estructuras. Índice. Condiciones de equiibrio estático. E método genera de a
EJERCICIO 1. Trazar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada m. 0.
EJERCICIOS DE APLICACION EJERCICIO 1. razar diagramas de momento flector y corte, y calcular las máximas tensiones que ocurren en la viga simplemente apoyada. θ.8 m y x 15. m p.1 m θ.1 m La carga axial
**********************************************************************
13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica
ESTRUCTURAS. Los tipos de esfuerzos que pueden actuar sobre un elemento son:
ESTRUCTURAS 0. TIPOS DE ESFUERZOS 1. ESTRUCTURAS: CONCEPTO Y CLASIFICACIONES. 2. PROPIEDADES DE LAS ESTRUCTURAS: ESTABILIDAD, RESISTENCIA Y RIGIDEZ. 3. ELEMENTOS DE LAS ESTRUCTURAS: VIGAS Y PILARES, PERFILES
a) Teoría: Teoría y problemas de examen para alumnos regulares y previos: Mecánica Técnica E. E. T. P. Nº 466
Asignatura: Mecánica Técnica Teoría y problemas de examen para alumnos regulares y previos: a) Teoría: 1) Hipótesis de la Estática. 2) Definición de fuerza. Características. Unidades. 3) Resultante de
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas
TEMA 2: EL MOVIMIENTO
TEMA 2: EL MOVIMIENTO 1.- Introducción. 2.- Características del movimiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazamiento. 2.4.- Velocidad. 2.5.- Aceleración. 1.- INTRODUCCIÓN La Cinemática es
Estudio estructural y constructivo de un edificio en altura en Nueva York (USA).
Estudio estructural y constructivo de un edificio en altura en Nueva York (USA). Trabajo final de grado Titulación: Grado en Ingeniería de Obra Públicas Curso: 2014/15 Autores: y Ximena Jacqueline Camino
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
Introducción a las Estructuras
Introducción a las Estructuras Capítulo doce: Ejemplo 10 Ejemplo diez. Se pide: Calcular las solicitaciones y dimensionar todos los elementos que componen el entrepiso de madera que se muestra en la planta
Movimiento. Cinemática
Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES
PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS
PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS 1. Una grúa móvil levanta una carga de madera que pesa W = 25 kn. El peso del mástil ABC y El peso combinado de la camioneta y el conductor son los indicados
Máster Universitario en Ingeniería de las Estructuras, Cimentaciones y Materiales UNIVERSIDAD POLITÉCNICA DE MADRID PUENTES I PRÁCTICA 2
UNIVERSIDAD POLITÉCNICA DE MADRID PUENTES I PRÁCTICA 2 CURSO 2009-2010 Alberto Ruiz-Cabello López INDICE 1. Predimensionamiento de la sección 2. Acciones. Cálculo de esfuerzos 2.1. Esfuerzos debidos al
Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa
1. Requisitos generales La tracción o la compresión que solicita la barra de acero, se debe transmitir o desarrollar hacia cada lado de la sección considerada mediante una longitud de armadura embebida
El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.
Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre
