Tutorial 02: Unidades y Coordenadas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tutorial 02: Unidades y Coordenadas"

Transcripción

1 Tutorial 02: Unidades y Coordenadas En AutoCAD podemos realizar dibujos de muy diverso tipo: desde planos arquitectónicos de todo un edificio o un proyecto completo de obras viales o civiles, hasta dibujos de piezas de maquinarias tan pequeñas y precisas como las de un reloj. Sin embargo, esto nos genera un gran problema: el tipo de unidades de medida que requiere un cierto dibujo u otro. En algunos casos se deberá trabajar en kilómetros, otros en metros, otras en centímetros e incluso en milímetros, para el caso de piezas más pequeñas. Incluso hay casos en los que se requiere trabajar en pulgadas (1 =2.54 cm) y en el caso de los ángulos, podemos utilizar el sistema sexagesimal (grados) o como radianes (grados, minutos y segundos). La pregunta es entonces, Cómo utilizamos estas unidades en AutoCAD?. Para ello debemos considerar convenciones básicas para trabajar con las unidades de medida en el programa. Unidades de dibujo o Drawing Units AutoCAD trabaja con una sola unidad de medida llamada sencillamente Unidad de Dibujo o Drawing Unit (DU). Esto implica que si dibujamos una línea y le asignamos el valor 30, esa línea medirá simplemente 30 unidades de dibujo. Ahora bien, cuánto representan estas unidades en la realidad? simplemente dependerá de nuestro criterio. Por ejemplo, podemos representar esta línea como un muro continuo que mida 30 metros, por lo tanto el valor 30 representará 30 metros. Si dibujamos otra línea de 4.5 entonces representará 4.5 mts. Si por ejemplo estamos desarrollando un proyecto vial y dibujamos una línea de 200, podemos asumir que representan 200 kms. Si dibujamos una pieza pequeña como por ejemplo un engranaje de reloj que mida 5, podemos asumir que equivalen a 5 mm.

2 Foto: Circulo de radio 2. Este radio puede medirse en kilómetros, metros, centímetros o milímetros según lo elijamos. En AutoCAD simplemente mide 2 Unidades de dibujo. De esto se desprende que deberemos adaptar las conversiones a la unidad que hemos elegido. Por ejemplo, si consideramos que 1 unidad de dibujo = 1 mt, una línea que mida 1.5 km deberá dibujarse como una línea que mida 1500 unidades de dibujo (ya que 1 km = mts). De esto podemos confirmar que: 1) Podemos dibujar en AutoCAD utilizando las medidas reales de los objetos, gracias a las unidades de dibujo. La unidad real será equivalente a la unidad de dibujo. 2) AutoCAD maneja hasta 16 posiciones después del punto decimal, aunque conviene utilizar esta capacidad sólo cuando sea estrictamente necesaria para aprovechar mejor los recursos de la PC. Por ejemplo, si una pieza mide 1.25 mt y elegimos 1 unidad de dibujo = 1 metro, nuestra línea en AutoCAD deberá medir exactamente 1.25 DU. En este caso utilizamos una precisión de 2 decimales. Si decidimos utilizar 1 unidad de dibujo = 1 cm, nuestra línea de 1.25 mt la dibujaríamos como 125 unidades de dibujo sin utilizar posiciones decimales, ya que 1 mt = 100 cm. Ahora bien, si asumimos 1 unidad de dibujo = 1 kilómetro nuestra línea de 1.25 mt mediría

3 y utilizamos 6 posiciones decimales, lo cual resultaría poco práctico para trabajar detalles y manejar las unidades de conversión. De lo anterior podemos concluir que la equivalencia entre las unidades de dibujo y las unidades de medida dependerá de las necesidades del dibujo y la precisión con la que se requiera trabajar. También concluiremos que el dibujo será más grande o pequeño en la pantalla según la unidad que decidamos trabajar: Foto: Líneas dibujadas del ejemplo anterior. La primera mide 125 unidades y se sale de cuadro, la segunda mide 1.25 y la tercera sólo , tan pequeña que sólo se ve como un punto. La más adecuada para trabajar la pieza de 1.25 mts sería elegir la equivalencia 1 unidad de dibujo = 1 mt. Por otro lado, la escala del dibujo que será impresa en papel es algo totalmente distinto de las unidades de dibujo, ya que al terminarse el dibujo este puede ser escalado para ajustarse el formato del papel y por ello no debemos preocuparnos del tamaño de este en la pantalla. Por ello no sirve de nada asignar equivalencia de 1 unidad de dibujo = 1 unidad de medida en papel. La escala de impresión es algo totalmente independiente y esta se ve en detalle en el tutorial de Layout. Respecto a cómo dibuja AutoCAD en la pantalla de trabajo, podemos afirmar que este utiliza el plano cartesiano y cuatro sistemas de coordenadas que son: - Coordenadas Cartesianas Absolutas. Coordenadas Cartesianas Relativas. Coordenadas Polares Absolutas. Coordenadas Polares Relativas. En este tutorial se explicará cada uno de estos tipos, indicando similitudes y diferencias entre cada uno además de su interacción con la barra de comandos ya vista en el tutorial 01. Coordenadas Cartesianas Absolutas

4 El dibujo de AutoCAD está sustentado a partir del plano cartesiano X, Y y Z ya conocido en geometría analítica. El plano cartesiano está compuesto por un eje llamado eje X o también conocido como eje de las absisas, y de un eje llamado eje Y también llamado eje de las ordenadas. Existe un tercer eje, el eje Z el cual por defecto, apunta hacia nosotros en el caso de dibujos 2D y por ende no es visible en este modo. Los ejes del plano cartesiano nos permiten ubicar mediante un par de valores en X e Y, la posición precisa de un punto: En la imagen vemos una representación del plano cartesiano. La intersección entre los ejes X e Y nos da el punto de origen de coordenadas (0,0) y podemos notar que está dividido en cuadrantes. Además, los valores a la derecha del eje X son positivos mientras los de la izquierda con de valor negativo. En el caso del eje Y, los valores arriba del eje serán positivos y debajo de este son negativos.

5 En AutoCAD podemos indicar cualquier valor de coordenadas con valores en X e Y aunque estos sean negativos e incluso si el área del dibujo se encuentra en el cuadrante 1, donde X e Y son positivos. Para ejemplificar esto, desactivamos la entrada dinámica (DIN) presionando el botón correspondiente (F12). Con esto las coordenadas serán absolutas. Activa o desactiva Entrada dinámica. Si dibujamos una línea con el comando L, AutoCAD nos pide introducir la primera coordenada. Escribimos -1,-1 y presionamos enter, luego nos pedirá la segunda coordenada y escribimos 2,2, presionamos enter y luego cancelamos con esc. El resultado es el de la

6 imagen de abajo: La línea formada en AutoCAD sólo se ve como una línea inclinada aunque sí está en el plano cartesiano. Podemos activar la opción de grilla (presionando F7) para ver el resultado (imagen). Podemos ver claramente que los extremos de la línea se posicionan en los puntos (-1,-1) y (2,2). En las versiones más antiguas de AutoCAD no se nos mostrarán las líneas de los ejes por lo que debemos imaginárnoslas. Como se ve, AutoCAD considera las coordenadas aun cuando no las muestre. Resumiendo, cuando introducimos valores de coordenadas X e Y exactas con relación al punto de origen (0,0) sin activar Dynamic Input, entonces estamos usando Coordenadas Cartesianas Absolutas. Coordenadas Cartesianas Relativas

7 Las coordenadas cartesianas relativas son aquellas que se expresan en coordenadas X e Y de forma similar a las absolutas pero se diferencian de las estas porque toman como referencia el último punto posicionado en lugar del punto de origen. Para establecer estas coordenadas, debemos escribir lo También aparecen por defecto cuando activamos Dynamic Input. Si activamos Entrada Dinámica (Dynamic Input) y dibujamos una línea (L), el primer punto se definirá de forma absoluta pero el siguiente punto automáticamente se definirá mediante coordenadas cartesianas relativas. Estas coordenadas en verdad definen magnitudes en X e Y que forman un triángulo rectángulo virtual. Para entender esto, dibujemos nuevamente una línea con el comando L. Establecemos el primer punto en 1,1 y damos enter, luego escribimos 4,2 y damos enter para finalmente cancelar el comando con esc. El resultado es el de la imagen de abajo: Lo lógico hubiese sido que el segundo punto se hubiese definido en la posición (4,2) pero lo que en verdad ha hecho el programa fue mover el segundo punto a (5,4). Lo que definimos en las coordenadas relativas, como se dijo antes, son magnitudes para X(4) y para Y(2) los cuales forman los catetos virtuales que forman la línea definida por la hipotenusa. Si las magnitudes son negativas (-4,-2), esto implicará un cambio de dirección en X e Y según la dirección de los ejes respecto al plano cartesiano. Si X es negativo, el punto se moverá hacia la izquierda, y si Y es negativo se moverá hacia abajo. En la imagen de abajo vemos que al aplicar las coordenadas (-4,-2), el punto se mueve a la posición (-3,-1).

8 En resumen, debemos tener cuidado con este tipo de coordenadas puesto que en el caso de las líneas en diagonal, las coordenadas que asignemos NO definirán la magnitud verdadera de estas. Por eso es mejor trabajar con Coordenadas Polares Relativas. Coordenadas polares absolutas Las coordenadas polares absolutas también tienen como primer punto de referencia las coordenadas de origen (0,0), pero en lugar de indicar coordenadas absolutas (valores en X e Y), podemos definir la distancia respecto al origen y el ángulo, de acuerdo al siguiente esquema:

9 Al igual que en Geometría, los ángulos en AutoCAD se cuentan a partir del eje X y en sentido contrario a las manecillas del reloj, a su vez el vértice del ángulo coincide con el punto de origen. Por lo tanto los ángulos son positivos si van contrarreloj y son negativos si van a favor. Las coordenadas polares absolutas se escriben como: distancia<valor del ángulo. Por ejemplo, desactivemos nuevamente Dynamic Input y dibujemos una línea con el comando L (line). Cuando nos pida el primer punto escribimos 2<20 y luego enter:

10 En la imagen notamos que el punto se ha posicionado tomando como referencia el al ángulo de 20º respecto al eje X y con el valor de hipotenusa igual a 2 (destacados en verde). Ahora escribamos 8<40 para definir el segundo punto, presionamos enter y luego cancelamos con esc. El resultado es la línea de la imagen de abajo, aunque en AutoCAD sólo se verá la línea blanca junto a los ejes. En verde se ha destacado la operación que realiza el programa luego de ingresar los valores. Por consiguiente, notamos que el segundo punto se ha establecido tomando como referencia el ángulo de 40º desde el origen y con un valor igual a 8, tomado desde el último punto al

11 origen (0,0). La línea por tanto tiene otra magnitud, distinta de 8. Al igual que en el caso de las Coordenadas Cartesianas Relativas, este modo NO define la magnitud de la línea en diagonal así que debe usarse en casos específicos. Coordenadas Polares Relativas Las Coordenadas Polares Relativas son aquellas que se expresan tomando un punto y el ángulo pero se diferencian de las absolutas porque estas toman el último punto posicionado. Para establecer estas coordenadas, debemos del ángulo. También aparecen por defecto cuando activamos entrada dinámica. Por ejemplo, activemos Dynamic Input y dibujemos una línea con el comando L. Cuando nos pida el primer punto escribimos 2<20 y luego enter. Este primer punto se dibujará de manera absoluta. Ahora escribimos 8<40, presionamos enter y luego cancelamos con esc. El resultado es la línea de la imagen de abajo, aunque en AutoCAD sólo se verá la línea blanca junto a los ejes: En verde se ha destacado la operación que realiza el programa luego de ingresar los valores. Por consiguiente, notamos que el segundo punto se ha establecido tomando como referencia el ángulo de 40º respecto al primer punto y con un valor de hipotenusa igual a 8, que será la longitud verdadera de la línea. Es importante recordar que si asignamos valores negativos a los ángulos, implicarán que la

12 rotación de estos será en el sentido de las manecillas del reloj. Podemos entender esto en la imagen de abajo: Si colocamos el valor 45 mientras dibujamos con coordenadas polares, la línea se dibuja en el cuadrante 1 donde los valores son positivos. El ángulo se toma desde el punto de origen (0,0) y se proyecta hacia arriba ya que, recordemos, por definición los ángulos giran contra las manecillas del reloj. En cambio, si al ángulo le asignamos el valor -45, este se forma hacia abajo y en el cuadrante 2, ya que ahora está girando en el mismo sentido de las manecillas del reloj. Para entender esto, dibujemos un octágono utilizando coordenadas polares relativas.

13 Activamos la Entrada Dinámica (Dynamic Input) y en la barra de comandos escribimos L, ubicamos el primer punto en (2,2), luego escribimos: 2<0 y damos enter, 2<45 y damos enter, 2<90 y damos enter, 2<135 y damos enter, 2<180 y damos enter, 2<-135 y damos enter, 2<-90 y damos enter, 2<-45 y damos enter. El resultado es el de la imagen de abajo: Hemos dibujado el octágono regular utilizando coordenadas polares y notaremos que -135 equivale a 225º, -90 a 270º y -45 a 315º. Además de desactivar la entrada dinámica o para las coordenadas relativas, podemos cambiarlas presionando el botón secundario del mouse en las coordenadas de dibujo mientras dibujamos.

14 Coordenadas de dibujo. Estas nos muestran las coordenadas del puntero en los 3 ejes. Se nos abre un menú donde podremos cambiar entre coordenadas absolutas, relativas, geográficas o desactivarlas (imagen derecha). Este es el fin del tutorial 02.

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

Semana 5. Ángulos: Grados y radianes. Semana Función exponencial 6. Empecemos! Qué sabes de...?

Semana 5. Ángulos: Grados y radianes. Semana Función exponencial 6. Empecemos! Qué sabes de...? Semana Función exponencial 6 (parte 2) Semana 5 Empecemos! Estimado participante, desde este semestre hasta el 9no trabajarás una temática importante dentro de la geometría: la trigonometría (medida de

Más detalles

Las Funciones Trigonométricas. Sección 5.1 Angulos

Las Funciones Trigonométricas. Sección 5.1 Angulos 5 Las Funciones Trigonométricas Sección 5.1 Angulos Introducción Si comenzamos con un rayo fijo l 1, que tiene un extremo nombrado O, y rotamos el rayo en el plano sobre O in a plane, hasta llegar a la

Más detalles

TUTORIAL 03: AYUDANTES DE DIBUJO

TUTORIAL 03: AYUDANTES DE DIBUJO TUTORIAL 03: AYUDANTES DE DIBUJO En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar objetos complejos es

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

3.1 Situaciones que involucran funciones trigonométricas

3.1 Situaciones que involucran funciones trigonométricas 3.1 Situaciones que involucran funciones trigonométricas Ejemplo 1) La traectoria de un proectil disparado con una inclinación respecto a la horizontal con una velocidad inicial v 0 es una parábola. Epresa

Más detalles

José Antonio Jiménez Nieto

José Antonio Jiménez Nieto TRIGONOMETRÍA. UNIDADES PARA MEDIR ÁNGULOS Un ángulo es una porción de plano limitada por dos semirrectas que tienen un origen común. Las unidades que más frecuentemente se utilizan para medir ángulos

Más detalles

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio:

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio: Trigonometría La trigonometría trata sobre las relaciones entre los ángulos y los lados de los triángulos. El concepto fundamental sobre el que se trabaja es el de ángulo. Dos semirrectas con un origen

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

TALLER CON HERRAMIENTAS GIS

TALLER CON HERRAMIENTAS GIS TALLER CON HERRAMIENTAS GIS A lo largo de este taller utilizaremos los programas: ARCGIS, AUTOCAD y QGIS, con el fin de Georeferenciar un mapa, trabajar para establecer su perfil y finalmente integrar

Más detalles

Se entiende por trigonometría, según su origen griego, la ciencia que tiene por objetivo la medida de los lados y los ángulos de los triángulos.

Se entiende por trigonometría, según su origen griego, la ciencia que tiene por objetivo la medida de los lados y los ángulos de los triángulos. Unidad Trigonometría Introducción... Ángulos. Medida de ángulos... Razones trigonométricas de un ángulo... Resolución de triángulos: triángulos rectángulos... Casos concretos... Introducción Se entiende

Más detalles

Razones trigonométricas.

Razones trigonométricas. Razones trigonométricas. Matemáticas I 1 Razones trigonométricas. Medidas de ángulos. Medidas en grados (Deg.) El grado es el ángulo plano que teniendo su vértice en el centro de un círculo intercepta

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 3

CONCEPTOS CLAVE DE LA UNIDAD 3 CONCEPTOS CLAVE DE LA UNIDAD 3 1. Razón trigonométrica seno. Si θ es la medida de algún ángulo interior agudo en cualquier triángulo rectángulo, entonces a la razón que hay de la longitud del cateto opuesto

Más detalles

4 CAJA DE POLINOMIOS C A P Í T U L O 4.1 MANUAL BÁSICO DE LA CAJA DE POLINOMIOS

4 CAJA DE POLINOMIOS C A P Í T U L O 4.1 MANUAL BÁSICO DE LA CAJA DE POLINOMIOS C A P Í T U L O 4 CAJA DE POLINOMIOS Por: Jhon Fredy Saavedra Delgado Licenciatura en Matemáticas Universidad del Tolima [email protected] En este capítulo se mostrará el manejo básico del demo

Más detalles

Dr. GEO. Versión 10.12

Dr. GEO. Versión 10.12 Dr. GEO Versión 10.12 Dr.Geo es una Actividad que permite trabajar en el área de geometría de forma dinámica. Es una Actividad muy completa y precisa, que trabaja conceptos aprendidos tanto en el ámbito

Más detalles

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos

Más detalles

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre.

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre. ROYAL AMERICAN SCHOOL Asignatura de matemática Miss Pamela Pérez Aguayo Guía de refuerzo Matemática. 5º Básico. II Semestre. Formando personas responsables, respetuosas, honestas y leales Nombre: Objetivo:

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 alderón Email: [email protected] Sitio web: www.jfvc.wordpress.com Forma de la Tierra 1. PLANO = TOPOGRAFIA 2. ESFERA = CARTOGRAFIA 3. ELIPSOIDE O ESFERIODE = GEODESIA 4. GEOIDE = GEODESIA

Más detalles

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE: FECHA:

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE:   FECHA: DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS SEGUNDO EJES TEMÁTICOS La recta numérica Suma de números enteros

Más detalles

APUNTE TABLAS MICROSOFT WORD 2003

APUNTE TABLAS MICROSOFT WORD 2003 TABLAS Las tablas nos permiten organizar la información en filas y columnas. En cada intersección de fila y columna tenemos una celda. En Word tenemos varias formas de crear una tabla: Desde el icono Insertar

Más detalles

Entorno de trabajo de Excel 2010

Entorno de trabajo de Excel 2010 Entorno de trabajo de Excel 2010 Descripción de la ventana principal Barra de herramientas de acceso Rápido Fichas Barra de Título Cinta de opciones Ayuda de Ms. Excel Nombre de celda activa Encabezado

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

UNIDADES DE TRABAJO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº 1 PERIODO I

UNIDADES DE TRABAJO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº 1 PERIODO I UNIDADES DE TRABAJO Código PGA-02-R0 INSTITUCIÓN EDUCATIVA CASD Armenia Quindío PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS 1. AREA INTEGRADA: MATEMATICA 2. CICLO: V 3.

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,

Más detalles

En esta imagen podemos ver las seis vistas que podemos representar de un objeto. En la tercera figura, es necesario representar el perfil Por qué?

En esta imagen podemos ver las seis vistas que podemos representar de un objeto. En la tercera figura, es necesario representar el perfil Por qué? TEMA: DIBUJO TÉCNICO COMO REPRESENTAR UN OBJETO. Principalmente existen dos formas de representación diferentes. Una de ellas es la llamada representación en perspectiva. Consiste en simular el volumen

Más detalles

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1 1.1 Gráficas de Ecuaciones en dos variables MATE 3002 Presentación 1 Sistema de coordenadas cartesianas Se basa en dos líneas perpendiculares llamadas eje de x y eje de y. Dividen el plano en cuatro cuadrantes

Más detalles

Elaboración de Documentos en Procesadores de Textos

Elaboración de Documentos en Procesadores de Textos Las tablas permiten organizar la información en filas y columnas, de forma que se pueden realizar operaciones y tratamientos sobre las filas y columnas. Por ejemplo, obtener el valor medio de los datos

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

Cómo introducir las coordenadas de un punto? Cómo representar gráficamente las coordenadas de un punto? Puntos en el plano

Cómo introducir las coordenadas de un punto? Cómo representar gráficamente las coordenadas de un punto? Puntos en el plano Puntos en el plano Cómo introducir las coordenadas de un punto? Elegimos en la barra de menús de la Ventana de Álgebra la opción Editar/Vector... o bien pulsamos sobre el icono y en Elementos escribimos

Más detalles

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar

Más detalles

Aplicaciones topográficas Ingeniería Forestal

Aplicaciones topográficas Ingeniería Forestal Aplicaciones topográficas Ingeniería Forestal Latitud y Longitud Sistemas de Coordenadas Geográficas y planas Prof. Roy Cruz Morales. 1 Grados: 1 = 60 min Minutos: 1 min = 60 s Segundos se miden en forman

Más detalles

Los Ángulo y sus Medidas. Everis Aixa Sánchez

Los Ángulo y sus Medidas. Everis Aixa Sánchez Los Ángulo y sus Medidas Everis Aixa Sánchez Estandar: Funciones ES.F.28.1 Reconoce que la medida de un ángulo en radianes es igual a la longitud del arco que subtiende ese ángulo sobre el círculo unitario

Más detalles

1. TECNOLOGÍA, DIBUJO Y MEDICIÓN

1. TECNOLOGÍA, DIBUJO Y MEDICIÓN Departamento Tecnología I.E.S. Drago Cádiz PÁG. 1 # ACTIVIDADES 1.- Compara tu aula taller con la que te hemos propuesto aquí y realiza un informe con las semejanzas y las diferencias: SEMEJANZAS DIFERENCIAS

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

Perfil. Alzado. Planta. En los tres casos los rayos de proyección son perpendiculares al plano de proyección

Perfil. Alzado. Planta. En los tres casos los rayos de proyección son perpendiculares al plano de proyección Expresión gráfica: Sistemas de representación. El curso pasado dedicamos un tema al estudio de la representación gráfica de objetos de forma técnica. Aprendimos a representar las vistas diédricas de un

Más detalles

Introducción AutoCAD 3D

Introducción AutoCAD 3D Introducción AutoCAD 3D 1- Tres Dimensiones en AutoCAD: Las herramientas de trabajo en 3D se pueden distribuir en tres formas: 1. Entorno de trabajo en 3D, es un conjunto de procedimientos que permiten

Más detalles

Programación Gráfica II. 7. Diseño de Cámaras.

Programación Gráfica II. 7. Diseño de Cámaras. Programación Gráfica II 7. Diseño de Cámaras. Objetivo Introducir al manejo de cámaras con DarkGDK. Creación de una cámara en tercera persona. Uso de coordenadas esféricas para manejar manualmente una

Más detalles

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan. II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO

Más detalles

Manual Power Point Trabajar con gráficos

Manual Power Point Trabajar con gráficos Manual Power Point 2010 Trabajar con gráficos CONTENIDO Partes de un gráfico Modificación de un gráfico Solapa Diseño Solapa Presentación Solapa Formato Grupo Estilos de WordArt Agregar una imagen de fondo

Más detalles

MANUAL MAPAS WEB SITMA

MANUAL MAPAS WEB SITMA MANUAL MAPAS WEB SITMA I- Antecedentes El presente manual fue elaborado para facilitar a los usuarios el uso de la plataforma WEB del SITMA. El sitio web municipal cuenta con un visualizador del SITMA,

Más detalles

TRIGONOMETRÍA DEL CÍRCULO

TRIGONOMETRÍA DEL CÍRCULO TRIGONOMETRÍA DEL CÍRCULO Otra unidad de medida para ángulos: RADIANES 1 Usamos grados para medir ángulos cuando aplicamos trigonometría a los problemas del mundo real. Por ejemplo, en topografía, construcción,

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

MANUAL Y ACTIVIDADES. Edublogg.wordpress.com. Caeiro Fábregas - Pérez

MANUAL Y ACTIVIDADES. Edublogg.wordpress.com. Caeiro Fábregas - Pérez MANUAL Y ACTIVIDADES Caeiro Fábregas - Pérez INDICE Conocer la ventana de trabajo de Excel 3 Actividad 1 4 Cambiar ancho de columnas 5 Combinar celdas 5 Color de relleno 6 Bordes 6 Alinear el texto 7 Utilizar

Más detalles

Métodos que devuelven valor Dado el siguiente triángulo rectángulo:

Métodos que devuelven valor Dado el siguiente triángulo rectángulo: Métodos que devuelven valor Dado el siguiente triángulo rectángulo: hipotenusa altura base Para dibujar este triángulo necesitamos los siguientes datos: base y altura La base y la altura, se utilizarán

Más detalles

Excel 2010 Introducción al entorno de trabajo

Excel 2010 Introducción al entorno de trabajo Excel 2010 Introducción al entorno de trabajo Contenido CONTENIDO... 1 DESCRIPCIÓN DE LA VENTANA PRINCIPAL... 2 INGRESAR DATOS... 9 INTRODUCCIÓN A EXCEL WEB APPS... 10 1 Descripción de la ventana principal

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS FUNCIONES TRIGONOMÉTRICAS Sugerencias para quien imparte el curso: Por ningún motivo se debe dar por hecho que todos los alumnos recuerdan perfectamente a las razones trigonométricas, y a las principales

Más detalles

Actividades creativas con Geogebra

Actividades creativas con Geogebra Actividades creativas con Geogebra Taller II Día Geogebra Aragón José Luis Muñoz Casado Índice De un punto al espacio... 3 Fractal de Fibonacci... 7 Construcción de un mosaico... 10 Representación de ecuaciones...

Más detalles

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta

Más detalles

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc. NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

Tutorial MT-b4. Matemática Tutorial Nivel Básico. Ángulos y Polígonos

Tutorial MT-b4. Matemática Tutorial Nivel Básico. Ángulos y Polígonos 12345678901234567890 M ate m ática Tutorial MT-b4 Matemática 2006 Tutorial Nivel Básico Ángulos y Polígonos Matemática 2006 Tutorial Angulos y polígonos Marco Teórico 1. Sistemas de medición angular: Utilizamos

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B

U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B TEORIA PARA LA ELABORACIÓN DEL CUENTO. ( PERSONAS, DEFENSA) TRIGONOMETRÍA ETIMOLÓGICAMENTE: Trigonometría, es la parte de la matemática que estudia

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

ACOTACIÓN DE DIBUJOS

ACOTACIÓN DE DIBUJOS ACOTACIÓN DE DIBUJOS Para que haya comunicación y se pueda entender, al igual que con un idioma, es necesario que el emisor (persona que realiza el dibujo) y el receptor (persona que lo interpreta) utilicen

Más detalles

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor Soluciones oficiales Clasificación Olimpiada Nacional 009 Comisión Académica Nivel Maor Problema 1. Calcule todas las soluciones m, n de números enteros que satisfacen la ecuación m n = 009 (n + 1) Solución.

Más detalles

Materia: Matemática de Tercer Año Tema: Pendiente

Materia: Matemática de Tercer Año Tema: Pendiente Materia: Matemática de Tercer Año Tema: Pendiente Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente

Más detalles

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al

Más detalles

SENA CURSO COMPLEMENTARIO PREVENCION, MANTENIMIENTO Y CONSTRUCCION DE OBRAS DE ARTE PARA VIAS ESCALAS

SENA CURSO COMPLEMENTARIO PREVENCION, MANTENIMIENTO Y CONSTRUCCION DE OBRAS DE ARTE PARA VIAS ESCALAS La escala es la relación matemática que existe entre las dimensiones reales y las del dibujo que representa la realidad sobre un plano o un mapa. Es la relación de proporción que existe entre las medidas

Más detalles

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos Tema : Razones Trigonométricas. Resolución de Triángulos Rectángulos Matemáticas º Bachillerato CCNN.- Ángulos..- Angulo en el plano..- Criterio de Orientación de ángulos..- Sistemas de medida de ángulos.-

Más detalles

Crear gráficos en Excel Un gráfico es la representación gráfica de los datos de una hoja de cálculo y facilita su interpretación.

Crear gráficos en Excel Un gráfico es la representación gráfica de los datos de una hoja de cálculo y facilita su interpretación. CREACIÓN DE GRÁFICOS EN MICROSOFT OFFICE EXCEL Vamos a ver cómo crear gráficos a partir de unos datos introducidos en una hoja de cálculo. Así resultará más sencilla la interpretación de los datos. Terminología

Más detalles

Lección 1: Números reales

Lección 1: Números reales GUÍA DE MATEMÁTICAS III Lección 1: Números reales Los números irracionales En los grados anteriores estudiamos distintas clases de números: Vimos en primer lugar: los naturales, que son aquellos que sirven

Más detalles

1. GeoGebra aplicado a Geometría sintética GeoGebra

1. GeoGebra aplicado a Geometría sintética GeoGebra 1. GeoGebra aplicado a Geometría sintética GeoGebra Experimenta: Paso a paso En el Escritorio crea una carpeta que se llame Mate y dentro la carpeta 1GG, dentro introduce todas las figuras de GeoGebra

Más detalles

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1 1.1 Gráficas de Ecuaciones en dos variables MATE 3002 Presentación 1 Sistema de coordenadas cartesianas Se basa en dos líneas perpendiculares llamadas eje de x y eje de y. Dividen el plano en cuatro cuadrantes

Más detalles

Manejo de Filas, Columnas, Celdas y Rangos

Manejo de Filas, Columnas, Celdas y Rangos Manejo de Filas, Columnas, Celdas y Rangos Selección de filas Selección de columnas Selección de celdas y rangos Ingresar, editar y eliminar datos Tipos de datos Agregar nombres a celdas y rangos Insertar

Más detalles

DIBUJO TECNICO. Ing. Claudia Margarita Gómez Torres

DIBUJO TECNICO. Ing. Claudia Margarita Gómez Torres DIBUJO TECNICO II DIAPOSITIVAS MATERIAL DIDACTICO ELABORADO: JULIO AGOSTO 2008 APLICADO: JULIO - AGOSTO 2009 UNIDAD UNO VISTAS PRINCIPALES Y AUXILIARES OBJETIVO: Dibujar las vistas principales y auxiliares

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Seno (matemáticas) Coseno Tangente

Seno (matemáticas) Coseno Tangente Seno (matemáticas), una de las proporciones fundamentales de la trigonometría. En un triángulo rectángulo, el valor del seno (que suele abreviarse sen) de un ángulo agudo es igual a la longitud del cateto

Más detalles

Primera parte (lunes 5 de octubre)

Primera parte (lunes 5 de octubre) Unidad de aprendizaje 2: Desarrollo de Dibujos por Computadora Resultado de aprendizaje: RA 2.1 Realiza dibujos básicos por computadora, mediante el uso del menú y comandos de figuras predeterminadas del

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Traslaciones en el Plano

Traslaciones en el Plano COLEGIO RAIMAPU Departamento de Matemática Guía Práctica Nº 1 Traslaciones en el Plano Nombre Alumno(a): Al resolver esta guía aprenderás a crear una traslación con el programa GeoGebra. Abrir el programa

Más detalles

FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS

FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS FUNCIÓN BÁSICA DEL SENO Y DEL COSENO, GRÁFICAS Y CARACTERÍSTICAS Sugerencias para quien imparte el curso: Es importante que la interacción con los alumnos dentro del salón de clases sea lo más activa posible,

Más detalles

PowerPoint 2010 Edición del contenido

PowerPoint 2010 Edición del contenido PowerPoint 2010 Edición del contenido Contenido CONTENIDO... 1 AGREGAR TEXTO A UNA DIAPOSITIVA... 2 MOVER Y COPIAR INFORMACIÓN... 5 PANEL DE TAREAS PORTAPAPELES... 7 TRABAJO CON DIAPOSITIVAS... 8 EDICIÓN

Más detalles

UNIDAD 4. MODIFICAR TABLAS DE DATOS

UNIDAD 4. MODIFICAR TABLAS DE DATOS UNIDAD 4. MODIFICAR TABLAS DE DATOS Aquí veremos las técnicas de edición de registros para modificar tanto la definición de una tabla como los datos introducidos en ella. Esta unidad está dedicada, principalmente,

Más detalles

COMANDOS BÁSICOS PARA CROQUIS Y OPERACIONES 2D Y 3D.

COMANDOS BÁSICOS PARA CROQUIS Y OPERACIONES 2D Y 3D. Comandos de la pestaña Croquis: COMANDOS BÁSICOS PARA CROQUIS Y OPERACIONES 2D Y 3D. Recortar entidades: Permite eliminar excesos de entidades que intercepten o atraviesen otro objeto sin que se borre

Más detalles

Guía para maestro. Ángulos en radianes. Compartir Saberes.

Guía para maestro. Ángulos en radianes. Compartir Saberes. Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas [email protected] Para medir ángulos una de las unidades más empleadas en la vida diaria es

Más detalles

INTRODUCCIÓN THINK-CELL. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE

INTRODUCCIÓN THINK-CELL. Manual de Referencia para usuarios. Salomón Ccance CCANCE WEBSITE INTRODUCCIÓN THINK-CELL Manual de Referencia para usuarios Salomón Ccance CCANCE WEBSITE INTRODUCCIÓN En este capítulo, un tutorial paso a paso le mostrará cómo crear un gráfico a partir de un garabato

Más detalles

3. La circunferencia.

3. La circunferencia. UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

TEMA 9: SISTEMA DIÉDRICO: VISTAS PRINCIPALES. DIBUJO EN PERSPECTIVA. ACOTACIÓN

TEMA 9: SISTEMA DIÉDRICO: VISTAS PRINCIPALES. DIBUJO EN PERSPECTIVA. ACOTACIÓN TEMA 9: SISTEMA DIÉDRICO: VISTAS PRINCIPALES. DIBUJO EN PERSPECTIVA. ACOTACIÓN 1 TEMA 9: SISTEMA DIÉDRICO: VISTAS PRINCIPALES. DIBUJO EN PERSPECTIVA. ACOTACIÓN 9.1.- DIBUJO EN PERSPECTIVA Los objetos que

Más detalles

Curso de AutoCAD 2010 Apunte Parte II

Curso de AutoCAD 2010 Apunte Parte II Comandos de dibujo 1. Línea (Line) Este comando construye un segmento entre dos posiciones que se indican con el mouse o por coordenadas. Puede ejecutarse desde: Menú Dibujo (Draw) Desde el botón adecuado

Más detalles

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl VOLUMEN DE CUERPOS GEOMÉTRICOS 1. DESCRIPCIÓN GENERAL DE LA

Más detalles