Clase adicional 7. Análisis numérico en Java. Temas
|
|
|
- Milagros Paz Soto
- hace 8 años
- Vistas:
Transcripción
1 Clase adicional 7 Temas Análisis numérico en Java Búsqueda de raíces Integración Ejercicios de la clase adicional Ejercicios de diseño Análisis numérico en Java El análisis numérico es una rama de la matemática aplicada que se dedica a crear y evaluar técnicas para el empleo de ordenadores en la resolución de problemas numéricos y a estudiar su convergencia y errores. Considere crear una función que busque la raíz de una función, f(x) = 0, en un intervalo [a,b]. Este método de búsqueda de raíces debería tener la función f(x) como argumento. En Java, dado que (casi) todo debe ser un objeto, esto se realiza empaquetando la función que se desea pasar en un objeto. Posteriormente, se puede pasar el objeto como un argumento al método que busca la raíz. El empaquetado se suele realizar declarando una interfaz que describe el objeto que contiene una función. Una interfaz es como un modelo que especifica una o varias capacidades (métodos) que se deben definir en cada clase que lo "implementa". Sólo se pueden definir como interfaces los prototipos de función (los cuerpos de estos métodos se pueden definir en las clases que implementan una interfaz concreta). Por ejemplo, vamos a declarar la siguiente interfaz: interface MathFunction public double func(double x); Posteriormente, podemos utilizar esta interfaz para declarar una clase con una función concreta: class Function1 implements MathFunction public double func(double x) return x * x - 2; //definición para una función concreta, //aquí, por ejemplo, representa f(x) = x*x-2;
2 Ahora ya podemos definir nuestra función de búsqueda de raíces del siguiente modo: public class RootFinder public static double rootfindingmethod( MathFunction mathf,...) // busca la raíz para una función concreta y llamar a la función del siguiente modo con Function1: double rootresult = RootFinder.rootFindingMethod(new Function1(),...); Por ejemplo, el siguiente código buscará la raíz para Function1( f(x) = x2-2) utilizando el método de bisección definido en el siguiente apartado (suponga que el método de bisección está definido en la clase RootFinder): // método main() de la clase RootFinder public static void main(string[] args) double root= RootFinder.bisect(new Function1(), -1.0, 2.0, ); System.out.println("Raíz: " + root); System.exit(0); Búsqueda de raíces Existen cuatro métodos "elementales" para buscar raíces. Entre ellos, el método de bisección y el método de Newton se pueden utilizar para resolver problemas reales en determinadas circunstancias. Los métodos de la secante y de posición falsa (regula falsi) tienen únicamente un valor pedagógico. Consulte la referencia de fórmulas de C para analizar éstos y otros métodos si realmente necesita buscar raíces; las primeras páginas del texto de cada método son relativamente legibles y reveladoras. En el caso de los métodos de bisección, secante y posición falsa, ofrecemos el razonamiento que se esconde detrás de cada uno de ellos y un fragmento de pseudocódigo que lo implementa. Este código es meramente ilustrativo, no es fiable y no debe utilizarse para problemas reales. Bisección Comience con un intervalo conocido para acotar una raíz. Divídalo por la mitad, para reducir el intervalo a la mitad conocida y contener una raíz. Repita esta acción hasta que el intervalo sea lo suficientemente pequeño
3 public static double bisect( MathFunction f, double x1, double x2, double epsilon) double m; for (m= (x1+x2)/2.0; Math.abs(x1-x2)> epsilon; m= (x1+x2)/2.0) if (f.func(x1)*f.func(m) <= 0.0) x2= m; // Utiliza el subintervalo izquierdo else x1= m; // Utiliza el subintervalo derecho return m; Secante Uno de los métodos de búsqueda de raíces, el método secante, comienza con un intervalo conocido para contener una raíz. Llama a los puntos finales del intervalo x1 y x2. El método funciona ajustando una línea recta entre los dos puntos actuales (x1, f(x1)) y (x2, f(x2)) y buscando el punto x* en el que la línea interseca el eje x. El punto final x1 se restablece con el valor de x2. Por su parte, el punto x* pasa a ser el nuevo punto final (x2). Este procedimiento se repite hasta que, o bien el intervalo es muy pequeño, o si se encuentra una raíz de la función. A continuación se incluye el código para implementar el método. comenzar con x1 y x2 ajustar una línea recta entre f(x1) y f(x2) buscar x*, la raíz de la línea recta si x* se aproxima a x2, devolver el valor como la raíz de la ecuación original De lo contrario, restablecer el valor de x1 con x2 y x2 con x* e intentar ejecutar el método de nuevo. public static double secant(mathfunction f, double x1, double x2, double epsilon) double root = x1; double y1, y2; while (Math.abs(x2 - x1) > epsilon) y1 = f.func(x1); y2 = f.func(x2); root = x1-y1*(x2-x1)/(y2-y1); x1 = x2; x2 = root;
4 return root; Posición falsa (regula falsi) El método de posición falsa es prácticamente igual que el método secante. La diferencia reside en que cuando el punto x* pasa a ser uno de los puntos finales del siguiente intervalo, el otro punto final es cualquier de los x1 y x2 que garantice que el nuevo intervalo sigue conteniendo una raíz de la función, esto es, el método de posición falsa selecciona el punto previo para mantener acotado el cero en lugar de utilizar siempre sólo los dos últimos puntos. comenzar con x1 y x2 ajustar una línea recta entre f(x1) y f(x2) buscar x*, la raíz de la línea recta si f(x*) se aproxima a 0, devolver el valor x* como la raíz de la ecuación original De lo contrario, restablecer (x1, x2) en (x1, x*) o en (x*, x2) (el nuevo intervalo que contiene una raíz de la función) e intentar ejecutar el método de nuevo. public static double regulafalsi(mathfunction f, double x1, double x2, double epsilon) double y1, y2, root, yroot; do y1 = f.func(x1); y2 = f.func(x2); root = x1-y1*(x2-x1)/(y2-y1); yroot = f.func(root); if (yroot*y2 < 0.0) x1=root; else x2=root; while (Math.abs(yroot)>epsilon); return root; Newton Iniciar en el mismo punto x del eje x ajustar una línea tangente a f(x) en x obtener la solución para el punto y en la intersección de la tangente con el eje x repetir el proceso hasta que x-y < epsilon, y devolver y Este código está disponible en el material de clase. Integración La integración numérica se utiliza en el cálculo de integrales definidas. Los métodos elementales de integración numérica se basan en el sumatorio de todas las áreas pequeñas (secciones) de la curva de una función, y entre dos límites x1 y x2.
5 Según se calcule cada área del segmento, obtendremos los siguientes métodos elementales o pedagógicos: Regla rectangular El método se basa en las áreas de rectángulos. El área de cada uno se calcula como: o, donde es el área del segmento A. Regla trapezoidal Este método es igual de sencillo que el de la regla rectangular, pero a menudo resulta mucho más preciso. Está basado en las áreas de trapezoides. El área de cada segmento A se calcula como: Regla de Simpson La regla de Simpson utiliza 3 puntos para aproximar la función con un polinomio de segundo grado. El área de cada segmento se calcula como: La regla de Simpson es un método muy utilizado en la enseñanza de integración numérica para integrales definidas. Aproxima la función mediante el ajuste de parábolas a cada segmento y posteriormente suma todas las áreas de cada segmento para calcular el área de la curva. El siguiente código implementa una versión elemental de la regla de Simpson: // Regla de Simpson public static double simpson(mathfunction f, double a, double b, int npanels) double answer = 0; double x = a;
6 double h = (b - a) / npanels; for(int i=1; i <= npanels; i++) answer += (f.func(x) + 4 * f.func(x + h / 2) + f.func(x + h)) / 6; x = a + i * h; return h * answer; Para resolver problemas reales, debe utilizar la ampliación de la regla de Simpson, que es la versión utilizable más sencilla. El método ampliado de Simpson se trata en la Clase número 20 del material de clase. Ejercicios de la clase adicional 1. Dadas dos funciones, f(x) y g(x), cómo se puede calcular el valor de x donde f(x) = g(x)? 2. Cómo se calcularía si los puntos x1 y x2 acotan la raíz de la función f(x)? 3. Cuándo se utilizan los métodos de búsqueda de raíces? Cuándo se utilizan los métodos de integración numérica? 4. Esboce el método de bisección para la función f(x) = x2-5x +4, empezando desde a=0 y b=3 para un par de iteraciones. 5. Por qué se utiliza la derivada de f(x) al utilizar el método de Newton para buscar la raíz de f(x)? Ejercicios de diseño Realice el diseño de las tres clases siguientes: RootFinder, Integration y NumericalTest. RootFinder implementará versiones elementales de los tres métodos de búsqueda de raíces (bisección, secante y posición falsa de los apuntes de las clases adicionales, no del material de clase). Integration implementará versiones elementales de los tres métodos de integración (rectangular, trapezoidal y Simpson). Y NumericalTest contará con un método main para probar los tres métodos de búsqueda de raíces y buscará la raíz para: f1(x) = x5 + 4x3 + 7x - 10; (buscar la raíz en el intervalo -1.0, 2.0, con epsilon= ) y probará los tres métodos de integración con la integral para la función: f2(x) = x6 + 7x5 + 3x4 + x2-5x +4; (integrando desde -5.0 a 8.0, con n = 1000)
7 Ejecute el programa y compare los resultados de estos métodos. Sugerencia: deberá crear dos clases para representar f1(x) y f2(x). Cree estas clases implementando la interfaz MathFunction.
Métodos Numéricos (SC 854) Solución de ecuaciones no lineales. 1. Definición del problema: raíces de ecuaciones no lineales
Solución de ecuaciones no lineales c M. Valenzuela 007 008 (5 de mayo de 008) 1. Definición del problema: raíces de ecuaciones no lineales Dada una ecuación de una variable independiente x, f(x) =0, (1)
Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función.
Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Se suele llamar método de Newton-Raphson al método de Newton cuando se utiliza para calcular los ceros
Unidad I. Solución de ecuaciones no lineales 1. Métodos cerrados. LMM
Unidad I Solución de ecuaciones no lineales 1. Métodos cerrados www.ifuap.buap.m/~lilia LMM 1 Raíz de una ecuación Raíz de la ecuación: tal que f()=0 En los métodos cerrados se requieren dos valores iniciales
SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES
SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO
Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación
Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La
Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =
1. 00 Clase 20. Interfaces y herencia múltiple
1. 00 Clase 20 Resumen: Interfaces, cálculo de raíces Integración, parte 1 Interfaces y herencia múltiple HazTub FlujoTub Supongamos un s is tema d e aná lis is de ingenie ría qu e crea materiales, fluidos,
Tema 2 Resolución de EcuacionesNo Lineales
Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación
Cálculo de las raíces reales de. Ecuaciones Algebraicas y Trascendentes. con la TI Voyage 200
Fermí Vilà TI Voyage 200 1 Cálculo de las raíces reales de Ecuaciones Algebraicas y Trascendentes con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 2 Método de las Cuerdas o Regla de las Partes
Subrutinas en Fortran 95 para la resolución de ecuaciones no lineales de una variable
Subrutinas en Fortran 95 para la resolución de ecuaciones no lineales de una variable Pablo Santamaría v0.3.1 (Mayo 2014) 1. Introducción En general, las raíces de una ecuación no lineal f(x) = 0 no pueden
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
PRACTICA 9 INTRODUCCIÓN A LA PROGRAMACIÓN ORIENTADA A OBJETOS (PARTE II) Objetivos
Objetivos El alumno conocerá y aplicará el concepto de programación orientada a objetos para la realización de programas que resuelvan problemas de tipo numérico. Al final de esta práctica el alumno podrá:
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones
Complementos de Matemáticas, ITT Telemática
Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos
Tema: Funciones, Procedimientos y Recursividad en C#.
Tema: Funciones, Procedimientos y Recursividad en C#. Objetivos Programación I, Guía 6 1 Utilizar la sintaxis de las funciones definidas por el usuario (programador) para resolver problemas. Identificar
Clase adicional 9. Listas enlazadas. Temas. Listas enlazadas Árboles Problemas de la clase adicional Ejercicios de diseño
Clase adicional 9 Temas Listas enlazadas Árboles Problemas de la clase adicional Ejercicios de diseño Listas enlazadas Previamente en este curso, ya habrá trabajado con dos de las estructuras de datos
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Raices de ECUACIONES NO LINEALES PRIMER PARCIAL TEMA 2
Raices de ECUACIONES NO LINEALES PRIMER PARCIAL TEMA 2 introducción MÉTODO GRÁFICO PARA ENCONTRAR LAS RAICES DE SISTEMAS DE ECUACIONES EJEMPLO: f(x)= e x x A)LA RAIZ ES DONDE LA GRAFICA INTERSECTA EL EJE
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Área La integral definida Propiedades de la integral definida Teorema del valor medio para la integral definida Teoremas fundamentales del cálculo Aplicaciones de la integral definida: Área de una región
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA
1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos
Ecuaciones Diferenciales. Conceptos Generales
Tema 1 Ecuaciones Diferenciales. Conceptos Generales Introducción La Modelización y Simulación es una área enorme de la ciencia pura y aplicada, a la que intentamos aproximarnos en esta asignatura. Dadas
Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler
Lección 6 Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler 61 Introducción a los métodos numéricos En este capítulo y en los anteriores estamos estudiado algunas técnicas
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Carlos Montenegro. Programación Orientada a Objetos Proyecto Curricular de Ingeniería de Sistemas
2 - Introducción al lenguaje Java, identificadores y comentarios. Carlos Montenegro Programación Orientada a Objetos Proyecto Curricular de Ingeniería de Sistemas 1. Introducción: Java tiene como todos
Tasa de variación. Tasa de variación media
Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
Límites y continuidad. Cálculo 1
Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1
Integral definida y el teorema fundamental del cálculo
Integral definida y el teorema fundamental del cálculo Por: Iván Cruz La obtención de áreas bajo curvas es un problema de uso común en el estudio de problemas físicos, tales como el movimiento de cuerpos,
NEWTON.MA.nb 1. Método de Newton
NEWTON.MA.nb 1 Método de Newton Para aproximar soluciones a la ecuación f(x)=0, hemos visto hasta ahora los métodos de la bisección y la secante. El método de Newton proviene de utilizar el punto en el
Instituto Tecnológico de Saltillo
Instituto Tecnológico de Saltillo CÁLCULO INTEGRAL Enero-Junio 2012 Programa de Unidades I. Teorema Fundamental del Cálculo (Diferenciales). II. La integral Indefinida. III.Técnicas de Integración Indefinida.
INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR
Ing. Yamil Armando Cerquera Rojas - [email protected] INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR Ing. Esp. Yamil Armando Cerquera Facultad de Ingeniería
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
PRÁCTICA N 1 ECUACIONES NO LINEALES. Nota: en todos los casos hallar las soluciones con 15 dígitos significativos
PRÁCTICA N 1 ECUACIONES NO LINEALES Nota: en todos los casos hallar las soluciones con 15 dígitos significativos 1. Utiliza el método de Bisección y calcula la soluciones de las siguientes ecuaciones:
POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN
Interpolación POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Presentación del problema: Para una función dada f(x) se desea determinar un polinomio P(x) de grado m, lo más bajo posible, el cual en los puntos
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
Cuadratura de Newton-Cotes
Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION
ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009
ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.
TEMA. Cálculo integral. [2.1] Cómo estudiar este tema? [2.2] Concepto de integral. [2.3] Propiedades del cálculo integral
Cálculo integral [2.1] Cómo estudiar este tema? [2.2] Concepto de integral [2.3] Propiedades del cálculo integral [2.4] Ampliación del concepto de integral TEMA Esquema TEMA 2 Esquema Ideas clave 2.1.
Clase 9 Programación No Lineal
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases
Prueba N o 1. Programación II
UNIVERSIDAD ANDRÉS BELLO 1 Prueba N o 1 Programación II Profesores: José Luis Allende y Carlos Beyzaga. Fecha: 10 de Septiembre de 2013 Nombre: Nota: Instrucciones: Coloque su nombre a todas las hojas.
Despejando, se tienen las siguientes ecuaciones de la forma : a) b)
MAT 115 B EJERCICIOS RESUELTOS 1. De la siguiente ecuación: Despejando, se tienen las siguientes ecuaciones de la forma : a) b) Calcule la raíz por el método de punto fijo, tomando en cuenta el criterio
Tema 7.- Fundamentos de la Programación Orientada a Objetos
Tema 7.- Fundamentos de la Programación Orientada a Objetos 7 de enero de 2014 Objetivos Saber definir clases propias. Saber crear objetos de una clase determinada e interactuar con ellos (Problema 1).
Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14
Clase No. 2: Integrales impropias MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.11.211 1 / 14 Integrandos con singularidades (I) Cuando el integrando o alguna de sus derivadas de bajo orden
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA
Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL.
practica2sr.nb 1 Apellidos y Nombre: Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. Operadores lógicos y relacionales
F es primitiva de f ya que:
T.2: INTEGRACIÓN 2.1 Primitiva de una función. Integral Indefinida. Propiedades. Sean f y F dos funciones reales definidas en el mismo dominio. La función F es una función primitiva de f, si F tiene por
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
Integración numérica
Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura
CAPÍTULO. Métodos numéricos
CAPÍTULO 7 Métodos numéricos 7.2 Método de Euler En general, la solución de un PVI, y 0 D f.x; y/, con y.x 0 / D y 0, es una función y.x/ que se puede desarrollar mediante un polinomio de Taylor de cualquier
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Tema 7: Derivada de una función
Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
10. Series de potencias
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San
Unidad Didáctica 2. Elementos básicos del lenguaje Java Tipos, declaraciones, expresiones y asignaciones
Unidad Didáctica 2 Elementos básicos del lenguaje Java Tipos, declaraciones, expresiones y asignaciones Fundamentos de Programación Departamento de Lenguajes y Sistemas Informáticos Versión 1.0.3 Índice
Prof. Dr. Paul Bustamante
Prácticas de C++ Practica Calificada Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Practica Calificada 06 Programación en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introducción... 1 1.1
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE El concepto de derivada. Relación entre continuidad y derivabilidad. Función derivada. Operaciones con derivadas. Derivación de las funciones
I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Calculo Integral (462)
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL SECRETARÍA ACADÉMICA Coordinación de Investigación, Innovación, Evaluación y Documentación Educativas. I.- DATOS DE IDENTIFICACIÓN Nombre
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones
SITUACIONES QUE SE PRESENTAN MEDIANTE ÁREAS. Concepto clave 3. Asociar el área bajo una curva con la solución a una situación dada
SITUACIONES QUE SE PRESENTAN MEDIANTE ÁREAS Concepto clave 3. Asociar el área bajo una curva con la solución a una situación dada Sugerencia para quien imparte el curso Proponemos el desarrollo de este
Construcciones del Lenguaje Java
Construcciones del Lenguaje Java Autor: Juan Alberto López Cavallotti Versión de Java: 5 / 6 Comentarios Comentario de Línea Comentario Multilínea //Esto es un comentario. /* Esto comenta varias lineas.
Prof. Dr. Paul Bustamante
Prácticas de C++ Practica Nº 3 Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Practica Nº3 Programación en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introducción... 1 1.1 Ejercicio 1: Mi primeras
Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.
Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase
Tema: Estructuras de Repetición en C# [For].
Facultad: Ingeniería Escuela: Ingeniería en Computación Asignatura: Programación Estructurada Objetivos Tema: Estructuras de Repetición en C# [For]. Utilizar las estructuras de repetición para ejecutar
Universidad Nacional del Santa FACULTAD DE INGENIERIA E.A.P de Ingeniería de Sistemas e Informática NETBEANS 7.0
Universidad Nacional del Santa FACULTAD DE INGENIERIA E.A.P de Ingeniería de Sistemas e Informática NETBEANS 7.0 PROYECTO DE ESTRUCTURA REPETITIVA FOR A continuación resolveremos el siguiente proyecto.
DERIV. DE UNA FUNC. EN UN PUNTO
DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado
GUIA 2: Repaso sobre uso de C#. Funciones, métodos y arreglos.
1 Programación II, Guía 2 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación II GUIA 2: Repaso sobre uso de C#. Funciones, métodos y arreglos. Objetivos Utilizar la sintaxis de las funciones
Límites y continuidad
Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente
Capítulo 3. Polinomios
Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,
Ejercicio 2 opción A, modelo 5 Septiembre 2010
Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo
GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN
GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)
2. Continuidad y derivabilidad. Aplicaciones
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto
1 LIMITES Y DERIVADAS
1 LIMITES Y DERIVADAS 2.1 LA TANGENTE Y PROBLEMAS DE LA VELOCIDAD Problema de la tangente Se dice que la pendiente de la recta tangente a una curva en el punto P es el ite de las rectas secantes PQ a medida
Derivadas. Derivabilidad
Apuntes Tema 4 Derivadas. Derivabilidad 4.1 Derivada de una función Llamamos tasa de variación media al cociente entre el incremento que sufre la variable dependiente y el incremento de la variable independiente.
Práctica III: Método de Bisección para encontrar las raíces de una función.
Práctica III: Método de Bisección para encontrar las raíces de una función. Sea f una función continua en [a, b] que satisface f(a)f(b) < 0. Entonces f tiene, necesariamente, al menos un cero en (a, b).
INTEGRACIÓN NUMÉRICA
INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental
Todo programa en 'C' consta de una o más funciones, una de las cuales se llama main.
LENGUAJE C CARACTERISTICAS DEL LENGUAJE 'C' El lenguaje 'C' se conoce como un lenguaje compilado. Existen dos tipos de lenguaje: interpretados y compilados. Los interpretados son aquellos que necesitan
LA INTEGRAL DEFINIDA IES MURILLO
LA INTEGRAL DEFINIDA IES MURILLO Un poco de Historia El concepto de integral definida surge para resolver el problema del área de figuras limitadas por arcos de curva. Algunos matemáticos que trabajaron
Metodología y Tecnología de la Programación
Tema 4. Abstracción procedimental y de datos 1. Cuál es el error del siguiente programa? import java.util.scanner; class Respuesta{ static Scanner leer=new Scanner(System.in); int valor = lectura(); System.out.println(valor);
Algoritmos de Ordenación
Algoritmos de Ordenación Pedro Corcuera Dpto. Matemática Aplicada y Ciencias de la Computación Universidad de Cantabria [email protected] Algoritmos comunes - Ordenación Ordenación o clasificación es
Instrucciones de control
Instrucciones de control Instrucciones de control de flujo C# ofrece un conjunto de sentencias similar al de C, C++ o Java. A continuación se estudian muy brevemente cada una de ellas. if if se utiliza
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
ULADECH Escuela Profesional de Contabilidad
Fórmulas Las fórmulas son ecuaciones que efectúan cálculos con los valores de las celdas de la hoja de cálculo. Una fórmula comienza por un signo igual (=). Son operaciones entre celdas, o combinaciones
7.- Teorema integral de Fourier. Transformada de Fourier
7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.
Clase adicional 2. Estructuras básicas de control. Temas
Clase adicional 2 Temas Estructuras de control Sentencia condicional Iteración Clases Definir una clase Crear una instancia de una clase Campos estáticos Problemas de la clase adicional Problema de diseño
x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula
. [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas
DERIVABILIDAD. 1+x 2. para x [1, 3]
1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico
MODULO I. FUNCIONES: SIGNIFICADO, CLASIFICACIÓN Y OPERACIONES (12)
MODULO I. FUNCIONES: SIGNIFICADO, CLASIFICACIÓN Y OPERACIONES (12) Definición de función Una función es una correspondencia matemática entre dos conjuntos de valores. Sean los conjuntos X los valores de
