Prof. Dr. Paul Bustamante
|
|
|
- Felipe Moreno Rojo
- hace 9 años
- Vistas:
Transcripción
1 Prácticas de C++ Practica Calificada Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante
2
3 Practica Calificada 06 Programación en C++ Pág. 1 ÍNDICE ÍNDICE Introducción Conversión de Temperaturas (0.2 Pts.) Intersección de una recta con una circunferencia (0.5 Pts.) Clases: Convertir coord. Cartesianas a Polares y viceversa (0.3Pts.) Introducción. Para la práctica calificada debe verificar que tiene creada su cuenta en G:\. No debe poner nada dentro de la carpeta \perfil. Las carpetas de los ejercicios debe crearlos en G:\, por ejemplo para el primer ejercicio debe tener G:\Ejer Conversión de Temperaturas (0.2 Pts.) Realice un programa en C++ que escriba una tabla de dos columnas para la conversión entre las temperaturas en grados Fahrenheit (comprendidas entre A ºF y B ºF, según incrementos de INC ºF) y su equivalente en grados centígrados. Los valores de A, B e INC debe pedirlos por consola. Para desarrollar este programa, debe crear una función Convierte, a la cual se le pase la temperatura en ºF y devuelva la temperatura en ºC. Básicamente en esta función debe implementar la siguiente ecuación de conversión: 5*(º F 32) º C = 9 Siendo ºC la temperatura en grados Centígrados y ºF en grados Fahrenheit. El resto del programa (pedir datos y llamadas a la función) debe hacerlo en main(). Nota: como la finalidad de este ejercicio es evaluar el uso de funciones, sino hace dicha función, este ejercicio no tiene validez alguna. 1.2 Intersección de una recta con una circunferencia (0.5 Pts.) Este ejercicio consiste en verificar que una recta, cuya ecuación es: y y = m * x + c (ec.1) intersecta a una Circunferencia, cuya ecuación es: ( x = r a) + ( y b) (ec.2),donde a y b son los valores del centro de la circunferencia, con respecto al origen (0,0) y r es el radio de la circunferencia. recta x Para hallar la solución basta con sustituir la ecuación de la recta (ec.1) en la ecuación de la circunferencia (ec.2) y resolver la ecuación de segundo grado que resulta: ( 1+ m ) x + (2mc 2a 2mb) x + ( a + c + b 2bc r ) = 0
4 Practica Calificada 06 Programación en C++ Pág. 2 Evaluando la ecuación de Segundo grado, existen 3 casos posibles: 1. Si el discriminante es menor que 0, la recta no corta a la circunferencia. 2. Si el discriminante es mayor que 0, la recta corta a la circunferencia, para lo cual debe sacar por pantalla los puntos de corte (x,y). 3. Si el discriminante es igual que 0, quiere decir que la recta en tangente a la circunferencia, para lo cual debe sacar por pantalla el punto (x,y) en que es tangente. Programa: A continuación se dan algunas pautas para la elaboración del programa: 1. El programa principal main() debe pedir los datos de la recta y la circunferencia, tal como se ve en la figura de abajo y estará en un bucle hasta que el usuario decida salir de él, para lo cual sacará un mensaje por pantalla de Continuar (S/N)?. Debe sacar por consola si la recta es tangente, secante o no corta a la circunferencia y cuáles son los puntos de corte, tal como se puede ver en la figura. 2. Debe hacer obligatoriamente la función Ec2grado(...) que se debe llamar desde main. Esta función se encargará de resolver la ecuación de segundo grado y devolverá las raices. Los parámetros que le debe pasar a la ecuación son los coeficientes de toda ecuación de segundo grado del tipo Ax 2 + Bx + C = Clases: Convertir coord. Cartesianas a Polares y viceversa (0.3Pts.) Este ejercicio consiste en hacer un programa que le permita al usuario hacer conversiones de coordenadas rectangulares a polares y viceversa, usando la Programación Orientada a Objeto, es decir, con clases y objetos. En el programa principal debe hacer un menú donde el usuario elija la opción deseada (ver figura siguiente). Según la opción que el usuario elija, debe pedir los datos: x e y o r y el ángulo (en grados) y crear los objetos correspondientes para obtener las nuevas conversiones. Debe existir una sola clase que se llamará Convierte, cuyos datos miembros deben ser privados. A continuación puede observar la estructura de dicha clase:
5 Practica Calificada 06 Programación en C++ Pág. 3 class Convierte { double x,y,r,ang; //ang en grados bool tipo; //true: cart a pola false:pol a cart public: Convierte(...); // si desea puede poner más de 1 constructor tipo PolarToCartesianas(...); tipo CartesianasToPolar(...); }; Variables miembro (privadas): La variable bool tipo sirve para que la clase funcione como un convertidor de Polares a cartesianas o viceversa, según el valor (ver en la def. de la clase). Las variables x e y almacenan las coordenadas cartesianas y las variables r y ang las coordenadas polares. Funciones miembro: Puede haber uno o más constructores y los argumentos ud. decidirá cuales serán. Deben existir 2 funciones miembros, PolarToCartesianas y CartesianasToPolar, las cuales deben ser llamadas según sea el caso de conversión. Ud. debe ver qué argumentos pasarle a esas funciones y definir el tipo de retorno. En caso de que necesite agregar más funciones miembros a la clase, puede hacerlo Notas: Si no crea objetos de esta clase, NO tendrá validez el ejercicio. Si utiliza sobrecarga de operadores para pedir los datos de las coordenadas tendrá opción a 0.1 pt. más. Buena Suerte!!!!
Examen Junio- Grupo B Lunes 17 de Junio - Programación en C++ Pág. 1
Examen Junio- Grupo B Lunes 17 de Junio - Programación en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1.1 Ejercicio 1: Empresa Videojuegos (3.5 ptos.)... 1 1.2 Ejercicio 2: Clase Rectangulo (1.0 pto.)... 3 1.3 Ejercicio
Prof. Dr. Paul Bustamante
Nombre: Carné: Examen C++ - Junio Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Examen Grupo B Programación en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introducción.... 1 1.1 Ejercicio 1:
Prof. Dr. Paul Bustamante
Carnet Nombre: Examen C++ Grupo A Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Pág.1 Índice 1. INTRODUCCIÓN... 1 2. EJERCICIO 1: JUEGO DEL AHORCADO (3.5 PTS.)...1 3. EJERCICIO
1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.
Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un
Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso:
Depto. de Matemáticas Guía Teórico-Practico Unidad : Secciones Cónicas Tema: Ecuación de la circunferencia Nombre: Curso: CIRCUNFERENCIA Una circunferencia es el lugar geométrico de los puntos del plano
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
Métodos CON valor de retorno
Métodos Estáticos C# Fundamentos de Programación. Objetivos del tema: Qué es un método? Qué métodos conoces? Métodos que NO devuelven valor. Métodos que SI devuelven un valor. Paso de parámetros. Variables
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en
x+y-z = 0 1. [2014] [EXT-A] Sea P el punto de coordenadas P(1,0,1) y r la recta de ecuación r x-2z = 1. a) Hallar la ecuación en forma continua de una recta que pase por el punto P y sea paralela a la
( x) Coordinación de Nivel Curso: 2º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre. Nombre: Fecha: 2011
Coordinación de Nivel Curso: º Medio Profesora: María Victoria Torres M. Guía de Repaso Evaluación Global Primer Semestre Nombre: Fecha: 0 ECUACIONES CON DENOMINADORES ALGEBRAICOS 3x x 9 EJEMPLO : x 3
Clase. Función cuadrática y ecuación de segundo grado
Clase Función cuadrática y ecuación de segundo grado Aprendizajes esperados Aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. Graficar una función cuadrática, determinando
Posiciones relativas de rectas
TEMAS. Geometría Analítica Nombre CURSO: 1 BACH CCNN Posiciones relativas de rectas 1. Calcular la posición relativa de los siguientes pares de rectas y en caso de que sean secantes, hallar su punto de
Geometría Analítica. GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS
Geometría Analítica GEOMETRÍA ANALÍTICA PLANA René Descartes, matemático francés, en 67 define una ecuación algebraica para cada figura geométrica; es decir, un conjunto de pares ordenados de números reales
Ejercicio reto. Definición. Circunferencia con centro en el origen. ENCUENTRO # 60 TEMA:Secciones cónicas. CONTENIDOS: 1. Circunferencia.
ENCUENTRO # 60 TEMA:Secciones cónicas. CONTENIDOS: 1. Circunferencia. Ejercicio reto 1. La ecuación de la recta que pasa por M(π, 0) y por la intersección de las rectas con ecuaciones: 3x 2y 1=0, x 4y+
CAPÍTULO 3. COORDENADAS CARTESIANAS EN EL PLANO. RECTAS Y CIRCUNFERENCIAS.
CAPÍTULO 3. COORDENADAS CARTESIANAS EN EL PLANO. RECTAS CIRCUNFERENCIAS. Ejercicios E1. Sean r la recta que pasa por los puntos. A(1, 2), B(3, 1), s la recta que pasa por el punto C(2, 2) y tiene pendiente
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN
GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)
Estructuras de Control
Estructuras de Control En programación de computadoras, las estructuras de control se utilizan para controlar el flujo de lógica en un algoritmo o en un programa de computadora. Con estas estructuras,
Circunferencias. d) A( 1, 5) y d = X = (x, y) punto genérico del lugar geométrico. b) dist (X, A) = d
Circunferencias 6 Halla, en cada caso, el lugar geométrico de los puntos del plano cuya distancia al punto A es d. a) A(, ) y d = b) A(, ) y d = 1 c) A(, ) y d = 1 d) A( 1, ) y d = X = (x, y) punto genérico
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
GUIA 2: Repaso sobre uso de C#. Funciones, métodos y arreglos.
1 Programación II, Guía 2 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación II GUIA 2: Repaso sobre uso de C#. Funciones, métodos y arreglos. Objetivos Utilizar la sintaxis de las funciones
Bloque II Aplicas las propiedades de segmentos rectilíneos y polígonos. Bloque IV Utilizas distintas formas de la ecuación de una recta.
BLOQUE Bloque II Aplicas las propiedades de segmentos rectilíneos y polígonos. Bloque IV Utilizas distintas formas de la ecuación de una recta. Bloque V Aplicas los ecuaciones de una circunferencia. Bloque
LUGARES GEOMÉTRICOS.
9 LUGARES GEOMÉTRICOS. Página. Halla las ecuaciones de los siguientes lugares geométricos: a) Mediatriz del segmento de extremos A(, ), B(7, ). Comprueba que es una recta perpendicular al segmento en su
Guía de Funciones Cuadráticas
Colegio Raimapu Departamento de Matemática Guía de Funciones Cuadráticas Nombre del Estudiante: ) Cuál de los siguientes gráficos representa a la función f() =? A) B) C) D) E) º Medio ) El punto que no
UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas
009 UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas Se hace referencia a las definiciones, fórmulas y algunos ejemplos sobre los temas indicados Iván Moyota Ch.
1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.
SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico
Prof. Dr. Paul Bustamante
Prácticas de C++ Practica Nº 4 Fundamentos de Programación Informática II Prof. Dr. Paul Bustamante Practica Nº 4 Programación en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introducción... 1 1.1 Números Perfectos....
2. Tres vértices de un paralelogramo son los puntos (1, -2), (7, 3) y (-2, 2). Encontrar el cuarto vértice.
http://www.matematicaaplicada.info de Manizales, 5 de Agosto de 00. Si la pendiente de la recta que une los puntos: a. A(X, -),, B(, 5) es, encontrar X. b. A(, -),, B(0, Y) es /, encontrar Y.. Tres vértices
2. Tres vértices de un paralelogramo son los puntos (1, -2), (7, 3) y (-2, 2). Encontrar el cuarto vértice.
Manizales, 5 de Agosto de 00 de. Si la pendiente de la recta que une los puntos: a. A(X, -),, B(, 5) es, encontrar X. b. A(, -),, B(0, Y) es /, encontrar Y.. Tres vértices de un paralelogramo son los puntos
DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA
SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -
1.- Localizar en un plano cartesiano los siguientes puntos A (0,0), B (3,5), C (-2,7), D (-5,-6) E (6,-3). Hacer su gráfica correspondiente.
Guía de matemáticas III La presente guía de matemáticas III tiene como objetivo que el alumno que tome los cursos de regularización o de título pueda tener una base, para preparase para dichos exámenes.
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
EJERCICIOS DE GEOMETRÍA
1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando
Elabore el diagrama de clase (UML) que tenga atributos, métodos y propiedades de los siguientes modelos. Se recomienda utilizar el software NClass:
OBJETIVO: El estudiante resolverá diversos ejercicios elaborando diagramas de clases y programas en modo consola con declaraciones de clases y creación de objetos. MATERIAL Y EQUIPO NECESARIO: Software
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
Programación Declarativa. Ingeniería Informática Cuarto curso. Primer cuatrimestre. Escuela Politécnica Superior de Córdoba Universidad de Córdoba
Programación Declarativa Ingeniería Informática Cuarto curso. Primer cuatrimestre Escuela Politécnica Superior de Córdoba Universidad de Córdoba Curso académico: 2017 2018 Práctica número 1.- Introducción
PROGRAMACIÓN ORIENTADA A OBJETOS
PROGRAMACIÓN ORIENTADA A OBJETOS GRADO EN INGENIERÍA INFORMÁTICA SEGUNDO CURSO DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO ESCUELA POLITÉCNICA SUPERIOR UNIVERSIDAD DE CÓRDOBA CURSO ACADÉMICO: 2011
PREPARACIÓN PRUEBA DE ACCESO A CICLOS DE GRADO SUPERIOR
MATEMÁTICAS - PROFESOR: CARLOS MARTÍN ARTEAGA PREPARACIÓN PRUEBA DE ACCESO A CICLOS DE GRADO SUPERIOR SOLUCIONES 15 1.- Resuelve las siguientes preguntas: a) Indique cuál es el lugar geométrico de los
x = - y = 1+2 z = -2+2 y s:
1. [ANDA] [EXT-A] Considera el plano de ecuación 2x+y+3z-6 = 0. a) Calcula el área del triángulo cuyos vértices son los puntos de corte del plano con los ejes coordenados. b) Calcula el volumen del tetraedro
Unidad 8 Lugares geométricos. Cónicas
Unidad 8 Lugares geométricos. Cónicas PÁGINA 75 SOLUCIONES. La elipse es una cónica obtenida al cortar una superficie cónica por un plano oblicuo al eje y que corte a todas las generatrices. La hipérbola
GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]
Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo
UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA
UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola
TEORÍA DE CIRCUNFERENCIAS
TEORÍA DE CIRCUNFERENCIAS Una circunferencia es el lugar Recta normal geométrico de los puntos del plano P(x,y) que equidistan de un punto fijo c(a,b) radio Recta tangente P(x,y) c(a,b) llamado centro.
7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.
1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela
UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l.
UNIDAD 3 LA RECTA SU ECUACIÓN CARTESIANA OBJETIVOS ESPECÍFICOS. Al término de la unidad, el alumno: Conocerá las distintas formas de representación de la recta e identificará cuál de ellas conviene usar.
Tema Comparación de las coordenadas cartesianas y coordenadas polares
Grado 10 Matemáticas - Unidad 4 Descubramos nuevas fórmulas y usemos el plano cartesiano Tema Comparación de las coordenadas cartesianas y coordenadas polares relacionados (Pre clase) Objetivos Habilidades
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA
Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de
MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos
MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )
La gráfica de la ecuación y = x 2
INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación y = x 2 Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a
INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO
PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES
Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo
Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx
Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.
Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...
Implementando TADs en Python
Implementando TADs en Python Luciano Leveroni Departamento de Computación, FCEyN, Universidad de Buenos Aires. 28 de Mayo del 2015 Introducción Cómo vimos en la teórica, los TADs nos permiten encapsular
GEOMETRÍ A ANALÍ TÍCA
GEOMETRÍ A ANALÍ TÍCA En este tema estudiaremos vectores (definición, características, operaciones) de forma geométrica y analítica. Además veremos los conceptos de vector director, pendiente de una recta
INFORMATICA II PRIMER PARCIAL
Grupo 1 INFORMATICA II PRIMER PARCIAL Hacer un programa en C o C++ que realice lo siguiente: a. Almacenar en un archivo binario 100 juegos de valores compuestos por un valor entero, un número real y una
Ejercicios de Funciones: derivadas y derivabilidad
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.
Prof. Dr. Paul Bustamante
Carnet Nombre: Examen C++ Grupo A Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Pág.1 Índice 1. INTRODUCCIÓN... 1 2. EJERCICIO 1: AGENDA TELEFÓNICA (4.0 PTOS.)...1 3. EJERCICIO 2:
ÁLGEBRA Práctica Clasificar según los valores de λ IR las cónicas de los siguientes haces: 2. Para las siguientes cónicas
ÁLGEBRA Práctica 14 Cónicas (Curso 2006 2007) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. Clasificar según los valores de λ
Que importancia tienen las funciones matemáticas?
Funciones Que importancia tienen las funciones matemáticas? Justificación Las funciones son de mucho valor y utilidad para resolver problemas de la vida diaria, problemas de finanzas, de economía, de estadística,
4 E.M. Curso: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada.
Curso: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Función Cuadrática y Función Raíz Cuadrada Habilidad: 4 E.M. 8 Racionamiento Matemático/ Comprensión, Aplicación/ A.S.E. Valores/
=ángulo dirigido, en sentido antihorario, del eje polar al segmento 0P
COORDENADAS POLARES INSTITUCIÓN UNIVERSITARIA DE ENVIGADO FACULTAD DE INGENIERÍAS ÁREA DE CIENCIAS BÁSICAS ÁREA DE CALCULO INTEGRAL ENVIGADO, OCTUBRE 28 2004 INTRODUCCIÓN En el desarrollo de nuestro plan
GUIA 1: Repaso sobre uso de C#. Funciones, procedimientos y arreglos.
1 POO, Guía 1 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación Orientada a Objetos GUIA 1: Repaso sobre uso de C#. Funciones, procedimientos y arreglos. Competencia Desarrolla sistemas
MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS
UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones
SEGUNDA ELIMINATORIA NACIONAL
XXIX OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP - UNA - UCR - MICITT - UNED - TEC SEGUNDA ELIMINATORIA NACIONAL (10 11 12 ) 2017 Estimado estudiante: La Comisión Organizadora de las Olimpiadas Costarricenses
PRACTICA 9 INTRODUCCIÓN A LA PROGRAMACIÓN ORIENTADA A OBJETOS (PARTE II) Objetivos
Objetivos El alumno conocerá y aplicará el concepto de programación orientada a objetos para la realización de programas que resuelvan problemas de tipo numérico. Al final de esta práctica el alumno podrá:
Cálculo 10. Semestre A Rectas y Cónicas
Cálculo 10. Semestre A-017 Prof. José Prieto Correo: [email protected]. Rectas Cónicas Problema.1 Hallar las distancia entre los siguientes pares de puntos P Q, además encontrar el punto medio que los une:
PROBLEMARIO DE GEOMETRÍA ANALÍTICA
PROBLEMARIO DE GEOMETRÍA ANALÍTICA Problemario de Geometría Analítica PROBLEMARIO DE GEOMETRIA ANALITICA COORDENADAS RECTANGULARES d = ( x y Distancia entre dos puntos x1) + ( y 1) x1 + rx x p = 1 + r
FUNCIÓN. La Respuesta correcta es D
FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella
EJERCICIOS de RECTAS
EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur (1, 2), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos
ÁLGEBRA LINEAL II Práctica 4.1
ÁLGEBRA LINEAL II Práctica 4.1 Cónicas (Curso 2010 2011) NOTA: Todos los problemas se suponen planteados en el plano afín euclídeo dotado de un sistema cartesiano rectangular. 1. En el plano afín euclídeo
MATHEMATICA. Geometría - Circunferencia. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa
MATHEMATICA Geometría - Circunferencia Material realizado con Mathematica 2 Contenido Ecuación de la circunferencia dados las coordenadas de su centro y su radio... 3 La ecuación de la circunferencia dados
Examen No. 2. Valor: 50 pts (30% de la Nota Final) Tiempo Máximo: 2.5 Horas Fecha: 28 de Marzo del 2017
Examen No. 2 Valor: 50 pts (30% de la Nota Final) Tiempo Máximo: 2.5 Horas Fecha: 28 de Marzo del 2017 Observaciones Generales: El examen es individual. No se puede utilizar ningún tipo de material, en
Bloque 3. Análisis. 2. Tipos de funciones
Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,
MATEMÁTICA N O 6. Santillana FASCÍCULO PSU N O 6 MATEMÁTICA. Santillana
FASCÍCULO PSU N O 6 MATEMÁTICA . El valor de 0, 0, + es igual: A) B) C) D) 4 45 6 45 5 8 9 E) 0 9. La medida del segmento AE es: A A) 8 cm B) 4 cm C) 0 cm D) cm E) cm. 4-4 - =? - A) - 4 B) 8 C) 4 D) -
UNIDAD DE APRENDIZAJE IV
UNIDAD DE APRENDIZAJE IV Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos
Resolución Guía de Trabajo. Geometría Analítica.
Universidad de la Frontera Facultad de Ingeniería TEMUCO, Agosto 8 de 01 Departamento de Matemática y Estadística Resolución Guía de Trabajo. Geometría Analítica. Fundamentos de Matemáticas. Profesores:
SOLUCIÓN SEGUNDA ELIMINATORIA NACIONAL
XXIX OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP - UNA - UCR - MICITT - UNED - TEC SOLUCIÓN SEGUNDA ELIMINATORIA NACIONAL (10 11 1 ) 017 Estimado estudiante: La Comisión Organizadora de las Olimpiadas Costarricenses
1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)
Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Prof. Dr. Paul Bustamante
Prácticas de C++ Practica Nº 5 Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Practica Nº 5 Programación en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introducción... 1 1.1 Ejercicio 1: clase
Tema: Funciones, Procedimientos y Recursividad en C#.
2 Programación I Programación I. Guía 6 3 Facultad: Ingeniería Escuela: Ingeniería en Computación Asignatura: Programación I Tema: Funciones, Procedimientos y Recursividad en C#. Objetivos Utilizar la
GUIA ADICIONAL CÁLCULO 1 GEOMETRÍA ANALÍTICA. 1.- Grafique los siguientes puntos y encuentre la distancia entre ellos:
GUIA ADICIONAL CÁLCULO GEOMETRÍA ANALÍTICA ELEMENTOS DE GEOMETRÍA ANALÍTICA.- Grafique los siguientes puntos y encuentre la distancia entre ellos: a ) A(, 3) B( 5,3) b ) A( 4, 5) B(5, 3) c ) A(4, ) B(6,
Prueba Nivel: Álgebra y Modelos Analíticos 3 Matemático. Nombre: Curso: Fecha: Porcentaje de logro Ideal: 100 % Porcentaje Logrado: Nota:
1 Centro educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Nivel: NM- 3 Prueba Nivel: Álgebra y Modelos Analíticos 3 Matemático Nombre: Curso: Fecha: Porcentaje de logro Ideal:
EJERCICIOS DE CÁLCULO 10 - MATEMÁTICA I
UNIVERSIDAD DE LOS ANDES NÚCLEO UNIVERSITARIO RAFAEL RANGEL DEPARTAMENTO DE FÍSICA Y MATEMÁTICA VENEZUELA EJERCICIOS DE CÁLCULO 0 - MATEMÁTICA I PROF LUIS BERBESÍ PROBLEMAS Y EJERCICIOS DE CÁLCULO 0 -
3. La circunferencia.
UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos
Teoría Tema 7 Circunferencia
página 1/9 Teoría Tema 7 Circunferencia Índice de contenido La circunferencia como superficie cónica...2 La circunferencia como lugar geométrico...3 Potencia de un punto respecto de una circunferencia...4
1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García
. MEDIDAS DE ÁNGULOS. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO Para medir los ángulos solemos utilizar las siguientes unidades: el grado sexagesimal y el radián. Grado sexagesimal: Se denomina grado
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
UD 1: NÚMEROS REALES Y COMPLEJOS
UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?
CUESTIONARIO DE GEOMETRÍA ANALÍTICA.
CUESTIONARIO DE GEOMETRÍA ANALÍTICA. 1. Escribe el concepto de: a) Geometría Analítica. b) Razón matemática. c) Ángulo de Inclinación. d) Pendiente de una recta. e) Ángulo entre dos rectas. f) Paralelismo
