1. CÁLCULO DE PRIMITIVAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. CÁLCULO DE PRIMITIVAS"

Transcripción

1 1 1. CÁLCULO DE PRIMITIVAS Definición 1.1. Primitiva. Una función F (x) es primitiva de f(x) si F (x) = f(x) para todo x del dominio de f. Obsérvese que si F (x) es primitiva de f(x), entonces F (x) + C también lo es para todo C R. Definición 1.. Dada la función f(x), llamamos integral indefinida de f(x) al conjunto de todas sus primitivas. Se denota f(x) dx = F (x) + C, donde C es una constante arbitraria y F (x) es una primitiva cualquiera de f(x). Obsérvese que f(x) + g(x) dx = f(x) dx + g(x) dx y af(x) dx = a f(x) dx. DIFERENCIALES f (x) = dy dx = d(f(x)), d(f(x)) = f dx (x)dx 1. d(f(x)) n = n(f(x)) n 1 f (x)dx. d(ln f(x)) = f (x) f(x) dx. d(log a f(x)) = log a e f (x) f(x) dx 4. d(a f(x) ) = ln a a f(x) f (x)dx 5. d(e f(x) ) = e f(x) f (x)dx 6. d(sen f(x)) = cos(f(x))f (x)dx 7. d(cos f(x)) = sen(f(x))f (x)dx 8. d(tg f(x)) = f (x) cos f(x) dx 9. d(cotg f(x)) = f (x) sen f(x) dx 10. d(sec f(x)) = f (x) sec f(x) tg f(x)dx 11. d(cosec f(x)) = f (x) cosec f(x) cotg f(x)dx 1. d(arc sen f(x)) = f (x) dx 1 f(x) 1. d(arc cos f(x)) = f (x) dx 1 f(x) INTEGRALES f(x) + C = f (x)dx 1. f(x)n+1 n+1 + C = f(x) n f (x)dx. ln f(x) + C = f (x) f(x) dx. log a f(x) + C = f (x) f(x) log a e dx 4. a f(x) + C = a f(x) f (x) ln a dx 5. e f(x) + C = e f(x) f (x)dx 6. sen f(x) + C = cos(f(x))f (x)dx 7. cos f(x) + C = sen(f(x))f (x)dx 8. tg f(x) + C = f (x) cos f(x) dx 9. cotg f(x) + C = f (x) sen f(x) dx 10. sec f(x)+c = f (x) sec(f(x)) tg(f(x))dx 11. cosec f(x)+c = f (x) cosec(f(x)) cotg(f(x))dx 1. arc sen f(x) + C = f (x) 1 f(x) dx 1. arc cos f(x) + C = f (x) dx 1 f(x) 14. d(arc tg f(x)) = f (x) 1+f(x) dx 15. d(arccotg f(x)) = f (x) 1+f(x) dx 14. arc tg f(x) + C = f (x) 1+f(x) dx 15. arccotg f(x) + C = f (x) 1+f(x) dx Integración por partes. fg = fg f g Integración por sustitución. f(x) dx = f(g(t))g (t) dt

2 1 CÁLCULO DE PRIMITIVAS 1.1. INTEGRALES INMEDIATAS. EJEMPLOS Instrucciones de uso: tápese la solución antes de empezar a hacer la integral. Después de resuelta, compruébese que es correcta (sólo después) (x+1) dx = 1 (x+1) + C. x+1 (x +x+1) dx = 1 x +x+1 + C. 1 1 x dx = +x+1 x+1 + C 4. 1 x +x +x+1 dx = 1 (x+1) + C 5. x x +1 + C x x+1 x+1 dx = 6(x+1)7/6 7 + C 7. x+1 x+1 dx = x C 8. x 1 + x dx = (1+x ) / 9 + C 9. x 1 x dx = (1 x ) / + C xdx = (1+x)/ + C x+5 dx = 1 ln x C 1. ax+b dx = ln ax + b + C a 1. x x + dx = 1 ln x + + C 14. x 6x +1 dx = 1 9 ln 6x C 15. e x 1+e x dx = ln(1 + e x ) + C 16. sen x cos x dx = ln sen x+cos x +C sen x+cos x dx = ln(ln x) + C x ln x (1+x dx = ln(arc tg x) + C ) arc tg x 19. e x+1 dx = 1 ex+1 + C 0. e x xdx = 1 e x + C 1. e x +1 x dx = 1 ex +1 + C. e tg x sec xdx = e tg x + C. 5 x 9 x dx = 45x ln 45 + C 4. arc tg x e 1+x dx = e arc tg x + C 5. e x+1 dx = 1 ex+1 + C 6. x cos(x + )dx = sen(x + ) + C 7. cos( x + 1)dx = sen( x + 1) + C 8. cos(x + 6)dx = sen(x + 6) + C 9. cos( x) x dx = sen( x) + C 0. cos(ln x) dx = sen(ln x) + C x 1. cos(tg x) cos dx = sen(tg x) + C x. cos(arc tg x) 1+x dx = sen(arc tg x) + C. 1 arc tg(x+7) 1+(x+7) dx = + C 4. x 1+x 8 dx = arc tg(x4 ) 4 + C 5. e x 1+e x dx = arc tg(e x ) + C 6. sec x 1+tg x = x + C 7. x 1+4 x dx = arc tg(x ) + C ln 8. 1 x(1+x) dx = arc tg( x) + C 9. 1 x(1+(ln x) dx = arc tg(ln x) + C ) x dx = arc tg(x + 1) + C +x x dx = 1 arc tg( x ) + C x dx = 1 arc tg( x ) + C x +4x+ dx = 1 arc tg(x + 1) + C 45. sec ( x + 1)dx = tg( x + 1) + C 46. sec (x + 6)dx = tg(x + 6) + C 47. x sec (x )dx = 1 tg(x ) + C 48. sen(x + 5)dx = 1 cos(x + 5) + C 49. x sen(x + )dx = cos(x + ) + C 50. sen(ln x) dx = 1 cos(ln x) + C x 51. sen( x) x dx = cos( x) + C 5. sen(arc tg x) 1+x dx = cos(arc tg x) + C 5. x+1 x +x 6 dx = ln x + x 6 + C 54. x 1 x x 6 dx = 1 ln x x 6 + C

3 1. INTEGRALES RACIONALES x 1+x dx = arc tg x + ln(1 + x ) + C 56. x +1 x dx = + x + ln x 1 + C x (x 1) dx = 1 x 1 + C 58. (ln x) (ln x)4 dx = + C x sen (x) cos(x)dx = 1 9 sen (x) + C 60. sen x+tg x cos x dx = ln cos x + 1 cos x +C 61. x 1 x 6x+5 dx = 1 6 ln x 6x C 6. x x 4 dx = 1 6 (1 x ) / + C 64. dx = ln sen x + C cosec x cotg x 65. x x 4 + dx = 6 arc tg( x ) + C 66. x +x (x+1) dx = x x+1 + C 67. dx = cot x + csc x + C 1+cos x 68. dx 5 16x = 1 arc sen(4x/5) + C dy y +10y+0 = 5 5 (y+5) 5 arc tg( )+C dx x 4 = arc sen( 0+8x x 6 ) + C 71. dx x+6 = arc sen( 8 1x x 8 ) + C 7. x+1 x +x 4 dx = x + x 4 + C 7. dx 1 cos x = 1+cos x sen x + C 74. e x 1+e 4x dx = 1 arc tg(ex ) + C 75. cos x sen x+8 dx = sen x arc tg( 8 ) + C 76. dx = 1 x 4 9(ln x) arc sen(ln(x ))+C 77. sec x dx = 1 arc sen( tg x) + C 1 4 tg x 1.. INTEGRALES RACIONALES Dados dos polinomios P (x),, si grad(p (x)) grad(), se tiene P (x) R(x) = C(x) + siendo grad(r(x)) < grad(). Entonces P (x) dx = C(x)dx + R(x) dx. Calculemos R(x) dx con grad(r(x)) < grad(). 1. DESCOMPOSICIÓN EN FRACCIONES SIMPLES. Supondremos que queda factorizado del siguiente modo: = k(x α) q (x ρ) r [(x a) + b ] m [(x c) + d ] n R(x) = A 1 x α + + A s (x α) q + + R 1 x ρ M 1x + N 1 (x a) + b + + M mx + N m [(x a) + b ] m M 1 x + N 1 (x c) + d + + M nx + N n [(x c) + d ] n R r (x ρ) r + Al hacer la suma de las fracciones se iguala el numerador a R(x) y se determinan los coeficientes A i,..., R i, M i, N i,..., M i, N i. Para calcular R(x) dx bastará determinar las integrales de las fracciones del segundo miembro de la igualdad. i) A 1 x α dx = A 1 log x α + C

4 4 1 CÁLCULO DE PRIMITIVAS ii) A 1 dx = (x α) d iii) A 1 (d 1)(x α) d 1 + C si d 1 Mx+N dx = M (x a) +b log[(x a) + b ] + Ma+N b arc tg ( ) x a b + C iv) Mx+N dx = M(x a)+ma+n M dx = [(x a) +b ] d [(x a) +b ] d (Ma + N) dx [(x a) +b ] d La integral dx se resuelve haciendo el cambio [(x a) +b ] d (x a)/b = t y se transforma en = I d = dx x (x + 1) d = + 1 x (x + 1) d dx = dx (x + 1) d 1 Integrando J por partes, {u = x, dv = I d = (d 1)[(x a) +b ] d 1 + x (x + 1) d dx = I d 1 J. x dx (x +1) d }, se obtiene x d (d 1)(x + + 1) d 1 d I d 1 Se calcula de modo recurrente el valor de I d y se resuelve el caso iv).. MÉTODO DE HERMITE. Sea = k(x α) q (x ρ) r [(x a) + b ] m [(x c) + d ] n admitiendo raíces complejas múltiples. R(x) = A x α + + B x ρ + Cx + D (x a) + b + + Ex + F (x c) + d + + d [ a 0 x k + a 1 x k 1 ] + + a k dx (x α) q 1 (x ρ) r 1 [(x a) + b ] m 1 [(x c) + d ] n 1 siendo k = grado del denominador 1. Los coeficientes A,..., B, C, D,..., E, F, a i, se calculan derivando la expresión del cociente, multiplicando ambos miembros de la igualdad por e identificando R(x) con la suma del segundo miembro de la igualdad por. Tendremos entonces: R(x) A B + dx = x α dx + + Cx + D (x a) + b dx + + x ρ dx+ Ex + F (x c) + d dx+ [ a 0 x k + a 1 x k 1 ] + + a k + (x α) q 1 (x ρ) r 1 [(x a) + b ] m 1 [(x c) + d ] n 1

5 1. INTEGRALES TRIGONOMÉTRICAS INTEGRALES TRIGONOMÉTRICAS Fórmulas fundamentales de trigonometría: 1. sen x + cos x = 1 8. sen x sen y = 1 [cos(x y) cos(x + y)]. 1 + tg x = sec x 9. cos x cos y = 1 [cos(x y) + cos(x + y)]. 1 + cotg x = cosec x cos x = sen ( x ) 4. sen x = 1 (1 cos x) cos x = cos ( x ) 5. cos x = 1 (1 + cos x) 1. 1 ± sen x = 1 ± cos( π x) 6. sen x cos x = 1 sen x 1. cos x = cos x sen x 7. sen x cos y = 1 [sen(x y) + sen(x + y)] 14. sen x = sen x cos x Integrales trigonométricas: 1. Las integrales del tipo sen mx cos nxdx, sen mx sen nxdx y cos mx cos nxdx se resuelven con cambios de las fórmulas fundamentales 7, 8 y 9.. Las integrales del tipo sen n xdx y cos n xdx se resuelven: Si n es par, n = k, reduciéndolas de grado con las fórmulas 4 y 5. Si n es impar, n = k + 1, sen n xdx = sen k x sen xdx = (1 cos x) k sen xdx y, desarrollando el binomio, se obtienen integrales inmediatas. Técnicas análogas se utilizan para resolver integrales del tipo sen m x cos n x dx.. Las integrales del tipo R(sen x, cos x)dx se resuelven:.1. Cambio general t = tg x t. Entonces sen x =, cos x = 1 t, 1+t 1+t dx = dt. 1+t Cambios especiales:.. Si R( sen x, cos x) = R(sen x, cos x), impar en sen x, se hace el cambio cos x = t. Entonces, sen x = 1 t, dx = dt. 1 t.. Si R(sen x, cos x) = R(sen x, cos x), impar en cos x, se hace el cambio sen x = t. Entonces, cos x = 1 t, dx = dt. 1 t.4. Si R( sen x, cos x) = R(sen x, cos x), par en sen x y cos x, se t hace el cambio tg x = t. Entonces, sen x =, cos x = 1, 1+t 1+t dx = dt 1+t INTEGRALES IRRACIONALES 1. ( ( ) m/n ( ) ) r/s R x, ax+b cx+d,..., ax+b cx+d dx. Se hace el cambio ax+b cx+d = tp, siendo p = m.c.m.(n,..., s).

6 6 1 CÁLCULO DE PRIMITIVAS. R(x, ax + bx + c)dx. -Si a > 0, se hace el cambio ax + bx + c = ax + t. -Si c > 0, se hace el cambio ax + bx + c = tx + c. -Si a < 0 y c < 0, se hace el cambio ax + bx + c = t(x α) siendo α una raíz de la ecuación ax + bx + c = 0.. R(x, x + a )dx. Se hace el cambio x = a tg t. 4. R(x, x a )dx. Se hace el cambio x = a sec t. 5. R(x, a x )dx. Se hace el cambio x = a sen t. dt t, obtenién- 6. R(a x )dx con a > 0. Se hace el cambio t = a x, dx = 1 1 dose la integral racional R(t) ln a t dt. ln a El caso se puede reducir a los casos, 4 ó 5 completando cuadrados en la expresión ax + bx + c.

CAPÍTULO VII. INTEGRACIÓN INDEFINIDA

CAPÍTULO VII. INTEGRACIÓN INDEFINIDA CAPÍTULO VII. INTEGRACIÓN INDEFINIDA SECCIONES A. Integrales inmediatas. B. Integración por sustitución. C. Integración por partes. D. Integración por fracciones simples. E. Aplicaciones de la integral

Más detalles

Funciones de Una Variable Real II: Cálculo de Primitivas

Funciones de Una Variable Real II: Cálculo de Primitivas Universidad de Murcia Departamento Matemáticas Funciones de Una Variable Real II: Cálculo de Primitivas B. Cascales, J. M. Mira y L. Oncina Universidad de Murcia http://webs.um.es/beca Grado en Matemáticas

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Cálculo integral de funciones de una variable: integral indefinida

Cálculo integral de funciones de una variable: integral indefinida Cálculo integral de funciones de una variable: integral indefinida BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

integración de funciones racionales

integración de funciones racionales VIII 1 / 6 Ejercicios sugeridos para : los temas de las clases del 26 de febrero y 2 de marzo de 2004. Tema : Integración de funciones racionales. 1.- Diga, justificando, cuales de las siguientes fórmulas

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

INTEGRACIÓN INDEFINIDA

INTEGRACIÓN INDEFINIDA 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho

Más detalles

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2 Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

El Cálculo Integral- 2 parte.

El Cálculo Integral- 2 parte. El Cálculo Integral- 2 parte. MÉTODOS DE INTEGRACIÓN Para la resolución de integrales se utilizan diferentes artificios de cálculo, cuyo objeto es transformar la expresión a integrar en otra, u otras,

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): 1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

METODOS DE INTEGRACION IV FRACCIONES PARCIALES

METODOS DE INTEGRACION IV FRACCIONES PARCIALES METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo II - Fernando Sánchez - - 3 Cálculo Cálculo II de primitivas 04 03 06 Si f es una función elemental, se trata de encontrar una función F que cumpla F (x = f (x. Para una clase amplia de funciones ya se ha

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

La integral indefinida

La integral indefinida Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

INTEGRAL INDEFINIDA. Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada.

INTEGRAL INDEFINIDA. Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada. 1. INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada. Ejm: La función F x = x es una primitiva de f x

Más detalles

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x).

Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Tema 5 Integración 5.1 Integral Indefinida Definición. Se denomina primitiva de la función f(x) en un intervalo (a, b) a toda función F (x) diferenciable en (a, b) y tal que F (x) = f(x). Ejemplos: La

Más detalles

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD I LA INTEGRAL INDEFINIDA

MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD I LA INTEGRAL INDEFINIDA UNIDAD I LA INTEGRAL INDEFINIDA INTRODUCCIÓN El cálculo diferencial proporciona una regla para obtener la derivada de una función sencilla, con esta regla se obtienen las fórmulas para derivar todo tipo

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

INTRO. LA INTEGRAL INDEFINIDA

INTRO. LA INTEGRAL INDEFINIDA INTRO. LA INTEGRAL INDEFINIDA Se inicia en este tema el estudio de la integral, concepto fundamental de lo que se conoce como cálculo infinitesimal, que alcanzó su auge y desarrollo durante el siglo XVII.

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes: 22 CAPÍTULO 3. INTEGRALES: CÁLCULO POR MEDIO DE PRIMITIVAS 3.2. La derivada En la sección 3. analizamos los incrementos y cocientes incrementales de varias funciones. En esta sección nos concentraremos

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

Matemáticas CÁLCULO DE DERIVADAS

Matemáticas CÁLCULO DE DERIVADAS Matemáticas Derivada de un cociente de funciones CÁLCULO DE DERIVADAS Considérense, como en los casos precedentes, dos funciones f y g definidas y derivables en un punto x. Además, en este caso, se tiene

Más detalles

Funciones hiperbólicas inversas (19.09.2012)

Funciones hiperbólicas inversas (19.09.2012) Funciones hiperbólicas inversas 9.09.0 a Argumento seno hiperbólico. y = arg shx = x = senh y = ey e y = x = e y e y. Multiplicando por e y, xe y = e y = e y xe y = 0, de donde e y = x ± x +. Para el signo

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

REGLA DE L'HÔPITAL. En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e

REGLA DE L'HÔPITAL. En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e REGLA DE L'HÔPITAL En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e y se aprenden los artificios necesarios para resolverlas. Generalmente, surgen en límites de

Más detalles

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : [email protected] url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

Continuidad de funciones

Continuidad de funciones Apuntes Tema 3 Continuidad de funciones 3.1 Continuidad de funciones Def.: Dada una función f(x), diremos que es continua en x = a, si cumple la siguiente condición: En caso de que no cumpla esta condición,

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x).

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x). 2 Integrales Indefinidas y Métodos de Integración La integral Indefinida o antiderivada es el nombre que recibe la operación inversa a la derivada. Es decir, dada una función F aquella consiste en encontrar

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Matemáticas II. Segundo de Bachillerato. Curso Exámenes

Matemáticas II. Segundo de Bachillerato. Curso Exámenes Matemáticas II. Segundo de Bachillerato. Curso 0-03. Exámenes LÍMITES Y CONTINUIDAD o F. Límites y continuidad o F Ejercicio. Calcular el dominio de definición de las siguientes funciones: f(x) = 4 x h(x)

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real).

). (Nota: también lo es en cada uno de los demás intervalos de definición de la función tangente, pero no de manera global en toda la recta real). Tema 5 Integral Indefinida 5.1 Introducción Dedicaremos este tema a estudiar el concepto de Integral Indefinida y los métodos más habituales para calcular las integrales indefinidas. De una manera intuitiva

Más detalles

CAPÍTULO13: INTEGRAL INDEFINIDA SUMARIO: INTRODUCCIÓN OBJETIVOS DEL CAPÍTULO

CAPÍTULO13: INTEGRAL INDEFINIDA SUMARIO: INTRODUCCIÓN OBJETIVOS DEL CAPÍTULO Integral indeinida CAPÍTULO13: INTEGRAL INDEFINIDA SUMARIO: INTRODUCCIÓN OBJETIVOS DEL CAPÍTULO PARTE TEÓRICA DEL TEMA : 13.1.- Función primitiva. Integral deinida. 13..- Integración y dierenciación. 13.3.-

Más detalles

DERIV. DE UNA FUNC. EN UN PUNTO

DERIV. DE UNA FUNC. EN UN PUNTO DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado

Más detalles

DERIVADAS. Problemas con Solución.

DERIVADAS. Problemas con Solución. DERIVADAS. Problemas con Solución. Aplica la definición de derivada como un límite, para calcular f siendo fx = x + x +. 4. Sea la función fx = x/x, halla la derivada de f en el punto de abcisa usando

Más detalles

IDENTIDADES TRIGONOMÉTRICAS

IDENTIDADES TRIGONOMÉTRICAS RAZONAMIENTO Y DEMOSATRACIÓN PARA SER TRABAJADO DEL 04 al 17 DE OCTUBRE 011 Demuestra identidades trigonométricas COMUNICACIÓN MATEMÁTICA Discrimina identidades pitagóricas por cociente y reciprocas. IDENTIDADES

Más detalles

MANUAL DE FRACCIONES PARCIALES

MANUAL DE FRACCIONES PARCIALES Universidad Politécnica Salesiana MANUAL DE FRACCIONES PARCIALES Xavier Espinoza Xavier Espinoza MANUAL DE FRACCIONES PARCIALES 2012 MANUAL DE FRACCIONES PARCIALES Xavier Espinoza 1era. edición: c Editorial

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Teoría Tema 5 Cambio de variable en integrales

Teoría Tema 5 Cambio de variable en integrales página 1/11 Teoría Tema 5 Cambio de variable en integrales Índice de contenido Qué es un cambio de variable?... Cambio de variable si f(x) es impar en seno...3 Cambio de variable si f(x) es impar en coseno...4

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

Matemáticas Empresariales I. Funciones y concepto de ĺımite

Matemáticas Empresariales I. Funciones y concepto de ĺımite Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Funciones Parte 1. Prof. Derwis Rivas Olivo

Funciones Parte 1. Prof. Derwis Rivas Olivo Universidad de Los ndes Facultad de Ingeniería Escuela ásica de Ingeniería Departamento de Cálculo Funciones Parte 1 Prof. Derwis Rivas Olivo 1.- Dadas las funciones f : R R / f(x) = x 3 + x 3 y g : R

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0 Pág. Página 8 PRACTICA Monomios Indica cuál es el grado de los siguientes monomios y di cuáles son semejantes: a) x b) x c) x d) x e) x f) x g) h) x i) a) Grado b) Grado c) Grado d)grado e) Grado f) Grado

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles