TEMA 3 ACTUACIONES DE PUNTO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 3 ACTUACIONES DE PUNTO"

Transcripción

1 TEMA 3 ACTUACIONES DE PUNTO En este curso se analizan las actuaciones de punto de aviones con turborreactor o turbofán. En el estudio de las actuaciones de punto static performance) se considera el problema casi estacionario, esto es, se desprecian las aceleraciones tangencial y normal, y se estudian las ecuaciones dinámicas, que para el vuelo en un plano vertical con ε = 0 se reducen a T h, V, π) Dh, V, L) sin γ = 0 L cos γ = 0 3.1) En estas ecuaciones hay 6 variables, por lo que dadas 4 de ellas, las otras 2 quedan definidas por las ecuaciones. 3.1 Actuaciones en vuelo horizontal En el caso de vuelo horizontal h = const) se tiene γ = 0, por lo que las ecuaciones que permiten estudiar las actuaciones de punto se reducen a T h, V, π) Dh, V, L) = 0 L = 0 3.2) En este caso se tiene n = 1. Sustituyendo la 2 a en la 1 a se tiene T h, V, π) Dh, V, ) = 0 3.3) En esta ecuación hay 4 variables, por lo que dadas 3 de ellas, la otra queda definida por la ecuación. Por ejemplo, V = V h,, π). En este caso la ecuación define 2 velocidades de vuelo ver figura 3.1): los puntos de intersección de las curvas T V ) y DV ), para h, y π dados. Las actuaciones de punto que se van a estudiar son el techo teórico y la velocidad máxima. El techo teórico Vinh lo llama propulsive ceiling) es la altitud máxima a la que es posible el vuelo horizontal, para y π fijos, en concreto para π max. Se verifica que el techo es la altitud a la cual el empuje disponible máximo es igual al empuje necesario mínimo esto es, igual a la resistencia aerodinámica mínima). La velocidad máxima es la máxima de las velocidades máximas que se tienen a cada altitud. Figura 3.1: Velocidad de vuelo 31

2 El techo teórico y la velocidad máxima son los elementos más relevantes del diagrama h V o envolvente de vuelo ver figura 3.2). Figura 3.2: Envolvente de vuelo En lo sucesivo se considera el modelo ISJ, y se definen las variables adimensionales u = V/V R ) 1 2 k 4 y z = T/T R, siendo la velocidad de referencia V R =, y el empuje de referencia ρs C D0 T R = Velocidad de vuelo La ecuación T = D en variables adimensionales es z 1 u 2 + 1u ) 2 2 = 0 3.4) de donde se obtienen las 2 velocidades de vuelo ver figura 3.3) u 1 = z + z 2 1 u 2 = z z ) Figura 3.3: Velocidad de vuelo adimensional La ecuación L = = 1 2 ρv 2 SC L define el coeficiente de sustentación, y por tanto el ángulo de 32

3 ataque. Se tiene C L = 1 u 2 C L opt 3.6) Techo teórico En variables adimensionales el techo teórico viene definido por z = 1, y la velocidad que se tiene en el techo por u = 1. El techo H se define en función de la densidad a) dicha altitud ρ H. ρ x Para π max se tiene el empuje máximo adimensional z max = zmax ρ, siendo zmax = T maxe max. Haciendo z max = 1 se tiene el siguiente resultado: ) 1 1/0,7 Si zmax < 1, entonces ρ H = ρ zmax, y el techo está en la troposfera. Si zmax > 1, entonces ρ H = ρ 1, y el techo está en la estratosfera. z max Para que el techo sea grande, interesa que zmax sea grande, esto es, interesa que Tmax y sean grandes y que sea pequeño. ) 1/2 ρ0 La velocidad en el techo viene dada por V H = V R = V R0, que toma distintos valores según ρ H ) 2 k 1/4 que el techo esté en la troposfera o en la estratosfera, siendo V R0 = : ρ 0 S C D0 ) 1/2 ρ0 Troposfera V H = V R0 ρ z max) 1/x Estratosfera V H = V R0 ρ0 ρ z max ) 1/2 3.7) Velocidad máxima A cada altitud la velocidad máxima es u 1 la mayor de las dos posibles). Se tiene pues V 1 ρ) = ) 1/2 ρ0 [ V R u 1 ρ) = V R0 u 1 ρ), siendo, para z = z max, u 1 ρ) = z max ρ) + 1/2. z ρ maxρ) 2 1] La altitud a la cual se tiene la velocidad máxima de las máximas se define en función de la densidad a dicha altitud ρ M. La ecuación d ) 2 V1 1 = 0 tiene como solución z max = que sólo es válida en la troposfera dρ V R0 1 x 2 ) 2 V1 x < 1). Por otro lado, en la estratosfera es una función creciente con ρ decreciente con la V R0 altitud) por lo que su máximo se tiene en la tropopausa. Por tanto, se tiene el siguiente resultado: ) Si zmax 1 < 1.4, entonces ρ M = ρ 1 1/x, y está en la troposfera, siendo 1 x 2 zmax 1 x 2 x =0.7. Si zmax 1 > 1.4, entonces ρ M = ρ, esto es, está en la tropopausa, siendo x = x 2 33

4 ]1/2 ρ )1/2 0 La velocidad m axima viene dada por VM = VR0 zmax ρm ) + 1, que ρm toma distintos valores seg un que la velocidad m axima tenga lugar en la troposfera o en la tropopausa: [ )1/x ]1/2 1 + x ρ0 2 Troposfera VM = VR0 z 1 x max 1 x2 ρ 3.8) [ )]1/2 ρ0 2 Estratosfera VM = VR0 zmax + zmax 1 ρ [ 2 zmax ρm ) Envolvente de vuelo De forma cualitativa se pueden definir los tres casos siguientes de envolvente de vuelo, seg un el valor del par ametro zmax : Si zmax >1.4, el techo est a en la estratosfera y la velocidad m axima en la tropopausa. Si 1 < zmax <1.4, el techo est a en la estratosfera y la velocidad m axima en la troposfera. Si zmax < 1, el techo y la velocidad m axima est an en la troposfera. La envolvente de vuelo te orica que se acaba de estudiar est a sujeta, entre otras, a limitaciones por entrada en p erdida y por compresibilidad ver figuras 3.4 y 3.5). Figura 3.4: Velocidades l ımite Figura 3.5: Envolvente de vuelo: limitaci on por p erdida y por compresibilidad 34

5 3.2 Actuaciones en planeo En la práctica los aviones comerciales descienden con los motores al ralentí idle rating), esto es, con un empuje mínimo. En este curso se va a estudiar el descenso con empuje nulo T = 0), es decir, el vuelo de planeo. Si se define el ángulo de planeo en inglés, glide angle) γ d = γ, las ecuaciones que permiten estudiar las actuaciones de punto en planeo son Dh, V, L) sin γ d = 0 L cos γ d = 0 3.9) En esta ecuación hay 5 variables, por lo que dadas 3 de ellas, las otras 2 quedan definidas por las ecuaciones. Por ejemplo, γ d = γ d h,, V ) y L = Lh,, V ). En general se tiene n = cos γ d. Además se tiene la ecuación que define la velocidad de descenso en inglés, rate of descent) V d = V sin γ d 3.10) Ángulo de planeo y velocidad de descenso En lo sucesivo se hace la hipótesis simplificadora γ d 1. Se tienen las siguientes expresiones para el ángulo de planeo y la velocidad de descenso Dh, V, ) γ d = Dh, V, )V V d = 3.11) El ángulo de planeo mínimo es aquel que minimiza la resistencia aerodinámica D). La velocidad de descenso mínima es la que minimiza el producto DV. Se considera a continuación el modelo ISJ. En variables adimensionales u = V/V R ), se tienen los siguientes resultados γ d = 1 u 2 + 1u ) 2E 2 max V d = 1 V R 2 u ) 3.12) u Optimización Ángulo de planeo mínimo La velocidad adimensional que define el ángulo de planeo mínimo es u γd) min = 1 y por tanto γ d ) min = ) que no depende de la altitud. La velocidad aerodinámica necesaria para efectuar un planeo con γ d ) min, es ) 2 k 1/4 V γd ) min = V R = 3.14) ρs 35 C D0

6 que disminuye al disminuir la altitud ver esquema en la figura 3.6). Con esta ley de velocidades se obtiene el planeo conocido como flattest glide. También se tiene ) 2 k 1/4 V e γd) min = V R0 = 3.15) ρ 0 S C D0 que es independiente de la altitud. Para tener γ d ) min pequeño interesa que sea grande. En los veleros puede llegar a ser = 50. La ecuación L = = 1 2 ρv 2 SC L define el coeficiente de sustentación, y por tanto el ángulo de ataque. Se tiene C L γd ) min = C Lopt 3.16) Figura 3.6: Ángulo de planeo y velocidad de descenso en planeo h 1 > h 2 > h 3 ) Velocidad de descenso mínima La velocidad adimensional que define la velocidad de descenso mínima es u γd ) min = 3 1/4 y por tanto ) k 1/4 V d ) min = 3 3/4 V R = 3 3/4 3.17) ρs C D0 que disminuye al disminuir la altitud. La velocidad aerodinámica necesaria para efectuar un planeo con V d ) min, es ) V Vd ) min = 3 1/4 V R = 3 1/4 2 k 1/4 3.18) ρs que disminuye al disminuir la altitud ver esquema en la figura 3.6). Con esta ley de velocidades se obtiene el planeo conocido como slowest sink. 36 C D0

7 También se tiene que es independiente de la altitud. ) V e Vd) min = 3 1/4 V R0 = 3 1/4 2 k 1/4 3.19) ρ 0 S C D0 Para tener V d ) min pequeña interesa que la carga alar S sea pequeña, que sea grande y que k sea pequeño o bien, tomando k 1, que el alargamiento Λ sea grande). En los veleros puede llegar Λ a ser Λ = 25. El ángulo de ataque correspondiente es mayor que el que corresponde a ángulo de planeo mínimo, y viene definido por C L Vd) min = 3C Lopt 3.20) 3.3 Actuaciones en subida Las ecuaciones que permiten estudiar las actuaciones de punto en subida son las ecuaciones 3.1) T h, V, π) Dh, V, L) sin γ = 0 L cos γ = ) En esta ecuación hay 6 variables, por lo que dadas 4 de ellas, las otras 2 quedan definidas por las ecuaciones. Por ejemplo, γ = γh,, V, π) y L = Lh,, V, π). En general se tiene n = cos γ. Además se tiene la ecuación que define la velocidad de subida en inglés, rate of climb) V c = V sin γ 3.22) Ángulo de subida y velocidad de subida En lo sucesivo se hace la hipótesis simplificadora γ 1; en este caso se tiene n = 1. Las expresiones para el ángulo de subida y la velocidad de subida se reducen a T h, V, π) Dh, V, ) γ = T h, V, π) Dh, V, ) V c = V 3.23) En función de las variables adimensionales u = V V R y z = T T R se tiene γ = 1 [ V c V R = 1 u Recuérdese que para el modelo ISJ se tiene z 1 2 [ z 1 2 u 2 + 1u 2 )] u 2 + 1u 2 )] 3.24) z = z 0 ρ ρ 0 ) x, c E = c E0 ρ ρ 0 ) y, z 0 = T 0π), c E0 = const 3.25) 37

8 3.3.2 Optimización Ángulo de subida máximo La velocidad adimensional que define el ángulo de subida máximo es u γ)max = 1 y por tanto γ max = z ) que disminuye al aumentar la altitud ver esquema en la figura 3.7). Nótese que cuando z 1 se tiene γ max 0; en el techo se tiene γ max = 0 ver figura 3.8). Para tener γ max grande interesan T/ y grandes. La velocidad aerodinámica necesaria para efectuar una subida con γ max, es ) 2 k 1/4 V γmax = V R = 3.27) ρs que aumenta al aumentar la altitud ver figura 3.7). Con esta ley de velocidades se obtiene la subida conocida como steepest climb. También se tiene ) 2 k 1/4 V e γ)max = V R0 = 3.28) ρ 0 S C D0 que es independiente de la altitud. La ecuación L = = 1 2 ρv 2 SC L define el coeficiente de sustentación, y por tanto el ángulo de ataque. Se tiene C D0 C L γ)max = C Lopt 3.29) Figura 3.7: Ángulo de subida y velocidad de subida h 1 < h 2 < h 3 ) 38

9 Figura 3.8: Ángulo de subida y velocidad de subida máximos Velocidad de subida máxima La velocidad adimensional que define la velocidad de subida máxima es u Vc) max = y por tanto z + ) 1/2 z V c ) max = V R z + ) 1/2 z z ) z ) que disminuye al aumentar la altitud ver esquema en la figura 3.7). Nótese que cuando z 1 se tiene V c ) max 0; en el techo se tiene V c ) max = 0 ver figura 3.8). Para tener V c ) max grande interesan T/, y /S grandes. La velocidad aerodinámica necesaria para efectuar una subida con V c ) max, es V Vc ) max = V R z + ) 1/2 z ) 3 que aumenta al aumentar la altitud ver figura 3.7). Con esta ley de velocidades se obtiene la subida conocida como fastest climb. Se verifica V Vc) max > V γmax ver figura 3.9). El ángulo de ataque correspondiente es menor que el que corresponde a ángulo de subida máximo, y viene definido por C L Vc ) max = 3 z + z C L opt 3.32) 39

10 Figura 3.9: Velocidades correspondientes a ángulo de subida y velocidad de subida máximos 40

Mecánica del Vuelo. Tema 3: Actuaciones de Punto. Damián Rivas Rivas y Sergio Esteban Roncero

Mecánica del Vuelo. Tema 3: Actuaciones de Punto. Damián Rivas Rivas y Sergio Esteban Roncero Intro Vuelo Sim-PV Mecánica del Vuelo Tema 3: Actuaciones de Punto Damián Rivas Rivas y Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería, Universidad

Más detalles

TEMA 2 MODELOS DE ATMÓSFERA Y DE AVIÓN

TEMA 2 MODELOS DE ATMÓSFERA Y DE AVIÓN TEMA 2 MODELOS DE ATMÓSFERA Y DE AVIÓN En este tema se van a modelar las fuerzas aerodinámica y propulsiva, así como el consumo de combustible del avión, esto es, se van a definir las funciones L = L(h,

Más detalles

PROBLEMAS. Problema 1

PROBLEMAS. Problema 1 PROBLEMAS Problema 1 Se considera un avión en vuelo de crucero a altitud h y velocidad V constantes. La altitud de vuelo está fijada. Sabiendo que la resistencia aerodinámica viene dada por D = k 1 V 2

Más detalles

Valor total: 2.5 puntos.

Valor total: 2.5 puntos. Aeronaves y Vehículos Espaciales Duración: 50 minutos Ingenieros Aeronáuticos DNI Curso 08/09 Escuela Superior de Ingenieros 1 er Apellido 2 do Apellido 05/06/09 Universidad de Sevilla Nombre Problema

Más detalles

Problemas - Aeronaves

Problemas - Aeronaves Chapter Problemas - Aeronaves. Problema A. Se considera una avioneta con tren fijo en vuelo simétrico, sin balance, en un plano vertical, conla atmósfera en calma, a un nivel de vuelo dado y en configuración

Más detalles

Módulo 9 MECÁNICA DEL VUELO

Módulo 9 MECÁNICA DEL VUELO Módulo 9 MECÁNICA DEL VUELO Primera parte: INTRODUCCIÓN 3 1.VISIÓN GENERAL: 2. SISTEMAS DE REFERENCIA: Sistema de ejes Horizonte Local F h Sistema de ejes Viento F w Origen en el centro de masas del avión

Más detalles

Trabajo Fin de Grado Grado en Ingeniería Aeroespacial

Trabajo Fin de Grado Grado en Ingeniería Aeroespacial Trabajo Fin de Grado Grado en Ingeniería Aeroespacial Optimización del vuelo de planeo de aviones comerciales mediante cálculo variacional. Autor: Javier Pachón Álvarez Tutor: Damián Rivas Rivas Dep. Ingeniería

Más detalles

Mecánica del Vuelo del Avión

Mecánica del Vuelo del Avión Mecánica del Vuelo del Avión Parte I: Actuaciones del Avión Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros

Más detalles

Mecánica del Vuelo del Avión

Mecánica del Vuelo del Avión Mecánica del Vuelo del Avión Parte I: Actuaciones del Avión Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingeniería

Más detalles

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

Clases 5 Piloto Comercial con HVI Aerodinámica Construcción y uso de las curvas de un avión para el VRN

Clases 5 Piloto Comercial con HVI Aerodinámica Construcción y uso de las curvas de un avión para el VRN Construcción y uso de las curvas de un avión para el VRN Si ud conoce el perfil del ala de su avión, el peso y la superficie alar puede construir en forma aproximada las curvas de su avión, para ser utilizadas

Más detalles

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura Índice general Índice general Presentación Prólogo Nomenclatura V X XIII XV 1 Introducción 1 1.1. Introducción a la ingeniería aeroespacial............. 1 1.2. Clasificación de las aeronaves...................

Más detalles

Asignatura: MECÁNICA DEL VUELO (Código 153) AERONAVES

Asignatura: MECÁNICA DEL VUELO (Código 153) AERONAVES Asignatura: MECÁNICA DEL VUELO (Código 153) Especialidad: AERONAVES Curso/Cuatrimestre: TERCER CURSO / PRIMER CUATRIMESTRE Tipo de Materia: TRONCAL Créditos: 7,5 Conocimientos previos: Departamento: Aerotecnia,

Más detalles

Juan Manuel Tizón Pulido

Juan Manuel Tizón Pulido SISTEMAS DE PROPULSIÓN Curso 2º -Plan 25 Juan Manuel Tizón Pulido jm.tizon@upm.es SISTEMAS DE PROPULSIÓN TEMA IIIc: Actuaciones de Turborreactores Introducción: Definición, necesidad y planteamiento Cantidades

Más detalles

FUERZAS DE SUSTENTACION

FUERZAS DE SUSTENTACION 1 Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física. FUERZAS DE SUSTENTACION Objetivos específicos a) Medir fuerzas de sustentación y explicar su relación con el ángulo de

Más detalles

Optimización del Diseño Sizing and Trade Studies

Optimización del Diseño Sizing and Trade Studies Optimización del Diseño Sizing and Trade Studies Tema 18 Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial Y Mecánica de Fluidos Cálculo de Aeronaves Sergio Esteban Roncero, sesteban@us.es

Más detalles

ENSAYOS DE RESISTENCIA EN SUELOS

ENSAYOS DE RESISTENCIA EN SUELOS ENSAYOS DE RESISTENCIA EN SUELOS ENSAYOS DE CORTE: Corte directo: convencional y anular Corte simple Vane test ENSAYOS DE COMPRESIÓN: Triaxial convencional: σ 2 = σ 3 ; compresión simple, estándard, extensión.

Más detalles

Laboratori de Mecànica de Fluids i Motors Tèrmics. E.U.P.M. Departament de Màquines i Motors Tèrmics. U.P.C. Prof: J.J. de Felipe

Laboratori de Mecànica de Fluids i Motors Tèrmics. E.U.P.M. Departament de Màquines i Motors Tèrmics. U.P.C. Prof: J.J. de Felipe 1 TEMA 4. - ANÁLISIS DIMENSIONAL Y SEMEJANZA. 1. - Introducción. En los temas anteriores hemos analizado el comportamiento de fluidos en el ámbito de estática, en donde cualquier tipo de problema, se puede

Más detalles

ACTUACIONES VUELO-1. 5) La línea roja en un anemómetro indica: a) VNE b) VNO c) Vs1 d) Vs2

ACTUACIONES VUELO-1. 5) La línea roja en un anemómetro indica: a) VNE b) VNO c) Vs1 d) Vs2 1) Qué significado tiene en un avión, un coeficiente de planeo 7:1? a) Desciende 7 metros en un segundo. b) Recorre 7 metros en un segundo. c) Recorre 7 metros en horizontal por cada 1 metro de descenso.

Más detalles

Vuelo de Avance. Teoría de cantidad de movimiento. Referencia Básica [Lei02] Helicópteros () Vuelo de Avance TCM 1 / 18

Vuelo de Avance. Teoría de cantidad de movimiento. Referencia Básica [Lei02] Helicópteros () Vuelo de Avance TCM 1 / 18 Vuelo de Avance Teoría de cantidad de movimiento. Referencia Básica [Lei02] Helicópteros () Vuelo de Avance TCM 1 / 18 Introducción I Vuelo de avance es el vuelo del rotor en el que existe una componente

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

MATERIA: AERODINÁMICA TRIPULANTES DE CABINA

MATERIA: AERODINÁMICA TRIPULANTES DE CABINA MATERIA: AERODINÁMICA TRIPULANTES DE CABINA 1. CUANDO HABLAMOS DE LA RAMA DE LA FÍSICA, QUE ESTUDIA LAS REACCIONES DE UN CUERPO QUE SE SITÚA EN UNA CORRIENTE DE AIRE, O AIRE RELATIVO CON RESPECTO A SUS

Más detalles

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento

Más detalles

ENERGÍA EÓLICA E HIDRÁULICA

ENERGÍA EÓLICA E HIDRÁULICA ENERGÍA EÓLICA E HIDRÁULICA Lección 4: Diseño de rotores eólicos Damián Crespí Llorens Máquinas y Motores Térmicos Ingeniería Mecánica y Energía 1 Índice 4.1.Introducción 4.1.Objetivo 4.2. Resumen de conceptos

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

PRÁCTICA PARA TRIMESTRAL 2011 DÉCIMO AÑO. Tema: Análisis dimensional. Cinemática del Movimiento en dos dimensiones. Lanzamiento de proyectiles.

PRÁCTICA PARA TRIMESTRAL 2011 DÉCIMO AÑO. Tema: Análisis dimensional. Cinemática del Movimiento en dos dimensiones. Lanzamiento de proyectiles. PRÁCTICA PARA TRIMESTRAL 2011 DÉCIMO AÑO Tema: Análisis dimensional. Cinemática del Movimiento en dos dimensiones. Lanzamiento de proyectiles. Resuelva los siguientes problemas y establezca sus propios

Más detalles

Actuaciones. Aterrizaje y Despegue. Referencia Básica [EMC05] Helicópteros () Actuaciones Aterrizaje y despegue 1 / 27

Actuaciones. Aterrizaje y Despegue. Referencia Básica [EMC05] Helicópteros () Actuaciones Aterrizaje y despegue 1 / 27 Actuaciones Aterrizaje y Despegue. Referencia Básica [EMC05] Helicópteros () Actuaciones Aterrizaje y despegue 1 / 27 Introducción Desde el punto de vista de la maniobrabilidad, el helicóptero es una de

Más detalles

ESTRUCTURA GENERAL DEL CURSO PARA LA OBTENCION DEL CARNET DE PILOTO DE ULTRALIGERO. PROGRAMA DE ENSEÑANZA DEL CURSO.

ESTRUCTURA GENERAL DEL CURSO PARA LA OBTENCION DEL CARNET DE PILOTO DE ULTRALIGERO. PROGRAMA DE ENSEÑANZA DEL CURSO. ESCUELA DE VUELO SAN TORCUATO ESTRUCTURA GENERAL DEL CURSO PARA LA OBTENCION DEL CARNET DE PILOTO DE ULTRALIGERO. PROGRAMA DE ENSEÑANZA DEL CURSO. A.- CURSO TEORICO I. 1.- Teoría elemental. 1.1.- Introducción.

Más detalles

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS 1 PRACTICA # 1 PROPIEDADE FIICA DE LO FLUIDO 1.1 DENIDAD Es una propiedad intensiva que se define como la masa (m) por unidad de volumen (V), y es denotada con la letra "ρ", donde: masa de la sustancia

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui TEMA II.9 Ecuación de Bernoulli Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

Tecnología Aeroespacial. Definiciones. Gregorio L. Juste ( )

Tecnología Aeroespacial. Definiciones. Gregorio L. Juste  ( ) Definiciones Circulación Γ= Ñ C Vl d linea cerradac Teorema de Stokes Ñ C S ( ) Γ= Vl d = V ndσ Si el rotacional dela velocidad es nulo( movimiento fluidoirrotacional) exixteuna función Φ llamada potencial

Más detalles

PRINCIPIOS BÁSICOS DE CONVERSIÓN DE LA EE

PRINCIPIOS BÁSICOS DE CONVERSIÓN DE LA EE Potencia disponible del viento: La energía cinética de una masa m de aire moviéndose a una velocidad V es: E = 1 mv Se considera un rotor de una sección transversal A expuesta a una masa de aire en movimiento.

Más detalles

Flujo externo. R. Castilla y P.J. Gamez-Montero Curso Introducción. Fuerzas aerodinámicas

Flujo externo. R. Castilla y P.J. Gamez-Montero Curso Introducción. Fuerzas aerodinámicas Flujo externo R. Castilla y P.J. Gamez-Montero Curso 20-202 Índice Índice. Introducción 2. Fuerzas aerodinámicas 2.. Arrastre de fricción y de presión....................................... 2 2.2. Coeficientes

Más detalles

TEMA 6 DESPEGUE Y ATERRIZAJE. 6.1 Despegue

TEMA 6 DESPEGUE Y ATERRIZAJE. 6.1 Despegue TEMA 6 DESPEGUE Y ATERRIZAJE En este tema se analizan las maniobras de despeue y aterrizaje para aviones con tren triciclo, que son los habituales hoy en día. Se supone que el aire está en calma, ya que

Más detalles

TEMA Nº 3 SISTEMAS DINÁMICOS DE PRIMER ORDEN

TEMA Nº 3 SISTEMAS DINÁMICOS DE PRIMER ORDEN TEMA Nº 3 Esta guía provee al estudiante una manera rápida para la resolución de problemas dependiendo el caso, para ello es necesario tomar en cuenta que existen diferentes casos los cuales se especifican

Más detalles

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c)

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c) EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN 1.-Si en la expresión xcos(cρt) "x" es espacio, "t" es tiempo y ρ densidad, la constante C tiene dimensiones de: a) ML -3 T b) L c) M -1 L 3 T -1 d) L -1

Más detalles

Dinámica de fluidos: Fundamentos

Dinámica de fluidos: Fundamentos Capítulo 2 Dinámica de fluidos: Fundamentos Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA Ing. Alejandro Mayori 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA 6.1 Introducción - Teoría matemática y resultados experimentales

Más detalles

6-FLUJO EN REJILLAS DE

6-FLUJO EN REJILLAS DE 6-FLUJO EN REJILLAS DE ÁLABES Prof. Nathaly Moreno Salas Ing. Victor Trejo Turbomáquinas Térmicas CT-34 Contenido Planos de estudio en turbomáquinas Rejilla de álabes Flujo en rejillas de álabes Geometría

Más detalles

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos:

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: 1. Tensión y deformación 2. Movimiento ondulatorio simple 3. Ondas periódicas 4. Ondas estacionarias Tensión y deformación Objeto

Más detalles

ESTUDIO LOCAL DE LA FUNCIÓN

ESTUDIO LOCAL DE LA FUNCIÓN ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2

Más detalles

SISTEMAS INCREMENTADORES DE EMPUJE: INYECCIÓN DE AGUA Introducción Inyección de agua en el compresor Inyección de agua en cámara de combustión

SISTEMAS INCREMENTADORES DE EMPUJE: INYECCIÓN DE AGUA Introducción Inyección de agua en el compresor Inyección de agua en cámara de combustión SISTEMAS INCREMENTADORES DE EMPUJE: INYECCIÓN DE AGUA Introducción Inyección de agua en el compresor Inyección de agua en cámara de combustión La inyección de agua fue usada por primera vez hace 49 años

Más detalles

A2 Sistema de Datos de Aire (Pitot - Estática) FUNDAMENTOS TEÓRICOS

A2 Sistema de Datos de Aire (Pitot - Estática) FUNDAMENTOS TEÓRICOS A2 SISTEMA DE DATOS DE AIRE 1 A2 Sistema de Datos de Aire (Pitot - Estática) FUNDAMENTOS TEÓRICOS Manuel Pérez Cortés DVA/ETSIA Madrid, 28 octubre 2008 A2 SISTEMA DATOS AIRE Introducción 2 ÍNDICE 1. Introducción

Más detalles

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011 Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga

Más detalles

PRINCIPIOS DE VUELO-1

PRINCIPIOS DE VUELO-1 1) La línea recta que une el borde de ataque con el borde de salida de un perfil alar, se denomina: a) Curvatura media b) Cuerda c) Espesor d) Viento relativo 2) Las cuatro fuerzas principales que actúan

Más detalles

CARACTERÍSTICAS DE LAS SECCIONES AERODINÁMICAS:

CARACTERÍSTICAS DE LAS SECCIONES AERODINÁMICAS: CARACTERÍSTICAS DE LAS SECCIONES AERODINÁMICAS: PERFILES HIDRODINÁMICOS Siguiendo la notación y costumbres aerodinámicas, la fuerza resultante en un perfil se descompone en un EMPUJE (LIFT) perpendicular

Más detalles

Cap. 6.- Ciclos de turbinas de gas.

Cap. 6.- Ciclos de turbinas de gas. Cap. 6.- Ciclos de turbinas de gas. Cuestiones de autoevaluación Escuela Politécnica Superior Profesores: Pedro A. Rodríguez Aumente, catedrático de Máquinas y Motores Térmicos Antonio Lecuona Neumann,

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

Dinámica de la pala. Dinámica del movimiento de arrastre. Referencia Básica [Joh94] Helicópteros () Dinámica Arrastre 1 / 10

Dinámica de la pala. Dinámica del movimiento de arrastre. Referencia Básica [Joh94] Helicópteros () Dinámica Arrastre 1 / 10 Dinámica de la pala Dinámica del movimiento de arrastre Referencia Básica [Joh94] Helicópteros () Dinámica Arrastre 1 / 10 Introducción El movimiento de las palas del rotor principal además del movimiento

Más detalles

Quinta Lección. Mirando el vuelo de las aves a la luz de la física..

Quinta Lección. Mirando el vuelo de las aves a la luz de la física.. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Quinta Lección. Mirando el vuelo de las aves a la luz

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS

UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS Mecánica de Fluidos I Examen 03011 Un deósito aislado térmicamente y de volumen inicial V 0) está lleno de aire a la

Más detalles

Mecánica del Vuelo del Avión

Mecánica del Vuelo del Avión Mecánica del Vuelo del Avión Parte II: Estabilidad y Control Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingeniería

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

Cálculo de Aeronaves

Cálculo de Aeronaves Cálculo de Aeronaves Sergio Esteban, Antonio Franco, y Alfonso Valenzuela 1 de abril de 014 1. Hipótesis Iniciales En función de los diferentes regímenes de operación, se establecen unas pautas sobre la

Más detalles

Esquema variacional para estimar la velocidad de flujos geofisicos

Esquema variacional para estimar la velocidad de flujos geofisicos Esquema variacional para estimar la velocidad de flujos geofisicos Marco A. Nunez, Jorge E. Sánchez-Sánchez, Ciro F. Flores Rivera Universidad Autnoma Metropolitana Iztapalapa Departamento de Fsica, Problema:

Más detalles

Situación inicial: el objeto ha sido lanzado con rapidez v 0, por un plano que está inclinado un ángulo α respecto a la horizontal

Situación inicial: el objeto ha sido lanzado con rapidez v 0, por un plano que está inclinado un ángulo α respecto a la horizontal Problema 4: Se lanza un objeto que desliza por una superficie. La superficie está inclinada hacia arriba un ángulo α respecto a la horizontal. Qué distancia recorrerá el objeto antes de pararse? Situación

Más detalles

MATERIA: AERODINÁMICA CONTROLADORES DE TRANSITO AÉREO

MATERIA: AERODINÁMICA CONTROLADORES DE TRANSITO AÉREO MATERIA: AERODINÁMICA CONTROLADORES DE TRANSITO AÉREO 1. EL FACTOR DE CARGA MÁXIMO (NMAX) ES UNA LIMITACIÓN ESTRUCTURAL ESTABLECIDA POR EL FABRICANTE Y ASENTADA EN LA SECCIÓN DE LIMITACIONES DEL MANUAL

Más detalles

Requisitos del diseño I. 6. Diseño conceptual. Requisitos del diseño II. Introducción

Requisitos del diseño I. 6. Diseño conceptual. Requisitos del diseño II. Introducción Requisitos del diseño I 6. Diseño conceptual 6.1 Diseño conceptual del rotor principal El diseño de un helicóptero implica un entorno multidisciplinar. Diseño civil: costes de operación y de compra bajos,

Más detalles

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar RECURSO SOLAR Primera Clase Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar Objetivos Posicionamiento del Sol Ubicación de sombras en el diagrama solar Distancia entre paneles Inclinación óptima

Más detalles

PRINCIPIOS DE VUELO-4

PRINCIPIOS DE VUELO-4 1) El ángulo de ataque es: a) El ángulo formado entre la cuerda aerodinámica y el eje longitudinal del avión b) El ángulo formado entre la cuerda aerodinámica y la dirección del viento relativo c) El ángulo

Más detalles

REGLAMENTO ARGENTINO DE ACCION DEL VIENTO SOBRE LAS CONSTRUCCIONES

REGLAMENTO ARGENTINO DE ACCION DEL VIENTO SOBRE LAS CONSTRUCCIONES UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL MENDOZA DEPARTAMENTO INGENIERÍA CIVIL CONSTRUCCIONES METÁLICAS Y DE MADERA GUÍA 3.2 REGLAMENTO ARGENTINO DE ACCION DEL VIENTO SOBRE LAS CONSTRUCCIONES

Más detalles

y la derivamos con respecto al tiempo 12 m/s

y la derivamos con respecto al tiempo 12 m/s Fundamentos Físicos de la Ingeniería Examen final / 5 de septiembre de 00. Si el cuerpo de la figura se mueve hacia la izquierda con una celeridad de 6 m/s, determinar la celeridad del cuerpo. demás, si

Más detalles

ACTUACIONES DE COMPONENTES DE AERORREACTORES

ACTUACIONES DE COMPONENTES DE AERORREACTORES ACTUACIONES DE COMPONENTES DE AERORREACTORES COMPRESORES TURBINAS CÁMARAS S DE COMBUSTIÓN ENTRADAS TOBERAS Ref.: José Luis Montañes. Motores de Reacción. Apuntes ETSIA http://aristoteles.gate.upm.es/moodle/course/view.php?id=142

Más detalles

AERODINÁMICA Básica e Intermedia.

AERODINÁMICA Básica e Intermedia. Por: Mauricio Azpeitia Perez AERODINÁMICA Básica e Intermedia. Introducción. La teoría de vuelo está basada en la aerodinámica. El término aerodinámica sederiva de la combinación de dos palabras griegas:

Más detalles

Prof. Nathaly Moreno Salas Ing. Victor Trejo TURBOMÁQUINAS TÉRMICAS CT-3412

Prof. Nathaly Moreno Salas Ing. Victor Trejo TURBOMÁQUINAS TÉRMICAS CT-3412 8.3 TURBINAS AXIALES Prof. Nathaly Moreno Salas Ing. Victor Trejo TURBOMÁQUINAS TÉRMICAS CT-34 CONTENIDO Correlación de Rendimiento de Smith (965) Estimación de Rendimiento Correlación de Soderberg Operación

Más detalles

DISEÑO CONCEPTUAL Y ESTUDIO DE LAS ACTUACIONES Y ESTABILIDAD DE UN HELICÓPTERO LIGERO

DISEÑO CONCEPTUAL Y ESTUDIO DE LAS ACTUACIONES Y ESTABILIDAD DE UN HELICÓPTERO LIGERO UNIVERSIDAD DE SEVILLA ESCUELA SUPERIOR DE INGENIEROS DE SEVILLA Ingeniería Aeronáutica PROYECTO FIN DE CARRERA DISEÑO CONCEPTUAL Y ESTUDIO DE LAS ACTUACIONES Y ESTABILIDAD DE UN HELICÓPTERO LIGERO Ana

Más detalles

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω Relación de problemas: MEDIDAS Y ERRORES. 1) En la medida de 1 m se ha cometido un error de 1 mm, y en 300 Km, 300 m. Qué error relativo es mayor?. ) Como medida de un radio de 7 dm hemos obtenido 70.7

Más detalles

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en.

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Función Lineal Se llama función lineal a toda función que tiene la forma:. con Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Muchas son

Más detalles

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos

APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN DE REFERENCIA. estándar de la ET0.

ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN DE REFERENCIA. estándar de la ET0. ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN DE REFERENCIA. Ecuación de Penman-Monteith como método de estimación estándar de la ET0. Introducción En 1948, Penman combinó los métodos de balance de energía con el

Más detalles

Andrés Zarabozo Martínez. Mecánica de Vuelo 2. Problemas

Andrés Zarabozo Martínez. Mecánica de Vuelo 2. Problemas Ingeniería Aeronáutica ETSEIAT 2012 Acerca de estos apuntes Estos apuntes se han realizado para cubrir el temario de problemas de la segunda parte de la asignatura Mecánica de Vuelo 2, que se imparte en

Más detalles

Energía Eólica: cargas dinámicas sobre la turbina y dinámica de la estructura. Herman Snel ECN Wind Energy

Energía Eólica: cargas dinámicas sobre la turbina y dinámica de la estructura. Herman Snel ECN Wind Energy Energía Eólica: cargas dinámicas sobre la turbina y dinámica de la estructura Herman Snel ECN Wind Energy Cuernavaca, Agosto 4 005 Contenido Origen de las cargas dinámicas Estimación del orden de magnitud

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales. , o, más usualmente, P 2 / P1

1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales. , o, más usualmente, P 2 / P1 Unidad 10 Turbina de gas: Arranque; influencia de las condiciones ambientes; propulsión aérea. 1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales

Más detalles

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r

y 2 Considere que el viento no sopla en la dirección AB sino que lo hace de forma que v r P1. Anemometría sónica. Hoy en día, los Centros Meteorológicos disponen de aparatos muy sofisticados para medir la velocidad del viento que, además y simultáneamente, miden la temperatura del aire. El

Más detalles

CINEMÁTICA. Vector de Posición. Vector Desplazamiento = Movimiento

CINEMÁTICA. Vector de Posición. Vector Desplazamiento = Movimiento CINEMÁTICA Se denomina Cinemática, a la parte de la Mecánica, que se encarga de estudiar, el movimiento de los cuerpos, sin considerar las causas que lo producen, ni la masa del cuerpo que se mueve. Partícula.-

Más detalles

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4.

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. V 2 En la intersección del cono y de la esfera, dada la posición de sus ejes, que son paralelos y están contenidos en un proyectante

Más detalles

SLIDE SCREW SLIDE SCREW I-1

SLIDE SCREW SLIDE SCREW I-1 I-1 El rodamiento de tornillo NB convierte el movimiento de rotación en movimiento lineal utilizando fricción entre rodamientos radiales de bolas y el eje. Este simple mecanismo facilita el mantenimiento

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida RECURSO SOLAR Primera Clase Ing. Diego Oroño Ing. Gonzalo Hermida Objetivos Posicionamiento del Sol Ubicación de sombras en el diagrama solar Distancia entre paneles Inclinación óptima Estimación de irradiación

Más detalles

Cinemática de la partícula, movimiento curvilíneo

Cinemática de la partícula, movimiento curvilíneo Cinemática de la partícula, movimiento curvilíneo Introducción En este documento se estudiará el movimiento de partículas (cuerpos cuyas dimensiones no son tomadas en cuenta para su estudio) que siguen

Más detalles

Análisis dimensional de hélices propulsoras

Análisis dimensional de hélices propulsoras Análisis dimensional de hélices propulsoras En principio, el análisis dimensional de hélices propulsoras pareciera ser similar al de las bombas rotodinámicas. Sin embargo, las bombas rotodinámicas funcionan

Más detalles

Mecánica del Vuelo del Avión

Mecánica del Vuelo del Avión Mecánica del Vuelo del Avión Parte II: Estabilidad y Control Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros

Más detalles

Auxiliar 1: Métodos Numéricos

Auxiliar 1: Métodos Numéricos Facultad de Ciencias Físicas y Matemáticas Departamento de Física Semestre 2008-1 FI1A2- Sistemas Newtonianos Profesor Hugo Arellano S. Auxiliares: César Casanova M., Juan González B., Daniela Opitz O.

Más detalles

LUBRICACIÓN HIDROSTÁTICA

LUBRICACIÓN HIDROSTÁTICA LUBRICACIÓN HIDROSTÁTICA INDICE 4. LUBRICACIÓN HIDROSTÁTICA.... 46 4.1 INTRODUCCIÓN.... 46 4.2 EJEMPLO: ESTUDIO DEL APOYO AXIAL SIMPLE.... 48 4.3 COMPENSADORES... 50 4.4 ACCIÓN DE LOS COMPENSADORES...

Más detalles

PRINCIPIOS DE VUELO-2

PRINCIPIOS DE VUELO-2 1) El borde de ataque es: a) La parte trasera del ala. b) La parte frontal o delantera de un perfil alar. c) El morro del ultraligero d) La parte delantera del motor 2) Qué es el viento relativo?: a) El

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización Calificación: FECHA: 1/06/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Más detalles

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 1. Un avión en vuelo está sujeto a una fuerza de resistencia del aire proporcional al cuadrado de su rapidez. Sin embargo hay una fuerza de resistencia

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE ECONOMÍA GUIA DE MODELOS ECONOMETRICOS ( ) ( ) ( ) (0.08)

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE ECONOMÍA GUIA DE MODELOS ECONOMETRICOS ( ) ( ) ( ) (0.08) GUIA DE MODELOS ECONOMETRICOS Se estimó el siguiente modelo de inversión: Fbk t = 31032550-92480.81r t + 6537785t + 0.79FBK t-1 (25993807) (674994.4) (2596703) (0.08) R 2 = 0.99 DW = 2.081 n = 53 R 2 ajustada

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN Clasificación de Sistemas de Ventilación de Túneles Sistema de Ventilación n Longitudinal

Más detalles

MOVIMIENTO EN DOS DIMENSIONES (TIRO PARABÓLICO)

MOVIMIENTO EN DOS DIMENSIONES (TIRO PARABÓLICO) MOVIMIENTO EN DOS DIMENSIONES (TIRO PARABÓLICO) En este apartado que se refiere al movimiento curvilíneo, es decir que la trayectoria de los cuerpos no es una línea recta sino una curva, se tratan los

Más detalles

Apuntes: Mecánica de vuelo II.

Apuntes: Mecánica de vuelo II. Apuntes:. Apuntes:. Alejandro Roger Ull Ingeniería Aeronáutica Primera edición 14 de febrero de 2012 Acerca de estos apuntes Estos apuntes se han realizado para cubrir el temario de la asignatura, que

Más detalles

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM Pag.: 1 TEM: 0042 DESPHDOR (P. 03) - ERODINMI OD_PREG: PREGUNT: RPT: 8324 uándo se utiliza por lo general los alerones interiores

Más detalles

ACTUACIONES DE AERORREACTORES

ACTUACIONES DE AERORREACTORES ACUACIONES DE AERORREACORES INRODUCCIÓN: Actuaciones de un aerorreactor es el comportamiento del motor dentro de su envuelta de vuelo y bajo toda condición de funcionamiento que permitan sus controles

Más detalles

Flujos laminares, turbulentos o una transición entre ambos

Flujos laminares, turbulentos o una transición entre ambos Flujos laminares, turbulentos o una transición entre ambos Cap. Eduardo O. Gilardoni La mayoría de las personas piensan que la presión atmosférica aumenta en una tormenta, un tornado o un huracán, pero

Más detalles