Curs MAT CFGS-25 (2015)
|
|
|
- Joaquín San Martín Toledo
- hace 8 años
- Vistas:
Transcripción
1 Curs MAT CFGS-5 (015) Pregunta 1. a) Por cada diez baños abonados en una piscina, regalan uno más, es decir, en total son once baños. Calcula razonadamente el porcentaje de descuento que están aplicando al regalar ese baño. b) En una tienda de electrodomésticos celebran el día sin IVA. Es decir, venden los productos rebajados al precio que tenían antes de cargarles el 1% en concepto de IVA. Averigua cuánto habrá que pagar por un televisor que está a la venta, con IVA incluido, por 847 Pregunta Tenemos tres cajas, A, B y C, que contienen entre todas un total de 78 bombones. Si pasamos 4 bombones de la caja B a la A, en ésta habrá doble bombones que en aquella. Sabemos, además, que si pasamos un bombón de la caja C a la B, en ambas caja habrá el mismo número de bombones. Calcula razonadamente el número de bombones que hay en cada una de las cajas. Pregunta El beneficio diario en una tienda por la venta de un determinado producto, en relación con el precio de venta de dicho producto, viene representado por la función, f ( x) 100x 10x. Siendo f(x) el beneficio en euros y x el precio de venta también en euros. a) El beneficio cuando el precio de venta se ha fijado en,8. b) El precio asignado al producto cuando el beneficio ha sido de 187,5 c) El precio al que se ha de vender dicho producto si se pretende obtener el máximo beneficio. Pregunta 4 Un plano lleva incorporado un sistema de coordenadas con los ejes perpendiculares y las distancias en cm. En dicho sistema se ha señalado dos puntos A=(-1,5) y B=(,1). En A se sitúa un restaurante y en B una parada de autobús. a) Calcula la distancia en km que hay entre el restaurante y la parada del autobús sabiendo que cada cm del plano representa 150 m en la realidad b) Si se construye un camino en línea recta desde la parada al restaurante, halla la ecuación de la recta que representa en el plano dicho camino. SOLUCIONES Pregunta % a) ,909 0,0909 0, ,09% de descuento b) Precio final Precio inicial *1.1(1%) 847 1,1 x 847 x 0, 1x x 700 1,79 Pregunta Tenemos tres cajas, A (x), B (y) y C (z), que contienen entre todas un total de 78 bombones: 1º ecuación: x + y + z = 78 Si pasamos 4 bombones de la caja B a la A, en ésta habrá doble bombones que en aquella : º ecuación: (y- 4)=x+4 Sabemos, además, que si pasamos un bombón de la caja C a la B, en ambas caja habrá el mismo número de bombones: º ecuación: z-1 = y+1 148
2 x caja A x y z 78 x y z 78 x y y 78 a) Resolver el sistema. y caja B ( y 4) x 4 y 8 x 4 z caja C z 1 y 1 x y 1 z y x y 76 si sumamos las dos ecuaciones, se nos elimina la incógnita X x y y (y y) 88(76 1) 4y 88 y 4 z y 4 x y z 78 x 78 y z 78 4 Resumen: Hay bombones en la caja A, bombones en la caja B y 4 bombones en la caja C. Pregunta a) f ( x) 100x 10x f (,8) 100x 10x , ,4 01,6 b) f ( x) 100x 10x 187,5 100x 10x x 10 5 x x ,5 10 5,5 c) f ( x) 100x 10x f Pregunta 4 a) Puntos A(-1,5) y B(,1). 4 / ( ,5 x) La fórmula de la distancia entre dos puntos es: d 100,8 10,8 10x 100x 187, / 100 f ( x) 100 0x x x 5 0 B A ( 1) (5 1) ( xb xa ) ( yb ya ) Ahora aplicamos una regla de tres para calcular la distancia real entre los puntos: 1cm 150m x 750m 0,75km 5cm x( m) 1 b) La ecuación de la recta tiene como fórmula: y mx n Calculamos primero la pendiente de la recta, entre los puntos A(-1,5) y B(,1). y yb y A a ) m x xb x A ( 1) Sustituimos las coordenadas del otro punto para calcular n: Punto :(,1) y mx n 1 n 1 n 1 n 8 11 n n 4 11 Ecuación de la recta: y mx n y x ó y 4x
3 Pregunta 1 Un comerciante acude a una cooperativa vinícola para comprar vino. Observa que si compra 1 botellas, le sobran del dinero que lleva encima y que si quisiera comprar 17 botellas, le faltarían 7. Todas las botellas valen lo mismo. a. Cuál es el precio de cada botella de vino? b. Si finalmente compra 1 botellas y durante el regreso se le rompe una, a qué precio deberá vender cada botella si desea obtener un beneficio del 0% sobre el gasto realizado? c. Si decide vender cada botella a 1,50, cuál es el porcentaje de beneficio que ha obtenido en la venta de esas 1 botellas? Pregunta Como sabes, la parte común del examen de acceso a Ciclos Formativos de Grado Superior de F.P. consta de tres asignaturas: lengua, inglés y matemáticas. Calcula, planteando un sistema de ecuaciones, las notas de esta parte común de un alumno que: a) La suma de las notas de las tres asignaturas es,50. b) Si hubiera sacado un punto más en lengua y dos puntos menos en matemáticas, ambas calificaciones serían iguales. c) La nota de inglés es la media aritmética de las notas de lengua y de matemáticas. Pregunta Un club deportivo ofrece a sus clientes dos modalidades de tarifa: Modalidad A: un pago mensual de 4,50 y 10,50 más por cada día de uso de las instalaciones. Modalidad B: un pago mensual de 55 y 4,50 más por cada día de uso de las instalaciones. a. Averigua la función que representa el coste anual de cada modalidad en relación con el número, x, de días de uso de las instalaciones. b. Cuántos días al año de uso de las instalaciones tiene que realizar una persona para pagar lo mismo en ambas modalidades? c. Si el pago anual de una persona fue de 76,50, cuál de las dos modalidades había elegido? Justifica la respuesta. Pregunta 4 Desde el pie de una pequeña torre, A, se observa el extremo superior de otra torre, B, bajo un ángulo de 8º; mientras que, desde el extremo superior de la torre A se observa el extremo superior de la B bajo un ángulo de 6º. Sabiendo que la distancia entre los pies de ambas torres es 10 metros, ayúdate del dibujo adjunto y calcula la altura de ambas torres. NOTA: El ángulo de observación es el formado por la línea de observación y la horizontal. Pregunta 5 En un estudio sociológico realizado en dos barrios, A y B, se elige una muestra de 0 viviendas en cada uno de ellos y se computa el número de personas que viven en cada una de estas viviendas. Los resultados fueron: viven 4 personas en cada una y cuatro viviendas en las que viven 5 personas en cada una. - Barrio B: Ocho viviendas en las que vive 1 persona en cada una de ellas, tres viviendas en las que viven 5 personas en cada una de ellas y nueve viviendas en las que viven 6 personas en cada una. a. Calcula la media, la mediana y la moda en cada una de estas dos distribuciones de datos. b. A simple vista, cuál de las dos distribuciones te parece que tiene una desviación típica menor? Explica brevemente la razón. 150
4 y 5,5 z 5,5 9 5,5 18 7, 5en inglés x y z,5 x 5,5 y z 5,5 7,5 9 6 en lengua Ha sacado un 6 en lengua, un 7,5 en inglés y un 9 en matemáticas. Ejercicio a) Opción A: donde f(x) y g(x) son los E anuales y son los días del año: f ( x) 4, ,50 x f ( x) ,50 x 151
5 15
6 15
PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
CALIFICACIÓN: Consejería de Educación, PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 Apellidos Nombre Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS
FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES
FUNCIONES Y GRÁFICAS. CARACTERÍSTICAS GENERALES 1º. La edad de Pedro es el doble de la de Juan. Expresa esta función mediante una fórmula y haz una tabla con algunos de sus puntos. 2º. Relaciona cada texto
Revisora: María Molero
57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por
COLEGIO NIÑO JESÚS CURSO 2013/2014. Nombre: Curso:
COLEGIO NIÑO JESÚS CURSO 2013/2014 Nombre: Curso: RAP MATEMÁTICAS 3º ESO. PRIMER TRIMESTRE. 1. Calcula: 5 2 28 14 7 3 5 2. Efectúa y simplifica: 1 1 1 1 2 : 3 2 3 3 2 3. Un campesino tiene alimento para
OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:
5 2,7; ; ; 3; 3,2
Actividades de recuperación para septiembre 3º ESO, MATEMÁTICAS La recuperación de la asignatura consta de dos partes: Entregar los siguientes ejercicios resueltos correctamente. Aprobar el examen de recuperación.
Ejercicios para la recuperación de matemáticas de 2º de ESO.
Ejercicios para la recuperación de matemáticas de 2º de ESO. Bloque I: Aritmética 1. Encuentra todos los números enteros que cumplen que su valor absoluto es menor que 10 y mayor que 6. 2. Calcula: a)
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:
Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,
1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución:
1.- Resuelve las siguientes ecuaciones: 2.-Resuelve las siguientes ecuaciones: 3.- En el último examen de Matemáticas mi amigo Juan sacó tres puntos menos que yo, y la nota de mi amiga Sara fue el doble
PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015
CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2013 Resolución de 02/04/2013, de la Viceconsejería de Educación, Universidades e Investigación (DOCM
TEMA 6 SISTEMAS DE ECUACIONES
TEMA 6 SISTEMAS DE ECUACIONES 6.1 Ecuaciones con dos incógnitas. Soluciones. Actividades página 11 1. Comprueba si cada uno de los pares de valores siguientes es solución de la ecuación 4x y 1 c) x 0,
Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.
EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
PENDIENTES 3º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 3º ESO Curso
014 015 Preparación del tercer eamen de recuperación de MATEMÁTICAS DE 3º ESO Curso 013-014 PENDIENTES 3º ESO Tercer eamen DEPARTAMENTO DE MATEMÁTICAS Curso 013-014 1.- Halla los puntos de corte de las
12 Funciones de proporcionalidad
8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación
a) 2x-2(3x - 1) + 4(2x 5) 10 = 8x
ECUACIONES DE PRIMER Y SEGUNDO GRADO TEMA 4: ECUACIONES E INECUACIONES 1- Resuelve las siguientes ecuaciones de primer grado: a) 2x-2(3x - 1) + 4(2x 5) 10 = 8x b) c) d) 2- Resuelve las siguientes ecuaciones
Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta.
Resolución de exámenes NOTA: La opción resaltada en naranja es la opción correcta. Geometría Ejercicio 1: La suma de los ángulos internos de un cuadrilátero vale: A. Depende el cuadrilátero B. 90 C. 360
Hoja 6: Estadística descriptiva
Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la
MATEMÁTICAS PENDIENTES 3º ESO EJERCICIOS PRUEBA I
Ejercicio nº 1.- MATEMÁTICAS PENDIENTES º ESO EJERCICIOS PRUEBA I a) Clasifica como naturales, enteros, racionales o irracionales los siguientes números: ) 1 1, 1, b) Representa sobre la recta los números:
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
Resolver las actividades propuestas en el taller anexo y posteriormente realizar la sustentación de dicho trabajo de manera escrita y oral.
Secretaria de Educación Bogotá D.C. COLEGIO INSTITUTO TECNICO JUAN DEL CORRAL "La formación humana, científica y tecnológica en el desarrollo del ciudadano del siglo XXI" MODALIDAD TÉCNICA CON ESPECIALIZACIÓN
Problemas Tema 3 Enunciados de problemas de Derivabilidad
página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la
Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes
Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
PROGRAMA DE REFUERZO 3º Evaluación
COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)
unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE DE 2013 Resolución de 02/04/2013, de la Viceconsejería de Educación, Universidades e Investigación
MATEMÁTICAS 4º E.S.O.
CUADERNO DE VERANO. MATEMÁTICAS º E.S.O. LA FONTAINE EDUCATIONIS LA FONTAINE (Burjassot) Colegio de Educación Infantil, Primaria y Secundaria Obligatoria 1 Los ejercicios complementarios de matemáticas,
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
I.E.S. HAYGÓN CURSO 2011/20121 NOMBRE Y APELLIDOS FECHA REPASO EXAMEN DE RECUPERACIÓN
NOMBRE Y APELLIDOS FECHA REPASO EXAMEN DE RECUPERACIÓN 1. Calcula y simplifica el resultado. 3 4 1 9 1 2 a) 6 45 9 10 5 15 2 2 1 3 1 b) : 4 2 2 3 2 2. Calcula 3. a) El 28% de 375. b) Halla el tanto por
TEMA 3: PROGRESIONES
3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!
1.OPERACIONES CON NÚMEROS
1.OPERACIONES CON NÚMEROS DECIMALES Y FRACCIONES 1. Expresa en forma de fracción: a) 37 6. b) 5 23. c) 7 0 38. OPERACIONES CON FRACCIONES 2. a) 8 ( 1 6 + 4 3 ) b) 3 4 1 2 5 8 + 3 16 c) 1 1 3 5 4 1 2 d)
Sistema de ecuaciones e inecuaciones
5 Sistema de ecuaciones e inecuaciones 1. Sistemas lineales. Resolución gráfica Piensa y calcula Indica, en cada caso, cómo son las rectas y en qué puntos se cortan: c) r r s P r s s Las rectas r y s son
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
COLEGIO INTERNACIONAL SEK ALBORÁN Refuerzos de Verano 2016 Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO
COLEGIO INTERNACIONAL SEK ALBORÁN Refuerzos de Verano 2016 Middle Years Programme [PROGRAMA DE AÑOS INTERMEDIOS] CURSO ACADÉMICO 2015-2016 Departamento de MATEMÁTICAS 1º ESO 01/07/2016 Nombre, apellidos
Ecuaciones, ecuación de la recta y sistemas
Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene
MATEMÁTICA N O 2. Santillana FASCÍCULO PSU N O 2 MATEMÁTICA. Santillana
FASCÍCULO PSU N O 2 MATEMÁTICA 1 1. Al ordenar de mayor a menor los siguientes números racionales. Cuál es el orden correcto? I. II. 7 20 9 14 III. 25% IV. 2 5 A) IV, II, I, III B) II, IV, III, I C) II,
PROYECTO # 2 SISTEMAS DE ECUACIONES CON LOS 4 MÉTODOS
PROYECTO # 2 SISTEMAS DE ECUACIONES CON LOS 4 MÉTODOS Matemáticas 2 Secundaria 5 Bimestre Prof. Héctor Lagunes Espinosa FECHA DE ENTREGA: 29 DE MAYO DEL 2015 Nombre: - Grado y Grupo: Nota: Escribe todos
Matemáticas 1º ESO TRABAJO VERANO Nombre y apellidos: CONTENIDOS PARA LA RECUPERACIÓN DE ÁREA EN SEPTIEMBRE
Matemáticas 1º ESO TRABAJO VERANO 201 Nombre y apellidos: CONTENIDOS PARA LA RECUPERACIÓN DE ÁREA EN SEPTIEMBRE NÚMEROS REALES POTENCIAS Y RAÍCES POLINOMIOS Y FRACCIONES ALGEBRAICAS ECUACIONES. MAGNITUDES
b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.
Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO
Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de º ESO FECHA DEL EXAMEN: 17 DE NOVIEMBRE DE 01 A LAS 10:1 (En el salón de actos) Las actividades realizadas deben entregarse obligatoriamente
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
APELLIDOS Y NOMBRE:...
1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,
NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO
NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO 1. Responde a las preguntas y justifica tu respuesta: a) El número 14 es divisor de 56? Explica por qué. b) El número 310 es múltiplo de 31? Explica por qué.
EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 2º E.S.O. PENDIENTES 2º PARCIAL
de º de E.S.O. (º Parcial) EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE º E.S.O. PENDIENTES º PARCIAL Fecha tope para entregarlos: 17 de abril de 015 Examen el 3 de abril de 015 I.E.S.
Guía de Matemática Segundo Medio
Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan
MATEMÁTICAS 9. TALLER DE FUNCIONES No 1
MATEMÁTICAS 9 TALLER DE FUNCIONES No 1 1. elabora una tabla de valores para cada función y traza su respectiva gráfica. Dar los valores a x desde -3 hasta 3. a. f(x) = x 5 b. f(x) = 9x + 4 2. determina
Ejercicios de Estadística para 2º E.S.O
Ejercicio 1 Ejercicios de Estadística para 2º E.S.O El salario mensual, en euros, de 5 trabajadores de una empresa es el siguiente: 1500 1500 2000 2700 11000 Cuál de las tres medidas de centralización
Lee cuidadosamente las instrucciones.
Matemáticas. Lee cuidadosamente las instrucciones. Tienes 75 minutos para contestar 50 preguntas. Para las preguntas de opción múltiple, da la MEJOR respuesta; si la respuesta precisa no se encuentra entre
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,
Matemáticas. Selectividad ESTADISTICA COU
Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO ) Calcula el valor de a y B, dando el resultado de la forma más sencilla posible.
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009 1) Calcula el valor de a y B, dando el resultado de la forma más sencilla posible. Solución: 2) Rellena la siguiente tabla. En cada columna,
1) Con cuál de los siguientes números el valor del polinomio = -6x + 8 es igual a cero? a) -4 b) -2 c) 2 d) 4
1) Con cuál de los siguientes números el valor del polinomio = -6x + 8 es igual a cero? a) -4 b) -2 c) 2 d) 4 2) Las expresiones y son a) Opuestas. b) Semejantes. c) Iguales. d) Racionales. 3) La línea
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
Lección 51. Funciones III. Funciones lineales
Lección 51 Funciones III Funciones lineales Una función lineal es una función de la forma f (x) = mx + b, donde m y b son constantes. Se llama lineal porque su gráfica es una línea recta, en el plano R
Prueba de diagnóstico 2
2 Prueba de diagnóstico 2 Curso:... Fecha:... 1 GANANCIAS Y PÉRDIDAS Los ocho departamentos que componen una empresa presentan los siguientes resultados de su actividad, correspondientes al mes vencido:
UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:
UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO.
EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO. INSTRUCCIONES Estos ejercicios y problemas se realizarán en casa para preparar las pruebas CDI, cada alumno dedicará
MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos
MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA SEPTIEMBRE A los padres del alumno/a de º de la ESO Puesto que su hijo no ha superado los objetivos de º de la ESO en el área de Matemáticas, es necesario
R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z
Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad
1.- El tiempo que emplea el alumnado de un curso en ir desde su casa al colegio viene dado en la siguiente tabla:
MATEMÁTICAS SEPTIEMBRE TAREA DE VERANO º E.S.O.-A.- El tiempo que emplea el alumnado de un curso en ir desde su casa al colegio viene dado en la siguiente tabla: Tiempo (min. [, [, [, [, [, [, Nº alumnos
Tabla de frecuencias agrupando los datos Cuando hay muchos valores distintos, los agruparemos en intervalos (llamados clases) de la misma amplitud.
1. TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística Es la ciencia que estudia conjunto de datos obtenidos de la realidad. Estos datos son interpretados mediante tablas, gráficas y otros parámetros tales como
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.
Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.
Sistemas de ecuaciones.
1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución
EJERCICIOS DE VERANO NÚMEROS ENTEROS NÚMEROS RACIONALES : 5 = )
EJERCICIOS DE VERANO Después de estudiar cada lección del libro y practicar los ejercicios hechos en clase, debes hacer los correspondientes a la lección estudiada que tienes a continuación. En negrita
CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I
CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I UNIDAD 1 NÚMEROS REALES 1.1. Dados varios números, los clasifica en los distintos campos numéricos y los representa en la recta real. 1.2. Domina
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
19 f) = (Sol: x = -3 )
EJERCICIOS REPASO ÁLGEBRA con soluciones 1.- Resuelve las siguientes ecuaciones: x + a = 1 (Sol: x = 1 5x + 1 x + 5 x b = (Sol: x = 5 14 5 x x + 1 x + c + = (Sol: x = 0 6 x x + 1 x d = (Sol: x = -1 4 6
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES
1. Calcula: a) = b) : 82 =
MATEMÁTICAS 1º ESO ACTIVIDADES de REPASO 1. Calcula: a) 906 5437 b) 572934 : 82 2. Un transportista carga en su motocarro 4 televisores y 3 minicadenas musicales. Si cada televisor pesa como 3 minicadenas
4ºB ESO Capítulo 5: Inecuaciones
Matemáticas orientadas a las enseñanzas académicas: 4ºB ESO Capítulo 5: Inecuaciones 136 Índice 1. INTERVALOS 1.1. TIPOS DE INTERVALOS 1.. SEMIRRECTAS REALES. INECUACIONES.1. INECUACIONES EQUIVALENTES:
EXAMEN DE INTERPOLACIÓN
EXAMEN DE INTERPOLACIÓN Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta. d) Es
PRUEBA DE MATEMÁTICA FACSÍMIL N 2
PRUEBA DE MATEMÁTICA FACSÍMIL N. Si a - b = 5 y c d = 4, entonces 4a + c b 4d = A) 8 B) 9 C) 0 D) 9 E) 8. t es un número que cumple las siguientes tres condiciones: t > -6; 3t < 6. Entonces cuál de los
EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B
EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B ) Clasifica los siguientes números como naturales, enteros, racionales e irracionales,
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar
(26)2x(3x 4) (1 3x)$(1 +x) = 2
Resuelve las siguientes ecuaciones ECUACIONES, INECUACIONES Y SISTEMAS. (1)25x 4 29x 2 +4 =0 (2)x 4 5x 2 +4 =0 (3)x 4 a(a +b)x 2 +a 3 b =0 (4)(x 2 5)$(x 2 3) =0 (5)x +2 = 4x +13 (6) x 1 12 = 2 x+1 (7)
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.
ECUACIONES DE 1º GRADO =2x-(10-4x) 2. 5(x-1)+10(x+2)= x+3(2x-4)= x-3(x+5)=3x (2-x)=18x (x-3)=3(x+1) 5-2x.
ECUACIONES DE 1º GRADO 1. 0=(10). 5(1)10()=5. 1()=0. (1)= 5. (5)= 0. [(1)]=1 7. (5)=10 8. ()=181 9. 105()=(1) 10. ()=[5()] 11. (1)(11)=9 1. = 1. 8 = 1. 7 = 1 5 5 15. 10 = ( ) 9 1. 5 8 5 ( 0)= 18 7 17.
1. a) Qué significa una potencia de exponente negativo?... ; b)
MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 1. a) Qué significa una potencia de eponente negativo?..... b) Simplificar: b 1) : b 4 ) b ) 9 1 b 4) 1 4. Simplificar potencias: a) 4 ( ) d) 9000 0'000000006
Ejercicios resueltos de funciones
Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)
Trabajo Práctico N 3: Expresiones algebraicas
Matemática año Trabajo Práctico N : Expresiones algebraicas Problema 1: Javier y Laura están analizando la distribución del gasto mensual en función de sus sueldos, J y L: En vivienda, invierten la mitad
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio
TEMAS 4 Y 5 TRIGONOMETRÍA
Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad
MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA
1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos
EJERCICIOS TIPO PARA EL EXAMEN DE MATEMATICAS 2º ESO SEPTIEMBRE
EJERCICIOS TIPO PARA EL EXAMEN DE MATEMATICAS º ESO SEPTIEMBRE Ejercicio nº 1.- Calcula: a) mím.c.m. (30, 60, 90) b) máx.c.d. (8, 16, 4) Ejercicio nº.- Resuelve escribiendo el proceso paso a paso: a) (
1. Números naturales y enteros
. Números naturales y enteros EJERCICIO. Resuelve las siguientes operaciones con números enteros: 7 9 + + 7 + = 7 + + 8 = EJERCICIO. Calcula los siguientes productos y divisiones de números enteros: (
Curso: 3 E.M. ALGEBRA
Colegio SSCC Concepción - Depto. de Matemáticas Eje Tematico: SECCIONES CONICAS Unidad de Aprendizaje: ECUACION DE LA RECTA Capacidades/Destreza/Habilidades: Resolver/Construir/ Decidir/Analizar/ Identificar/
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
