PRÁCTICA DEMOSTRATIVA N
|
|
|
- María Soledad Ruiz Farías
- hace 8 años
- Vistas:
Transcripción
1 PRÁCTICA DEMOSTRATIVA N (MOVIMIENTO EN DOS DIMENSIONES) Ing. Francisco Franco Web: Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M. Ingeniería Electrónica y Telecomunicaciones. 1. INTRODUCCIÓN Un movimiento de tipo bidimensional es aquel en el que un cuerpo realiza una serie de traslaciones en diferentes direcciones dentro de un plano definido. Las ecuaciones cinemáticas para este tipo de movimiento se deducen de igual forma que para el de una dimensión, es decir, partiendo de los conceptos de posición, velocidad y aceleración, pero considerando que cada variable cuenta con dos componentes, generalmente en las direcciones x y y. Dentro de la presente práctica se trabajará un sistema general compuesto por tres tipos de movimiento (movimiento de un cuerpo en caída libre, movimiento de un cuerpo sobre un plano inclinado y movimiento parabólico de un proyectil) en el que se observará el comportamiento de un objeto al ser introducido dentro de este sistema.. OBJETIVO Esta práctica busca fortalecer los conceptos de cinemática haciendo uso de una herramienta software para emular el movimiento de cuerpos en el plano considerando los efectos de la aceleración y el comportamiento de estos en el movimiento parabólico. 3. MOVIMIENTO EN DOS DIMENSIONES CON ACELERACIÓN CONSTANTE Se caracteriza por que los valores de magnitud y dirección de la aceleración no varían con el tiempo. De este modo, para un cuerpo que se mueve con aceleración constante sobre un plano xy las expresiones de posición y velocidad vienen dadas de la siguiente forma: a) Vector de posición: Determina el movimiento de la partícula dentro del plano debido a la variación de las coordenadas x y y con relación al tiempo. Viene dado por la siguiente expresión: r xi yj (1) b) Vector de velocidad: Se obtiene derivando la función del vector de posición. Esta derivada representa el cambio de posición del cuerpo a medida que transcurre el tiempo: 1
2 dr d dx dy v xi yj i j vxi v yj dt dt dt dt () donde: v v a t (3) x x0 x v v a t (4) y y0 y De la ecuación (3), los términos v x, v x0 y a x corresponden a las componentes de velocidad, velocidad inicial y aceleración en dirección x respectivamente. Así mismo en la ecuación (4), los términos v y, v y0 y a y representan las mismas componentes pero en dirección y. Al sustituir las ecuaciones (3) y (4) en la ecuación () se obtiene la expresión general de velocidad en función del tiempo: v v0 at (5) donde v, v 0 y a corresponden a las expresiones generales de velocidad, velocidad inicial y aceleración para el movimiento bidimensional. Con la ecuación general de velocidad y retomando la ecuación (1) se encuentran las expresiones para las coordenadas x y y de la partícula: 1 x x0 vx0t axt 1 y y0 v y0t ayt (6) (7) donde x 0 y y 0 representan las posiciones iniciales del objeto en las direcciones x y y respectivamente. MOVIMIENTO DE CAÍDA LIBRE: El movimiento de un objeto que cae desde cierta altura en ausencia de fuerzas resistivas está gobernado por una aceleración constante debida a la fuerza de gravedad terrestre, lo que hace que dicho cuerpo se desplace en caída libre hacia el centro de la tierra (ver figura 1).
3 Figura 1. Movimiento de caída libre. Las ecuaciones (4) y (7) describen la velocidad y posición de la partícula para este tipo de movimiento, mientras que la aceleración toma un valor constante igual al de la gravedad terrestre (a = g). Dado que la caída libre se lleva a cabo en la dirección y, los valores de x, v x y a x se consideran iguales a cero. MOVIMIENTO PARABÓLICO: Figura. Movimiento de proyectiles. En esta clase de movimiento los cuerpos parten con un valor inicial de velocidad y describen un tipo de trayectoria definida principalmente por los efectos de la aceleración gravitacional y de la oposición del aire sobre ellos. La figura ilustra el caso ideal de movimiento parabólico, el cual cuenta con las siguientes características: Un ángulo inicial para el disparo del objeto, una aceleración constante debida a la gravedad (no se tienen en cuenta los 3
4 efectos resistivos del aire), una velocidad inicial siempre mayor que cero y componentes de velocidad constante en x y variable en y durante todo el movimiento. De acuerdo a la figura 4 las expresiones de velocidad inicial en x y y, altura máxima (h máx ) y alcance horizontal del proyectil (R) respectivamente son las siguientes: v cos x0 v0 (8) v sin y0 v0 (9) h máx v y0 (10) g v 0 sin R (11) g donde v 0 es la velocidad inicial con que parte el proyectil y θ es el ángulo inicial con el que es disparado. 4. DESARROLLO DE LA PRÁCTICA Para desarrollar la práctica de movimiento en dos dimensiones el estudiante debe tener acceso a un computador con conexión a internet, el cual debe contar con el explorador Google Chrome dentro de sus herramientas de navegación. Nota: Antes de correr la aplicación tenga en cuenta las siguientes recomendaciones: La resolución del equipo donde se va a realizar la simulación debe ser ajustada a un valor de 1366 x 768. El tamaño de zoom del navegador Google Chrome debe estar en un valor de 100%. La página web donde se aloja la aplicación debe estar totalmente maximizada durante todo el desarrollo de la práctica. 4
5 PROCEDIMIENTO: 1. Abra el navegador y cargue la página web: Dentro del blog ingrese al link correspondiente al curso de Mecánica. 3. Dé click en el enlace Aplicación de física mecánica para acceder a la aplicación web que contiene las prácticas virtuales relacionadas con la temática del curso, como se muestra en la figura 3. Figura 3. Interfaz principal de la aplicación web. 4. Para ingresar a la práctica de movimiento bidimensional haga click en el respectivo enlace, dentro de la Lista de prácticas, como se muestra en la figura 4. A continuación el sistema desplegará la interfaz mostrada en la figura 5. Figura 4. Enlace para la práctica de movimiento en D. 5
6 Figura 5. Interfaz principal Movimiento en dos dimensiones. EXPERIMENTO 1: ANÁLISIS DE CAÍDA LIBRE + MOVIMIENTO DESCENDENTE SOBRE UN PLANO INCLINADO (Tramo O-A-B). 5. Seleccione la opción Tramo O-A-B dentro del cuadro de Opciones de Simulación e ingrese en los campos correspondientes los valores que aparecen en la figura 6: Altura inicial de la pelota (h) igual a 55m (medida desde el punto A), ángulo de elevación de la rampa 1 (θ 1 ) de 40 y ángulo de elevación de la rampa (θ ) de 15. El campo de velocidad inicial v 0 se debe dejar vacío. Consigne los datos ingresados en una tabla para el informe escrito. Figura 6. Datos de entrada del experimento 1. 6
7 6. Cargue los datos ingresados con el botón Cargar Datos e inicie la simulación haciendo click en el botón Simulación (ver figura 7). El software realizará la simulación del recorrido hecho por la pelota desde el punto O hasta el punto B. Figura 7. Botón de cargar datos y de inicio de simulación. 7. Cuando se haya completado la simulación dé click en el botón Resultados (ver figura 8), con esto, en la parte inferior de la aplicación se despliegan las gráficas de posición en x y y, velocidad y aceleración correspondientes al experimento 1 (ver figura 9). De igual forma el software muestra los resultados numéricos del experimento dentro de la tabla de Datos y resultados numéricos (ver figura 10). Consigne los resultados numéricos en la tabla 1 y guarde pantallazos de las gráficas generadas en la simulación. Figura 8. Botón de despliegue de resultados. Figura 9. Gráficas generadas en la simulación. 7
8 Figura 10. Resultados numéricos dados por la herramienta. Datos y resultados numéricos Valor Velocidad inicial: v 0 (m/s) Velocidad en el punto A: v A Velocidad en el punto B: v B Tiempo transcurrido hasta el punto A: t A Tiempo transcurrido hasta el punto B: t B Altura inicial de la pelota desde la rampa 1: h 0 Aceleración Movimiento de Caída Libre: a cl Aceleración Movimiento en la Rampa 1: a R1 Longitud de la rampa 1: L R1 Tabla 1. Datos y resultados dados por el software Experimento PRUEBA DE CONOCIMIENTO EXPERIMENTO 1: A. Con base en el experimento 1 realizado a partir de los datos de la figura 6 demuestre matemáticamente los valores obtenidos en la tabla 1. B. Describa con sus palabras cada una de las gráficas de movimiento generadas por el simulador. C. En qué proporción cambiará la velocidad de la pelota en el punto B si el ángulo de elevación de la rampa 1 (θ 1 ) se incrementa hasta un valor de 60? 8
9 EXPERIMENTO : ANÁLISIS DE MOVIMIENTO ASCENDENTE SOBRE UN PLANO INCLINADO + MOVIMIENTO PARABÓLICO (Tramo B-C-D). 9. Seleccione la opción Tramo B-C-D dentro del cuadro de Opciones de Simulación e ingrese en los campos correspondientes los valores que aparecen en la figura 11: Altura inicial de la pelota (h) igual a 70 metros (medida desde el punto A), ángulo de elevación de la rampa 1 (θ 1 ) de 15, ángulo de elevación de la rampa (θ ) de 50 y velocidad inicial del balón (v 0 ) de 40 m/s. Consigne los datos ingresados en una tabla para el informe escrito. Figura 11. Datos de entrada del experimento. 10. Cargue los datos ingresados con el botón Cargar Datos e inicie la simulación haciendo click en el botón Simulación (ver figura 1). El software realizará la simulación del recorrido hecho por la pelota desde el punto B hasta el punto D. Figura 1. Botón de cargar datos y de inicio de simulación. 11. Cuando se haya completado la simulación dé click en el botón Resultados (ver figura 13). Al igual que en el caso anterior, se desplegarán las gráficas de posición en x y y, velocidad y aceleración correspondientes al experimento junto con los datos y resultados numéricos asociados al mismo. Consigne los resultados numéricos en la tabla y guarde pantallazos de las gráficas generadas en la simulación. 9
10 Figura 13. Botón de despliegue de resultados. Datos y resultados numéricos Velocidad inicial: v 0 (m/s) Velocidad en el punto C: v C (m/s) Velocidad en el punto D: v D (m/s) Tiempo transcurrido hasta el punto C: t C Tiempo transcurrido hasta el punto D: t D Aceleración Movimiento en la Rampa : a R Longitud de la rampa 1: L R Aceleración Movimiento Parabólico: a mp Valor Altura Máxima Movimiento Parabólico: h máx Alcance Horizontal Movimiento Parabólico: R Tabla. Datos y resultados dados por el software Experimento. 1. PRUEBA DE CONOCIMIENTO EXPERIMENTO : A. Con base en el experimento realizado a partir de los datos de la figura 11 demuestre matemáticamente los resultados de la tabla. B. Partiendo de los valores de θ 1 = 40 y θ = 50 (ángulos de elevación de las rampas 1 y respectivamente) realice los cálculos necesarios para determinar el rango de valores que debe tomar la altura inicial de la pelota (h) de modo que se garantice que esta caiga siempre dentro del estanque de agua (el diámetro del estanque es de 6.77 metros y la distancia de separación de este con el borde de la rampa es de 60 metros). Cuando haya completado los cálculos, con la ayuda del software compruebe si los valores obtenidos de altura inicial de la pelota son correctos. Para ello reescriba en el campo Altura h (m) del cuadro de Datos de Entrada los valores encontrados. Reescriba también los datos de θ 1 y θ en los campos correspondientes y seleccione la opción Tramo Total dentro del cuadro de Opciones de Simulación (ver figura 14), cargue los datos ingresados con el botón Cargar Datos e inicie la simulación haciendo click en el botón Simulación. 10
11 Figura 14. Campos asignados para el ingreso de los datos. Cuando se haya completado la simulación dé click en el botón Resultados para generar las gráficas de movimiento y los resultados asociados con este experimento. Consigne los resultados numéricos en la tabla 3 y guarde pantallazos de las gráficas obtenidas en la simulación. Datos y resultados numéricos Valor Velocidad inicial: v 0 (m/s) Velocidad en el punto A: v A (m/s) Velocidad en el punto B: v B (m/s) Velocidad en el punto C: v C (m/s) Velocidad en el punto D: v D (m/s) Tiempo transcurrido hasta el punto A: t A Tiempo transcurrido hasta el punto B: t B Tiempo transcurrido hasta el punto C: t C Tiempo transcurrido hasta el punto D: t D Altura inicial de la pelota desde la rampa 1: h 0 Altura Máxima Movimiento Parabólico: h máx Alcance Horizontal Movimiento Parabólico: R Tabla 3. Datos y resultados dados por el software Tramo total. C. Explique cada una de las gráficas de movimiento generadas por el simulador para el experimento planteado en el punto anterior (numeral B). 11
Observar el efecto de las fuerzas en un sistema de movimiento mixto.
PRÁCTICA DEMOSTRATIVA N 3 (MOVIMIENTO CIRCULAR) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M.
Validar la relación que existe entre la fuerza neta aplicada sobre un objeto, su masa y la aceleración producida por dicha fuerza.
PRÁCTICA DEMOSTRATIVA N 4 (LEYES DEL MOVIMIENTO) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M.
PRÁCTICA DEMOSTRATIVA N
PRÁCTICA DEMOSTRATIVA N 1 (VECTORES) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M. Ingeniería
GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO
Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante
Física Cinemática La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido
Física para Ciencias: Movimiento en 2 dimensiones
Física para Ciencias: Movimiento en 2 dimensiones Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Definición de posición y velocidad en 2D La posición de un objeto en 2-D. y r i r Posición r i =
La ciencia que estudia los fenómenos balísticos en general se denomina «Balística».
OTROS CONCEPTOS del MOVIMIENTO DEL PROYECTIL La ciencia que estudia los fenómenos balísticos en general se denomina «Balística». Contenido 1 Ecuaciones de la trayectoría balística 2 Movimiento balístico
MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO
MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO Unidades: [v] = [ ] = L/T m/s o ft/s RAPIDEZ Y VELOCIDAD La RAPIDEZ es una cantidad escalar, únicamente indica la magnitud de la velocidad La VELOCIDAD e
LANZAMIENTO DE PROYECTILES (FOTOCOMPUERTAS).
LANZAMIENTO DE PROYECTILES (FOTOCOMPUERTAS). Physics Labs with Computers. PASCO. Actividad Práctica 37. Teacher s Guide Volumen 2. Pág. 9. Student Workbook Volumen 2. Pág. 7. EQUIPOS REQUERIDOS. Fotocompuerta
PROBLEMAS DE FÍSCA BÁSICA
PROBLEMAS DE FÍSCA BÁSICA MOVIMIENTO DE PROYECTILES 1. Se dispara un proyectil desde el suelo haciendo un ángulo θ con el suelo. Si la componente horizontal de su velocidad en el punto P es de 5i m/s y
Física Movimiento en 2 dimensiones
Física Movimiento en 2 dimensiones Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Ejemplo 1 Una piedra se deja caer de un acantilado de 100 metros de altura. Si la velocidad inicial de la piedra
FÍSICA de Octubre de 2011
FÍSICA 1 24 de Octubre de 2011 DEFINICIÓN DE TRAYECTORIA PARABÓLICA Un cuerpo que es lanzado y no tiene la capacidad de propulsión propia recibe el nombre de proyectil. TRAYECTORIA PARABÓLICA Cuando
siendo: donde: quedando
1- CINEMATICA Preliminar de matemáticas. Derivadas. E.1 Halla la velocidad instantánea cuando la ecuación horaria viene dada por: a) x(t) = t 2 Siendo: 2t 2 + 4t t + 2 t 2 2t 2 2t 2 + 4t t + 2 t 2 2t 2
UNIDAD 3. CINEMÁTICA
INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS MECÁNICA CLASICA UNIDAD 3. CINEMÁTICA CINEMÁTICA: Es la parte de la Mecánica Clásica que estudia el movimiento
LANZAMIENTO DE FLECHA A JABALÍ EN MOVIMIENTO
LANZAMIENTO DE FLECHA A JABALÍ EN MOVIMIENTO Juan Pirotto, Christopher Machado, Eduardo Rodríguez INTRODUCCIÓN: El trabajo en síntesis se resume al análisis de un movimiento de proyectiles y uno rectilíneo
Ahora sacamos factor común la t: La velocidad de lanzamiento la hallamos de cualquiera de las dos primeras, por ejemplo, sustituyendo el ángulo
Tiro parabólico 01. Un futbolista chuta la pelota y esta parte de con una velocidad de 20 m/s y forma un ángulo de 27 0 con la horizontal. Halla: a) La altura máxima que alcanza la pelota. b) La velocidad
Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,
Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de
Cinemática del sólido rígido
Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,
Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y
CINEMÁTICA CINEMÁTICA (MRU) CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de
CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.
CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es
GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO
El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.
Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre
3. Cinemática de la partícula: Sistemas de referencia
3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la
Cinemática en 2D. Área Física
Cinemática en 2D Área Física Resultados de aprendizaje Aprender a utilizar las ecuaciones cinemáticas en dos dimensiones. Relacionar las ecuaciones con situaciones reales. Contenidos 1. Introducción teórica.
MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE- MOVIMIENTO PARABÓLICO PROBLEMAS RESUELTOS
MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE- MOVIMIENTO PARABÓLICO PROBLEMAS RESUELTOS 1. Desde una camioneta que se mueve con velocidad constante de 20 m/s sobre una superficie horizontal, se lanza
Ejemplo de problemas resueltos
Ejemplo de problemas resueltos # Conductor hace exceso de velocidad (constante); el policial en motocicleta a partir del reposo acelera (de manera constante) para parar lo y dar le una contravención a)
PRÁCTICA PARA TRIMESTRAL 2011 DÉCIMO AÑO. Tema: Análisis dimensional. Cinemática del Movimiento en dos dimensiones. Lanzamiento de proyectiles.
PRÁCTICA PARA TRIMESTRAL 2011 DÉCIMO AÑO Tema: Análisis dimensional. Cinemática del Movimiento en dos dimensiones. Lanzamiento de proyectiles. Resuelva los siguientes problemas y establezca sus propios
Laboratorio Virtual No.2 MOVIMIENTO PARABÓLICO
Laboratorio Virtual No. MOVIMIENTO PARABÓLICO OBJETIVOS 1. Observar como varía el alcance y la altura máxima con el ángulo de lanzamiento.. Comprobar que el alcance de un objeto que lanzado con la misma
MOVIMIENTO BIDIMENSIONAL
MOVIMIENTO BIDIMENSIONAL EXPERIENCIA N 03 Nota Galileo Galilei (1564-1542) Calificado como Padre de la Cinemática, que a partir del movimiento del proyectil se eplica la velocidad de escape que deben alcanzar
Movimiento curvilíneo. Magnitudes cinemáticas
Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es
TEMA 2. CINEMÁTICA OBJETIVOS
OBJETIVOS Definir y relacionar las variables que describen el movimiento de una partícula (desplazamiento, velocidad y aceleración). Justificar la necesidad del carácter vectorial de las variables cinemáticas.
LABORATORIO No. 5. Cinemática en dos dimensiones Movimiento Parabólico
LABORATORIO No. 5 Cinemática en dos dimensiones Movimiento Parabólico 5.1. Introducción Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Este movimiento
y v y Trayectoria de un proyectil
EXPERIMENTO 1- Lanzamiento Horizontal I OBJETIVO: Comprobar que el lanzamiento de proyectiles es la superposición de dos movimientos: un movimiento a velocidad constante en la dirección horizontal y un
PROBLEMAS MOVIMIENTOS EN EL PLANO
1 PROBLEMAS MOVIMIENTOS EN EL PLANO 1- Dados los puntos del plano XY: P 1 (2,3), P 2 (-4,1), P 3 (1,-3). Determina: a) el vector de posición y su módulo para cada uno; b) el vector desplazamiento para
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I MOVIMIENTO EN DOS DIMENSIONES MOVIMIENTO PARABÒLICO
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I MOVIMIENTO EN DOS DIMENSIONES MOVIMIENTO PARABÒLICO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS 1. OBJETIVOS GENERALES: MOVIMIENTO
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
MOVIMIENTO PARABÓLICO
Física I Vía Internet 2008 Profesor: Nelson Zamorano Profesores Auxiliares: Fernando Becerra, Francisco Gutiérrez, Jacob Saravia Tarea 3.2 11 de Agosto ::Fecha de entrega Lunes 18 de Agosto MOVIMIENTO
Cinemática. Marco A. Merma Jara Versión:
Cinemática Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Cinemática Movimiento Unidimensional Movimiento Unidimensional con aceleración constante Movimiento Bidimensional Movimiento
LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO
No 4 LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO MOVIMIENTO PARABOLICO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BASICAS Objetivos Encontrar la velocidad inicial
CINEMÁTICA. Vector de Posición. Vector Desplazamiento = Movimiento
CINEMÁTICA Se denomina Cinemática, a la parte de la Mecánica, que se encarga de estudiar, el movimiento de los cuerpos, sin considerar las causas que lo producen, ni la masa del cuerpo que se mueve. Partícula.-
Figura 24. Práctica de momento lineal y colisiones Sistema general.
ECUACIONES DE MOVIMIENTO (PRÁCTICA 6: MOMENTO LINEAL Y COLISIONES) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson
CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante.
C U R S O: FÍSICA COMÚN MATERIAL: FC-3 CINEMÁTICA II CAÍDA LIBRE En cinemática, la caída libre es un movimiento dónde solamente influye la gravedad. En este movimiento se desprecia el rozamiento del cuerpo
EXPERIMENTO 7 PLANO INCLINADO
EXPERIMENTO 7 PLANO INCLINADO 1. OBJETIVO Mediante el uso de un carril de aire inclinado calcular el valor de la gravedad en el laboratorio. Analizar la estimación de la incertidumbre de medidas indirectas
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
COLISIONES EN DOS DIMENSIONES
Objetivo COLISIONES EN DOS DIMENSIONES Estudiar las leyes de conservación del momento lineal y la energía mecánica en colisiones elásticas en dos dimensiones. Equipo Plano inclinado con canal de aluminio,
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.
CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento
Semana 10. Movimiento parabólico. Semana Movimiento 11 circular uniforme. Empecemos! Qué sabes de...? El reto es...
Semana Movimiento 11 circular uniforme Semana 10 Empecemos! Continuando con los temas de Física, esta semana te presentamos uno de los más interesantes tipos de movimientos: el movimiento parabólico o
LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES
No 3 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar el movimiento de proyectiles. 2. Identificar los valores para cada
CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE. Contenido. Introducción Marco Teórico Actividades Motivadoras Materiales...
aaaaa Aaaaa CINEMÁTICA CAÍDA LIBRE 2 CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE Contenido Introducción... 3 Marco Teórico... 4 Actividades Motivadoras... 5 Materiales... 6 Procedimiento... 7 Análisis
UTalca - Versión Preliminar
1. Definición La parábola es el lugar geométrico de todos los puntos del plano que equidistan de un punto y una recta dada. Más claramente: Dados (elementos bases de la parábola) Una recta L, llamada directriz
CINEMÁTICA I - Movimiento Vectorial
> CONCEPTOS PREVIOS Para poder entender las explicaciones posteriores, vamos a aclarar unos conceptos básicos del movimiento vectorial: El sistema de referencia es un punto fijo respecto al cuál describimos
CINEMÁTICA GUÍA DE LABORATORIO # 4 MOVIMIENTO DE PROYECTILES. Contenido. Introducción Marco Teórico Actividades Motivadoras...
CINEMÁTICA MOVIMIENTO DE PROYECTILES 2 CINEMÁTICA GUÍA DE LABORATORIO # 4 MOVIMIENTO DE PROYECTILES Contenido Introducción... 3 Marco Teórico... 4 Actividades Motivadoras... 5 Materiales... 7 Procedimiento...
LANZAMIENTO HORIZONTAL DE PROYECTILES GRUPO 6
LANZAMIENTO HORIZONTAL DE PROYECTILES GRUPO 6 ESTUDIANTE: OMAIRA ACEVEDO CODIGO: 141002800 ESTUDIANTE: JESSICA PAOLA MARIN LOPEZ CODIGO: 141002823 SEMESTRE: SEGUNDO MECANICA I LICENCIATURA EN MATEMATICAS
GUÍA DE ESTUDIO PARA EXAMEN SEGUNDO PARCIAL CICLO ESCOLAR FÍSICA I GRUPOS 2 I, 2 II Y 2 III PROFESOR: BENJAMÍN HERNÁNDEZ ARELLANO.
GUÍA DE ESTUDIO PARA EXAMEN SEGUNDO PARCIAL CICLO ESCOLAR 2014-2015 FÍSICA I GRUPOS 2 I, 2 II Y 2 III PROFESOR: BENJAMÍN HERNÁNDEZ ARELLANO. A. Instrucción. En los espacios en blanco, escribe la palabra
Ing ROBERTO MOLINA CUEVA FÍSICA 1
Ing ROBERTO MOLINA CUEVA FÍSICA 1 1 CINEMÁTICA Describe el movimiento ignorando los agentes que causan dicho fenómeno. Por ahora consideraremos el movimiento en una dimensión. (A lo largo de una línea
Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva
Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza
1. Características del movimiento
CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia
1. Cinemática: Elementos del movimiento
1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación
FÍSICA. radio,,, son densidades y es velocidad angular. A) LT -3 B) L 2 MT -2 C) L 2 MT -3 D) L 2 T -1 E) LT 3. B) a 5. C) 2a. D) 2a 2.
FÍSIC REPSO 01: DIMENSIONES. VECTORES. CINEMÁTIC. 01. En un experimento de hidrostática, se obtiene la siguiente relación entre el trabajo W realizado, al comprimir un cierto liquido, para modificar su
Cinemática en un plano inclinado LABORATORIO DE MECÁNICA N 3 CINEMÁTICA EN UN PLANO INCLINADO MARIA BELIZA CALDERON GUERRA CARLOS ANDRÉS DIAZ ANDRADE
LABORATORIO DE MECÁNICA N 3 CINEMÁTICA EN UN PLANO INCLINADO MARIA BELIZA CALDERON GUERRA CARLOS ANDRÉS DIAZ ANDRADE LUZ ESTHER GALIANO GUTIERRES BRENDA JACOME RAMOS STEFANNY MONTERO JIMENEZ Trabajo presentado
Movimiento con aceleración constante. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret
Movimiento con aceleración constante Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Objetivos: Después de completar este capítulo, deberá : Reconocer situaciones
SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
FÍSICA Y QUÍMICA 1º BACHILLERATO. Problemas sobre Cinemática (I)
FÍSICA Y QUÍMICA 1º BACHILLERATO Problemas sobre Cinemática (I) 1) Un móvil describe un movimiento rectilíneo en el cual la posición en cada instante está dada por la ecuación: x( t) = t 2 4t. a) Construir
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación
C U R S O: FÍSICA MENCIÓN MATERIAL: FM-14 ENERGÍA II ENERGÍA CINÉTICA, POTENCIAL GRAVITATORIA Y MECÁNICA Aunque no existe una definición formal de energía, a este nivel la podemos entender simplemente
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Tema 1 (16 puntos) Dos muchachos juegan en una pendiente en la forma que se indica en la figura.
Curso de Preparación Universitaria: Física Guía de Problemas N o 2: Movimiento en presencia de la gravedad
Caída libre y Tiro vertical Curso de Preparación Universitaria: Física Guía de Problemas N o 2: Movimiento en presencia de la gravedad Problema 1: Una piedra se deja caer desde un globo que desciende con
Trayectoria. Es el lugar de las posiciones sucesivas por las que pasa un cuerpo en un momento.
CINEMATICA Trayectoria Es el lugar de las posiciones sucesivas por las que pasa un cuerpo en un momento. Espacio Recorrido (s) Es el camino que toma el cuerpo medido sobre la trayectoria, (medida de la
TEMA 12: UN MUNDO EN MOVIMIENTO
TEMA 12: UN MUNDO EN MOVIMIENTO 1- MOVIMIENTO El movimiento de un cuerpo es el cambio de posición respecto a otros objetos que sirven como sistema de referencia. Llamamos trayectoria del movimiento de
Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:
Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de
TEMA 06 MOV. CURVILÍNEOS Y ANGULARES
1 TEMA 06 MOV. CURVILÍNEOS Y ANGULARES 2 6.1.- CINEMÁTICA CURVILÍNEA 6.1.1.- El movimiento parabólico. Recordando el tema 4 podemos señalar que si una partícula se mueve en el espacio entonces su movimiento
CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.
1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición
FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria
1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela
CINEMÁTICA MOVIMIENTO RECTILÍNEO UNIFORME 2 CINEMÁTICA GUÍA DE LABORATORIO # 1 MOVIMIENTO RECTILÍNEO UNIFORME. Contenido. Introducción...
CINEMÁTICA MOVIMIENTO RECTILÍNEO UNIFORME 2 CINEMÁTICA GUÍA DE LABORATORIO # 1 MOVIMIENTO RECTILÍNEO UNIFORME Contenido Introducción... 3 Marco Teórico... 4 Actividades Motivadoras... 5 Materiales... 7
UNIDAD II Ecuaciones diferenciales con variables separables
UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial
EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c)
EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN 1.-Si en la expresión xcos(cρt) "x" es espacio, "t" es tiempo y ρ densidad, la constante C tiene dimensiones de: a) ML -3 T b) L c) M -1 L 3 T -1 d) L -1
CINEMÁTICA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I
CINEMÁTICA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I Movimiento Qué es? Cambio de posición o desplazamiento de un móvil, con respecto de un sistema de referencia arbitrario, que ocurre en un intervalo
Movimiento de proyectiles. Qué es un proyectil?
Movimiento de proyectiles Cualquier objeto que sea lanzado en el aire con una velocidad inicial de dirección arbitraria, se mueve describiendo una trayectoria curva en un plano. Un proyectil es un objeto
La Cinemática: Tiene como objetivo estudiar los tipos de movimiento sin importar las causas que lo provocan.
C La Cinemática: Tiene como objetivo estudiar los tipos de movimiento sin importar las causas que lo provocan. Trayectoria: Es la línea determinadas por sucesivas posiciones de un móvil en su recorrido.
PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:
Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando
c.) Eso depende de otras variables. d.) Eso depende de la distancia recorrida. e.).
OLIMPIADA PANAMEÑA DE FÍSICA SOCIEDAD PANAMEÑA DE FÍSICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ - UNIVERSIDAD DE PANAMÁ - UNIVERSIDAD AUTONÓMA DE CHIRIQUÍ PRUEBA NACIONAL DEL XI GRADO 2012 SELECCIÓN MÚLTIPLE
Cuadernillo de Física (Actividades orientativas para el examen)
Cuadernillo de Física (Actividades orientativas para el examen) A.1 El vector de posición de un punto móvil viene dado por: r = 2ti + t 2 /2 j. a) Representa la trayectoria entre los instantes t=0 y t=4s
Examen de Ubicación. Física del Nivel Cero Enero / 2009
Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles
Experiencia P37: Tiempo de Vuelo frente a Velocidad Inicial Célula Fotoeléctrica
Célula Fotoeléctrica Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento de un P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS proyectil Equipo necesario Cant. Equipo necesario
Taller 4: Cinemática Unidimensional (M. R.U; M.R.U.A) Carlos Andrés Collazos Morales
Taller 4: Cinemática Unidimensional (M. R.U; M.R.U.A) Carlos Andrés Collazos Morales http://www.fisicacollazos.60mb.com/ Copyright 004 by W. H. Freeman & Company 1. OBJETIVOS Estudiar la relación entre
LA INTERCEPCIÓN DE LA PARABOLA CON EL EJE X, depende del signo del Discriminante. >0, la parábola intercepta al eje OX en dos puntos.
AX +BX+C=0, representa la ecuación general de segundo grado, a la cual se asocia la función de segundo grado representada por: F(x)= AX +BX+C En ella se define: : Aquel o aquellos que toma x para el cual
Sol: r=(3/2 t2-2t+3)i+(2t3-5t-2)j+(2t2-t+1)k;a=3i+12tj+4k;at=27/ 11 ; an= 1130/11 Sol: 75
CINEMÁTICA 1.- El vector velocidad del movimiento de una partícula viene dado por v = (3t - 2) i + (6 t 2-5) j + (4 t - 1) k y el vector de posición en el instante inicial es: r 0 = 3 i - 2 j + k. Calcular:
Técnico Profesional FÍSICA
Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta
a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s
1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad
Lanzamiento de Proyectil y Lanzamiento Inclinado
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 7-8 Lanzamiento de
Ejercicios de Cinemática en una Dimensión y dos Dimensiones
M.R.U Ejercicios de Cinemática en una Dimensión y dos Dimensiones 1. Dos automóviles que marchan en el mismo sentido, se encuentran a una distancia de 126km. Si el más lento va a 42 km/h, calcular la velocidad
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
Dinámica en dos o tres dimensiones
7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el
4. INICIO RAPIDO ANÁLISIS DEL ESTADO TENSIONAL EN UN PUNTO
TABLA DE CONTENIDO 1. DESCRIPCION DEL MODULO DE ANALISIS ESTRUCTURAL Pagina 1.1 General... 1 1. Vigas... 1. Pórticos -D... 1. Estado Tensional En Un Punto.... INICIO RAPIDO VIGAS.1 Interfaz grafica....
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
OBJETIVOS MARCO TEÓRICO
OBJETIVOS Demostrar que las leyes de movimiento parabólico que se aprenden en clase, se cumple utilizando el método científico en el laboratorio. Comprobar que el proyectil realiza un movimiento parabólico.
Velocidad instantánea
Velocidad instantánea Objetivos Proporcionar al estudiante un método de medición de la velocidad instantánea. El estudiante determinará la velocidad instantánea de un objeto conociendo su posición en diferentes
