[( ) ( )] ( ) ( ) ( )
|
|
|
- Lidia Rivas Suárez
- hace 8 años
- Vistas:
Transcripción
1 Problemas Tema 1: Lógica de Proposiciones 1. Determinar la validez de los siguientes razonamientos, mediante tablas de verdad: p q r q r p [( ) ( )] ( ) ( ) ( ) [ p q r q ] ( p r) 2. Demostrar la validez de los siguientes razonamientos, mediante reglas de inferencia: p q p q p q s (p p) q r p p s ( s q) t r s r q s (t u) t r p r s s s u (s u) t r p (p q r) s (t v) s p q q r t s w t r p s q (s t) u v (p q) s r (p q) t p (u w) (p w) ( t r) t s s p w q (s r) r q (r s) t (p r) q r s t 3. Demostrar la validez de los siguientes esquemas de inferencia: p 1 p 2 r p p r p 1 p 3 q r q s p 4 p 2 s q r s (p 3 p 4 ) p 5 (p q) t r t ( p 6 p 7 ) p 5 s p t p 6 p 8 p 9 (p 7 p 8 ) t ( r s) p q 4. Demostrar los siguientes teoremas, mediante reglas de inferencia: [( p r) ( q s) ] [( p q) ( r s) ] [( p q) r] [( p r) q] 5. Formalizar y resolver el siguiente argumento, usando sólo las reglas de inferencia básicas: a) Si no hay control de nacimientos, entonces la población crece ilimitadamente. Pero si la población crece ilimitadamente, aumenta el índice de pobreza. Por consiguiente, si no hay control de nacimientos, aumentará el índice de pobreza. b) Si los jóvenes socialistas alemanes apoyan a Brandt, entonces renuncian a su programa de reivindicaciones. Y si combaten a Brandt, encontes favorecen a Strauss. Pero una de dos: o apoyan a Brandt o lo E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 1 -
2 combaten. Por consiguiente, habrán de renunciar a su programa de reivindicaciones o favorecen a Strauss. * * * * E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 2 -
3 Problemas Tema 1: Lógica de Proposiciones 1. Determinar la validez de los siguientes razonamientos, mediante tablas de verdad: p q r q r p [( ) ( )] ( ) ( ) ( ) [ p q r q ] ( p r) 2. Demostrar la validez de los siguientes razonamientos, mediante reglas de inferencia: p q p q p q s (p p) q r p p s ( s q) t r s r q s (t u) t r p r s s s u (s u) t r p (p q r) s (t v) s p q q r t s w t r p s q (s t) u v (p q) s r (p q) t p (u w) (p w) ( t r) t s s p w q (s r) r q (r s) t (p r) q r s t 3. Demostrar la validez de los siguientes esquemas de inferencia: p 1 p 2 r p p r p 1 p 3 q r q s p 4 p 2 s q r s (p 3 p 4 ) p 5 (p q) t r t ( p 6 p 7 ) p 5 s p t p 6 p 8 p 9 (p 7 p 8 ) t ( r s) p q 4. Demostrar los siguientes teoremas, mediante reglas de inferencia: [( p r) ( q s) ] [( p q) ( r s) ] [( p q) r] [( p r) q] 5. Formalizar y resolver el siguiente argumento, usando sólo las reglas de inferencia básicas: a) Si no hay control de nacimientos, entonces la población crece ilimitadamente. Pero si la población crece ilimitadamente, aumenta el índice de pobreza. Por consiguiente, si no hay control de nacimientos, aumentará el índice de pobreza. b) Si los jóvenes socialistas alemanes apoyan a Brandt, entonces renuncian a su programa de reivindicaciones. Y si combaten a Brandt, encontes favorecen a Strauss. Pero una de dos: o apoyan a Brandt o lo E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 1 -
4 combaten. Por consiguiente, habrán de renunciar a su programa de reivindicaciones o favorecen a Strauss. * * * * E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 2 -
5 Problemas Tema 1: Lógica de Proposiciones 1. Determinar la validez de los siguientes razonamientos, mediante tablas de verdad: p q r q r p [( ) ( )] ( ) ( ) ( ) [ p q r q ] ( p r) 2. Demostrar la validez de los siguientes razonamientos, mediante reglas de inferencia: p q p q p q s (p p) q r p p s ( s q) t r s r q s (t u) t r p r s s s u (s u) t r p (p q r) s (t v) s p q q r t s w t r p s q (s t) u v (p q) s r (p q) t p (u w) (p w) ( t r) t s s p w q (s r) r q (r s) t (p r) q r s t 3. Demostrar la validez de los siguientes esquemas de inferencia: p 1 p 2 r p p r p 1 p 3 q r q s p 4 p 2 s q r s (p 3 p 4 ) p 5 (p q) t r t ( p 6 p 7 ) p 5 s p t p 6 p 8 p 9 (p 7 p 8 ) t ( r s) p q 4. Demostrar los siguientes teoremas, mediante reglas de inferencia: [( p r) ( q s) ] [( p q) ( r s) ] [( p q) r] [( p r) q] 5. Formalizar y resolver el siguiente argumento, usando sólo las reglas de inferencia básicas: a) Si no hay control de nacimientos, entonces la población crece ilimitadamente. Pero si la población crece ilimitadamente, aumenta el índice de pobreza. Por consiguiente, si no hay control de nacimientos, aumentará el índice de pobreza. b) Si los jóvenes socialistas alemanes apoyan a Brandt, entonces renuncian a su programa de reivindicaciones. Y si combaten a Brandt, encontes favorecen a Strauss. Pero una de dos: o apoyan a Brandt o lo E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 1 -
6 combaten. Por consiguiente, habrán de renunciar a su programa de reivindicaciones o favorecen a Strauss. * * * * E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 2 -
EJERCICIOS DE LOGICA DE ENUNCIADOS.
1 EJERCICIOS DE LOGICA DE ENUNCIADOS. Origen: Universidad de Granada. 1) 1. p v p? p 2)? q p v q 3)? (p p) p 4) 1. (a & b)? a v b 5) 1. a v b? (a & b) 6)? (a v b) < a & b 7) 1. A v (B & C)? A v B 8) 1.
LOGICA ELEMENTAL DE JUNTORES
LOGICA ELEMENTAL DE JUNTORES Formaliza, en su caso, y deriva los siguientes argumentos utilizando solamente las reglas básicas del cálculo de juntores: (M.P). 1. Angelines Torregrosa está agobiada por
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
Tema 10: Conceptos Metalógicos
Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 10: Conceptos Metalógicos Profesor: Javier Bajo [email protected] Madrid, España 12/11/2012 Introducción
LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:
LOGICA MATEMATICA Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: 1 ) q p q p ( q ) p ( Definición ) q p ( Doble Negación ) p q ( Conmutatividad ) (
DEL CONTRAEJEMPLO MATEMÁTICAS-I GRADO EN INGENIERÍA MULTIMEDIA
EJERCICIOS PROPUESTOS ESTUDIO DE LA VALIDEZ DE RAZONAMIENTOS CON LÓGICA DE PRIMER ORDEN USANDO TABLAS DE VERDAD Y MÉTODO DEL CONTRAEJEMPLO MATEMÁTICAS-I. 2011-12 GRADO EN INGENIERÍA MULTIMEDIA Colección
Demostración Contraejemplo. Métodos Indirectos
DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: Descripción Departamento de Matemáticas ITESM Módulo I: Descripción Matemáticas Discretas - p. 1/15 En esta sección veremos un poco de la historia de la Lógica: desde
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden
Contenido Lógica Matemática M.C. Mireya Tovar Vidal Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Definición Traducir enunciados
p q p q p (p q) V V V V V F F F F V V F F F V F
3.2 Reglas de inferencia lógica Otra forma de transformación de las proposiciones lógicas son las reglas de separación, también conocidas como razonamientos válidos elementales, leyes del pensamiento,
CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960
universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
SubTemas. Tema 1.4 Razonamiento Aproximado. Tópicos
SubTemas 1.1 Introducción al control difuso 1.2 Teoría de conjuntos difusos 1.3 Representación del conocimiento 1.4 Razonamiento aproximado 1.5 Sistemas de inferencia difusos Tema 1.4 Razonamiento Aproximado
CIENCIAS FORMALES CIENCIAS FÁCTICAS
UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO
Lógica Clásica Proposicional
Lógica Clásica Proposicional Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis Alfabeto Fórmulas bien formadas Funciones recursivas
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Francisco Bueno Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Teoría de Primer Orden 1 Formalmente,
LÓGICA COMPUTACIONAL
CURSO 2006-2007 OBJETIVOS Y TEMARIO 1. Presentación y objetivos. 2. Temario. Breve descripción. 1. Presentación y objetivos La asignatura «Lógica Computacional» presenta para este año un programa que está
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.
Curso LÓGICA Examen de recuperación de lógica proposicional
Curso 2013-2014 LÓGICA Examen de recuperación de lógica proposicional 13-01-2014 1.1. Formalizar en el lenguaje de la lógica proposicional el siguiente razonamiento: (2,5 puntos) Es necesario que estudie
Operaciones con conjuntos (ejercicios)
Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:
Fundamentos básicos de matemáticas: Lógica Proposicional
Fundamentos básicos de matemáticas: Lógica Proposicional Victor Hugo Gil A. Universidad del Valle 28 de agosto de 2016 Victor Hugo Gil A. (Univalle) Lógica Proposicional 28 de agosto de 2016 1 / 10 Lógica
UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA MT106
UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA CÓDIGO DE MATERIA DEPARTAMENTO ÁREA DE FORMACIÓN LOGICA Y CONJUNTOS MT106 CIENCIAS BIOLOGICAS BÁSICA COMUN CENTRO UNIVERSITARIO CENTRO
MÉTODOS DE DEMOSTRACIÓN
2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es
Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013
Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza
Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad
Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes
FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática
Lógica de proposiciones (5)
Lógica de proposiciones (5) Fundamentos de Informática I I..I. Sistemas (2005-06) César Llamas Bello Universidad de Valladolid 1 Lógica Índice Lógica proposicional ecuacional Lógica: semántica Semántica
La Lógica Proposicional
La Lógica Proposicional 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera o falsa. Las proposiciones
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Axiomas y reglas de inferencia Reglas de la impliación, conjunción y disyunción 3 Reglas derivadas
Cálculo Proposicional
Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)
Axiomas del Cálculo de Predicados
Axiomas del Cálculo de Predicados Si bien el cálculo proposicional nos permitió analizar cierto tipo de razonamientos y resolver acertijos lógicos, su poder expresivo no es suficiente para comprobar la
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I
ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas
La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la
LÓGICA MATEMÁTICA OBJETIVOS Definirás proposición simple. Definirás proposiciones compuestas: Disyunción y conjunción. Relacionarás dichas proposiciones con las operaciones de conjuntos: unión e intersección.
Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones
Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Lógica proposicional (2/2) Lógica 2017
Lógica proposicional (2/2) Lógica 2017 Instituto de Computación 16 de marzo Instituto de Computación (InCo) Lógica proposicional (2/2) Curso 2017 1 / 1 Lógica Disciplina matemática Disciplina formal: se
FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL
FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL SILABO 1. DATOS INFORMATIVOS 1.1. Nombre de la Asignatura : LOGICA 1.. Código de la Asignatura : CIV56 1.3. Número de créditos : 03 créditos
Utiliza lógica matemática elaborando proposiciones, enunciados y predicados mediante notación lógica para su aplicación en computación.
Aplicará la teoría de conjuntos, la lógica matemática, álgebra booleana representando conjuntos, proposiciones, enunciados, predicados con notación lógica, expresiones booleanas y sus operaciones para
MATEMÁTICAS DISCRETAS. UNIDAD1 Lógica y Demostraciones
MATEMÁTICAS DISCRETAS UNIDAD1 Lógica y Demostraciones Para el estudio de esta unidad debe ubicarse en el Capítulo 1 del texto base, lea atentamente cada uno de los subtemas indicados en el índice de la
UNIDAD CURRICULAR: MATEMÁTICA DISCRETA I
PROGRAMA ANALÌTICO FACULTAD DE CIENCIAS DE LA INFORMÁTICA ESCUELA DE COMPUTACIÓN UNIDAD CURRICULAR: MATEMÁTICA DISCRETA I Código de la Escuela Código Período Elaborado por 10 10-0609 I Prof. Belkis Matheus
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica
GUÍA DOCENTE Matemática Discreta
GUÍA DOCENTE 2016-2017 Matemática Discreta 1. Denominación de la asignatura: Matemática Discreta Titulación Grado en Ingeniería Informática Código 6348 2. Materia o módulo a la que pertenece la asignatura:
Lógica. P r o g r a m a C u r s o : 2 do a ñ o. H o r a s r e l o j : 4 h o r a s s e m a n a l e s
Lógica P r o g r a m a 2 0 1 7 C a r r e r a : L i c e n c i a t u r a e n F i l o s o f í a C u r s o : 2 do a ñ o R é g i m e n : C u a t r i m e s t r a l H o r a s r e l o j : 4 h o r a s s e m a n
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL ALGEBRA I
UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL ALGEBRA I I. DATOS DE IDENTIFICACIÓN Nombre de la materia: ALGEBRA I Código: 2008019 Grupo: 4 Carga horaria: 2 TEÓRICAS Y DOS
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
Motivaciones históricas en la construcción de lógicas multivaluadas. Susan Haack, Filosofía de las lógicas (1978), capítulo 11
Motivaciones históricas en la construcción de lógicas multivaluadas Susan Haack, Filosofía de las lógicas (1978), capítulo 11 Repaso Las lógicas multivaluadas son aquellas en donde hay más de dos valores
Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación.
Estructuras Discretas Teoremas Técnicas de demostración Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 15 Definición: teorema
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA SYLLABUS PROYECTO CURRICULAR: NOMBRE DEL DOCENTE: ESPACIO ACADÉMICO (Asignatura): LÓGICA Obligatorio ( X ) : Básico ( X ) Complementario
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Lógica proposicional
Lógica proposicional La palabra lógica viene del griego y significa, razón, tratado o ciencia. En matemáticas es la ciencia que estudia los métodos de razonamiento proporciona reglas y técnicas para determinar
Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.
Guía de estudio Métodos de demostración Unidad A: Clase 3 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.. Inferencias y métodos de
CAPÍTULO 8 CAPÍTULO 8. BREVE HISTORIA.
CAPÍTULO 8 CAPÍTULO 8. BREVE HISTORIA. Para evitar confusiones, consideraremos tres momentos de la lógica bien diferenciados: 1º el de la Lógica No-Matemática, que abarca desde Aristóteles (384 322 a.c.),
2. Los símbolos de la lógica proposicional.
Bloque I: El Saber Filosófico. Tema 4: La Lógica Formal. 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera
Tema 9: Cálculo Deductivo
Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 9: Cálculo Deductivo Profesor: Javier Bajo [email protected] Madrid, España 24/10/2012 Introducción a la
UNIDAD I: LÓGICA MATEMÁTICA
UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica
Matemáticas Discretas Lógica
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados
6. ARGUMENTOS LÓGICOS Y CONVINCENTES
6. ARGUMENTOS LÓGICOS Y CONVINCENTES La principal tarea de la lógica es la de averiguar cómo la verdad de una determinada proposición está conectada con la verdad de otra. En lógica habitualmente se trabaja
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA
Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64
Lógica Proposicional IIC1253 IIC1253 Lógica Proposicional 1/64 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Francisco Zúñiga Urbina Jaime Gajardo Falcón
Francisco Zúñiga Urbina Jaime Gajardo Falcón 1) Noción general de metodología jurídica 2) Métodos comunes al pensamiento científico 3) Métodos particulares de la investigación jurídica 1. Conceptos Los
Métodos de Análisis e Interpretación
Análisis e Interpretación de Datos Aplicaciones Empresariales Métodos de Análisis e Interpretación Semana 6 Nelson José Pérez Díaz Lógica La ciencia del razonamiento, del examen, del pensamiento y la inferencia
INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO.
Página 1 de 19 GUÍA N 1 ÁREA: Docente: Matemáticas Geometría MARIA TERESA OSPINO - LAURA PACHECO C EJE TEMÁTICO DESEMPEÑO GRADO: Noveno PERIODO: Primero IH (en horas): 4 NÚMEROS REALES Reconoce y contrasta
Lógica Matemática. M.C. Mireya Tovar Vidal
Lógica Matemática M.C. Mireya Tovar Vidal Contenido Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Traducir enunciados sencillos
Clase 5 1. Lógica proposicional. Razonamientos
Clase 5 1 Lógica proposicional Razonamientos Clase 5 2 LOGICA - INTRODUCCION!OBJETIVO Uno de los fundamentales objetivos ha sido el estudio de las DEDUCCIONES, RAZONAMIENTOS O ARGUMENTOS LOGICA DEDUCTIVA
Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006
EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar
2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es
Tema 2. Introducción a la lógica 1. Introducción 2. Lógica de proposiciones 1. Definiciones 2. Sintaxis 3. Semántica Bibliografía Matemática discreta y lógica. Grassman y Tremblay. 1997. Prentice Hall.
Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática
Demostración Automática de Teoremas Tema 2. Procesamiento del conocimiento con la Lógica Matemática Temas Introducción Sistemas de axiomas Teoría de la demostración. Sistema de Kleene Deducción natural
Contenido. BLOQUE I: PRELIMINARES Tema 1: INTRODUCCIÓN Lógica Grado en Ingeniería Informática. Introducción. El lenguaje natural.
Contenido BLOQUE I: PRELIMINARES Tema 1: INTRODUCCIÓN Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Introducción El lenguaje de la lógica Lenguaje natural, lenguaje formal y metalenguaje
Lógica proposicional 1. Qué es la lógica?
Lógica proposicional 1. Qué es la lógica? Juan Carlos León Universidad de Murcia Esquema del tema 1 Lógica proposicional 1. Qué es la lógica? 1.1. Argumentos y consecuencias. Verdad y validez lógica Lo
El razonamiento lógico se refiere al uso de entendimiento para pasar de unas proposiciones a otras partiendo de lo ya conocido o de lo que creemos
El razonamiento lógico se refiere al uso de entendimiento para pasar de unas proposiciones a otras partiendo de lo ya conocido o de lo que creemos conocer a lo desconocido o menos conocido. TIPOS DE RAZONAMIENTO
EL RAZONAMIENTO SILOGÍSTICO
EL RAZONAMIENTO SILOGÍSTICO Sin el concepto el ojo es ciego sin la percepción el concepto es vacío Cualquier papel que encierra una palabra es el mensaje que un espíritu humano manda a otro espíritu. Jorge
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA I. DATOS GENERALES 1.1 Asignatura: MATEMÁTICA I 1.2 Código: CE103 / 01E, 02E, 03E, 12E 1.3 Condición: Obligatorio
PLAN ANUAL DE LÓGICA DUODÉCIMO GRADO
PLAN ANUAL DE LÓGICA DUODÉCIMO GRADO Área 1: Lógica formal y Argumentación Objetivos de aprendizaje: 1. Argumenta de manera ordenada, aplicando las reglas o principios del razonamiento. 2. Sigue instrucciones
TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO.
Lógica y razonamiento. La lógica es el estudio de los métodos que permiten establecer la validez de un razonamiento, entendiendo como tal al proceso mental que, partiendo de ciertas premisas, deriva en
UNIDAD III. Módulo 12 Predicamentos y predicables ESQUEMA RESUMEN INFERENCIAS INMEDIATAS
UNIDAD III Módulo 12 Predicamentos y predicables OBJETIVO: Al concluir el estudio de este módulo el alumno: podrá analizar la diferencia que existe entre las inferencias inmediatas y el razonamiento; identificar
MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños
MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto
UNIDAD 10: LÓGICA. 1. Definiciones
1. Definiciones UNIDAD 10: LÓGICA La lógica es una ciencia formal que estudia los tipos válidos de razonamiento. Un razonamiento es una estructura en la que a partir de ciertos datos conocidos llamados
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Tablas de Verdad: p q p q p p V V V V F V F F F V F V F F F F p q p q V V V V F V F V V F F F p q p q V V V V F F F V V F F V p q p q
Guía Nº 2 Lógica Simbólica
Guía Nº 2 Lógica Simbólica 1.Construya la tabla de verdad de las siguientes proposiciones: a) p - q, c) ( p - q ) q, e) ( p q) p - q b) ( p - q ), d) ( p q ) ( p q ), f) ( p q ) ( p q) 2. a )Si la proposición
FONCIEN - Fundamentos Científicos
Unidad responsable: 840 - EUPMT - Escuela Universitaria Politécnica de Mataró Unidad que imparte: 840 - EUPMT - Escuela Universitaria Politécnica de Mataró Curso: Titulación: 2016 GRADO EN INGENIERÍA INFORMÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA
INSTITUCION EDUCATIA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS. NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO ECHA N DURACION 1 6 EBRERO
El sistema deductivo de Hilbert
El sistema deductivo de Hilbert IIC2213 IIC2213 El sistema deductivo de Hilbert 1 / 17 Completidad de resolución proposicional Qué tenemos que agregar a nuestro sistema de deducción para que sea completo?
PROGRAMA DE ASIGNATURA DE MATEMÁTICA PARA LA INFORMÁTICA I
PROGRAMA DE ASIGNATURA DE MATEMÁTICA PARA LA INFORMÁTICA I Table of contents 1 INFORMACIÓN GENERAL...2 2 INTRODUCCIÓN... 2 3 OBJETIVOS GENERALES DE LA ASIGNATURA... 3 4 OBJETIVOS, TEMAS Y SUBTEMAS... 3
Programa de Lógica para la solución de problemas
Programa de Lógica para la solución de problemas Octubre del 2006 B @ UNAM Asignatura: Lógica para la solución de problemas Plan: 2006 Créditos: 10 Bachillerato: Módulo 2 Tiempo de dedicación total: 80
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
INDICE. Presentación. iii Prologo
INDICE Presentación iii Prologo ix Lógica jurídica fundamental I. Introducción. Fundamentación lógica del Pensamiento jurídico 1.1. Hacia el lenguaje de la lógica 39 1.1.1. Aproximación a la naturaleza
Lógica Proposicional. Cátedra de Matemática
Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un
DETERMINACIÓN DE UN CONJUNTO
CONJUNTO UNIVERSAL U A Gráficamente, al conjunto universal se lo representa mediante un rectángulo. Cualquier otro conjunto A es representado por una región cerrada, dentro del rectángulo, A este tipo
Lógica Proposicional: Semántica
LÓGICA - 1º Grado en Ingeniería Informática Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional: Semántica Andrei Paun [email protected] http://web3.fi.upm.es/aulavirtual/ Despacho
Lógica Aristotélica (Validez)
Lógica Aristotélica (Validez) (basado en notas anteriores de Fernando Zalamea) Andrés Villaveces Departamento de Matemáticas Universidad Nacional de Colombia Lógica I - Filosofía - I 2006 La pregunta Recuerde
