[( ) ( )] ( ) ( ) ( )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "[( ) ( )] ( ) ( ) ( )"

Transcripción

1 Problemas Tema 1: Lógica de Proposiciones 1. Determinar la validez de los siguientes razonamientos, mediante tablas de verdad: p q r q r p [( ) ( )] ( ) ( ) ( ) [ p q r q ] ( p r) 2. Demostrar la validez de los siguientes razonamientos, mediante reglas de inferencia: p q p q p q s (p p) q r p p s ( s q) t r s r q s (t u) t r p r s s s u (s u) t r p (p q r) s (t v) s p q q r t s w t r p s q (s t) u v (p q) s r (p q) t p (u w) (p w) ( t r) t s s p w q (s r) r q (r s) t (p r) q r s t 3. Demostrar la validez de los siguientes esquemas de inferencia: p 1 p 2 r p p r p 1 p 3 q r q s p 4 p 2 s q r s (p 3 p 4 ) p 5 (p q) t r t ( p 6 p 7 ) p 5 s p t p 6 p 8 p 9 (p 7 p 8 ) t ( r s) p q 4. Demostrar los siguientes teoremas, mediante reglas de inferencia: [( p r) ( q s) ] [( p q) ( r s) ] [( p q) r] [( p r) q] 5. Formalizar y resolver el siguiente argumento, usando sólo las reglas de inferencia básicas: a) Si no hay control de nacimientos, entonces la población crece ilimitadamente. Pero si la población crece ilimitadamente, aumenta el índice de pobreza. Por consiguiente, si no hay control de nacimientos, aumentará el índice de pobreza. b) Si los jóvenes socialistas alemanes apoyan a Brandt, entonces renuncian a su programa de reivindicaciones. Y si combaten a Brandt, encontes favorecen a Strauss. Pero una de dos: o apoyan a Brandt o lo E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 1 -

2 combaten. Por consiguiente, habrán de renunciar a su programa de reivindicaciones o favorecen a Strauss. * * * * E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 2 -

3 Problemas Tema 1: Lógica de Proposiciones 1. Determinar la validez de los siguientes razonamientos, mediante tablas de verdad: p q r q r p [( ) ( )] ( ) ( ) ( ) [ p q r q ] ( p r) 2. Demostrar la validez de los siguientes razonamientos, mediante reglas de inferencia: p q p q p q s (p p) q r p p s ( s q) t r s r q s (t u) t r p r s s s u (s u) t r p (p q r) s (t v) s p q q r t s w t r p s q (s t) u v (p q) s r (p q) t p (u w) (p w) ( t r) t s s p w q (s r) r q (r s) t (p r) q r s t 3. Demostrar la validez de los siguientes esquemas de inferencia: p 1 p 2 r p p r p 1 p 3 q r q s p 4 p 2 s q r s (p 3 p 4 ) p 5 (p q) t r t ( p 6 p 7 ) p 5 s p t p 6 p 8 p 9 (p 7 p 8 ) t ( r s) p q 4. Demostrar los siguientes teoremas, mediante reglas de inferencia: [( p r) ( q s) ] [( p q) ( r s) ] [( p q) r] [( p r) q] 5. Formalizar y resolver el siguiente argumento, usando sólo las reglas de inferencia básicas: a) Si no hay control de nacimientos, entonces la población crece ilimitadamente. Pero si la población crece ilimitadamente, aumenta el índice de pobreza. Por consiguiente, si no hay control de nacimientos, aumentará el índice de pobreza. b) Si los jóvenes socialistas alemanes apoyan a Brandt, entonces renuncian a su programa de reivindicaciones. Y si combaten a Brandt, encontes favorecen a Strauss. Pero una de dos: o apoyan a Brandt o lo E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 1 -

4 combaten. Por consiguiente, habrán de renunciar a su programa de reivindicaciones o favorecen a Strauss. * * * * E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 2 -

5 Problemas Tema 1: Lógica de Proposiciones 1. Determinar la validez de los siguientes razonamientos, mediante tablas de verdad: p q r q r p [( ) ( )] ( ) ( ) ( ) [ p q r q ] ( p r) 2. Demostrar la validez de los siguientes razonamientos, mediante reglas de inferencia: p q p q p q s (p p) q r p p s ( s q) t r s r q s (t u) t r p r s s s u (s u) t r p (p q r) s (t v) s p q q r t s w t r p s q (s t) u v (p q) s r (p q) t p (u w) (p w) ( t r) t s s p w q (s r) r q (r s) t (p r) q r s t 3. Demostrar la validez de los siguientes esquemas de inferencia: p 1 p 2 r p p r p 1 p 3 q r q s p 4 p 2 s q r s (p 3 p 4 ) p 5 (p q) t r t ( p 6 p 7 ) p 5 s p t p 6 p 8 p 9 (p 7 p 8 ) t ( r s) p q 4. Demostrar los siguientes teoremas, mediante reglas de inferencia: [( p r) ( q s) ] [( p q) ( r s) ] [( p q) r] [( p r) q] 5. Formalizar y resolver el siguiente argumento, usando sólo las reglas de inferencia básicas: a) Si no hay control de nacimientos, entonces la población crece ilimitadamente. Pero si la población crece ilimitadamente, aumenta el índice de pobreza. Por consiguiente, si no hay control de nacimientos, aumentará el índice de pobreza. b) Si los jóvenes socialistas alemanes apoyan a Brandt, entonces renuncian a su programa de reivindicaciones. Y si combaten a Brandt, encontes favorecen a Strauss. Pero una de dos: o apoyan a Brandt o lo E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 1 -

6 combaten. Por consiguiente, habrán de renunciar a su programa de reivindicaciones o favorecen a Strauss. * * * * E.U.I. Ingeniería Técnica de Informática de Sistemas (ITIS) - 2 -

EJERCICIOS DE LOGICA DE ENUNCIADOS.

EJERCICIOS DE LOGICA DE ENUNCIADOS. 1 EJERCICIOS DE LOGICA DE ENUNCIADOS. Origen: Universidad de Granada. 1) 1. p v p? p 2)? q p v q 3)? (p p) p 4) 1. (a & b)? a v b 5) 1. a v b? (a & b) 6)? (a v b) < a & b 7) 1. A v (B & C)? A v B 8) 1.

Más detalles

LOGICA ELEMENTAL DE JUNTORES

LOGICA ELEMENTAL DE JUNTORES LOGICA ELEMENTAL DE JUNTORES Formaliza, en su caso, y deriva los siguientes argumentos utilizando solamente las reglas básicas del cálculo de juntores: (M.P). 1. Angelines Torregrosa está agobiada por

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

Tema 10: Conceptos Metalógicos

Tema 10: Conceptos Metalógicos Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 10: Conceptos Metalógicos Profesor: Javier Bajo [email protected] Madrid, España 12/11/2012 Introducción

Más detalles

LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:

LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: LOGICA MATEMATICA Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: 1 ) q p q p ( q ) p ( Definición ) q p ( Doble Negación ) p q ( Conmutatividad ) (

Más detalles

DEL CONTRAEJEMPLO MATEMÁTICAS-I GRADO EN INGENIERÍA MULTIMEDIA

DEL CONTRAEJEMPLO MATEMÁTICAS-I GRADO EN INGENIERÍA MULTIMEDIA EJERCICIOS PROPUESTOS ESTUDIO DE LA VALIDEZ DE RAZONAMIENTOS CON LÓGICA DE PRIMER ORDEN USANDO TABLAS DE VERDAD Y MÉTODO DEL CONTRAEJEMPLO MATEMÁTICAS-I. 2011-12 GRADO EN INGENIERÍA MULTIMEDIA Colección

Más detalles

Demostración Contraejemplo. Métodos Indirectos

Demostración Contraejemplo. Métodos Indirectos DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: Descripción Departamento de Matemáticas ITESM Módulo I: Descripción Matemáticas Discretas - p. 1/15 En esta sección veremos un poco de la historia de la Lógica: desde

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden

Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden Contenido Lógica Matemática M.C. Mireya Tovar Vidal Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Definición Traducir enunciados

Más detalles

p q p q p (p q) V V V V V F F F F V V F F F V F

p q p q p (p q) V V V V V F F F F V V F F F V F 3.2 Reglas de inferencia lógica Otra forma de transformación de las proposiciones lógicas son las reglas de separación, también conocidas como razonamientos válidos elementales, leyes del pensamiento,

Más detalles

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

SubTemas. Tema 1.4 Razonamiento Aproximado. Tópicos

SubTemas. Tema 1.4 Razonamiento Aproximado. Tópicos SubTemas 1.1 Introducción al control difuso 1.2 Teoría de conjuntos difusos 1.3 Representación del conocimiento 1.4 Razonamiento aproximado 1.5 Sistemas de inferencia difusos Tema 1.4 Razonamiento Aproximado

Más detalles

CIENCIAS FORMALES CIENCIAS FÁCTICAS

CIENCIAS FORMALES CIENCIAS FÁCTICAS UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO

Más detalles

Lógica Clásica Proposicional

Lógica Clásica Proposicional Lógica Clásica Proposicional Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis Alfabeto Fórmulas bien formadas Funciones recursivas

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Francisco Bueno Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Teoría de Primer Orden 1 Formalmente,

Más detalles

LÓGICA COMPUTACIONAL

LÓGICA COMPUTACIONAL CURSO 2006-2007 OBJETIVOS Y TEMARIO 1. Presentación y objetivos. 2. Temario. Breve descripción. 1. Presentación y objetivos La asignatura «Lógica Computacional» presenta para este año un programa que está

Más detalles

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.

Más detalles

Curso LÓGICA Examen de recuperación de lógica proposicional

Curso LÓGICA Examen de recuperación de lógica proposicional Curso 2013-2014 LÓGICA Examen de recuperación de lógica proposicional 13-01-2014 1.1. Formalizar en el lenguaje de la lógica proposicional el siguiente razonamiento: (2,5 puntos) Es necesario que estudie

Más detalles

Operaciones con conjuntos (ejercicios)

Operaciones con conjuntos (ejercicios) Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:

Más detalles

Fundamentos básicos de matemáticas: Lógica Proposicional

Fundamentos básicos de matemáticas: Lógica Proposicional Fundamentos básicos de matemáticas: Lógica Proposicional Victor Hugo Gil A. Universidad del Valle 28 de agosto de 2016 Victor Hugo Gil A. (Univalle) Lógica Proposicional 28 de agosto de 2016 1 / 10 Lógica

Más detalles

UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA MT106

UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA MT106 UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA CÓDIGO DE MATERIA DEPARTAMENTO ÁREA DE FORMACIÓN LOGICA Y CONJUNTOS MT106 CIENCIAS BIOLOGICAS BÁSICA COMUN CENTRO UNIVERSITARIO CENTRO

Más detalles

MÉTODOS DE DEMOSTRACIÓN

MÉTODOS DE DEMOSTRACIÓN 2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013

Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

Lógica de proposiciones (5)

Lógica de proposiciones (5) Lógica de proposiciones (5) Fundamentos de Informática I I..I. Sistemas (2005-06) César Llamas Bello Universidad de Valladolid 1 Lógica Índice Lógica proposicional ecuacional Lógica: semántica Semántica

Más detalles

La Lógica Proposicional

La Lógica Proposicional La Lógica Proposicional 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera o falsa. Las proposiciones

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Axiomas y reglas de inferencia Reglas de la impliación, conjunción y disyunción 3 Reglas derivadas

Más detalles

Cálculo Proposicional

Cálculo Proposicional Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)

Más detalles

Axiomas del Cálculo de Predicados

Axiomas del Cálculo de Predicados Axiomas del Cálculo de Predicados Si bien el cálculo proposicional nos permitió analizar cierto tipo de razonamientos y resolver acertijos lógicos, su poder expresivo no es suficiente para comprobar la

Más detalles

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas

Más detalles

La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la

La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la LÓGICA MATEMÁTICA OBJETIVOS Definirás proposición simple. Definirás proposiciones compuestas: Disyunción y conjunción. Relacionarás dichas proposiciones con las operaciones de conjuntos: unión e intersección.

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

Lógica proposicional (2/2) Lógica 2017

Lógica proposicional (2/2) Lógica 2017 Lógica proposicional (2/2) Lógica 2017 Instituto de Computación 16 de marzo Instituto de Computación (InCo) Lógica proposicional (2/2) Curso 2017 1 / 1 Lógica Disciplina matemática Disciplina formal: se

Más detalles

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERIA CIVIL SILABO 1. DATOS INFORMATIVOS 1.1. Nombre de la Asignatura : LOGICA 1.. Código de la Asignatura : CIV56 1.3. Número de créditos : 03 créditos

Más detalles

Utiliza lógica matemática elaborando proposiciones, enunciados y predicados mediante notación lógica para su aplicación en computación.

Utiliza lógica matemática elaborando proposiciones, enunciados y predicados mediante notación lógica para su aplicación en computación. Aplicará la teoría de conjuntos, la lógica matemática, álgebra booleana representando conjuntos, proposiciones, enunciados, predicados con notación lógica, expresiones booleanas y sus operaciones para

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD1 Lógica y Demostraciones

MATEMÁTICAS DISCRETAS. UNIDAD1 Lógica y Demostraciones MATEMÁTICAS DISCRETAS UNIDAD1 Lógica y Demostraciones Para el estudio de esta unidad debe ubicarse en el Capítulo 1 del texto base, lea atentamente cada uno de los subtemas indicados en el índice de la

Más detalles

UNIDAD CURRICULAR: MATEMÁTICA DISCRETA I

UNIDAD CURRICULAR: MATEMÁTICA DISCRETA I PROGRAMA ANALÌTICO FACULTAD DE CIENCIAS DE LA INFORMÁTICA ESCUELA DE COMPUTACIÓN UNIDAD CURRICULAR: MATEMÁTICA DISCRETA I Código de la Escuela Código Período Elaborado por 10 10-0609 I Prof. Belkis Matheus

Más detalles

Métodos de Inteligencia Artificial

Métodos de Inteligencia Artificial Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica

Más detalles

GUÍA DOCENTE Matemática Discreta

GUÍA DOCENTE Matemática Discreta GUÍA DOCENTE 2016-2017 Matemática Discreta 1. Denominación de la asignatura: Matemática Discreta Titulación Grado en Ingeniería Informática Código 6348 2. Materia o módulo a la que pertenece la asignatura:

Más detalles

Lógica. P r o g r a m a C u r s o : 2 do a ñ o. H o r a s r e l o j : 4 h o r a s s e m a n a l e s

Lógica. P r o g r a m a C u r s o : 2 do a ñ o. H o r a s r e l o j : 4 h o r a s s e m a n a l e s Lógica P r o g r a m a 2 0 1 7 C a r r e r a : L i c e n c i a t u r a e n F i l o s o f í a C u r s o : 2 do a ñ o R é g i m e n : C u a t r i m e s t r a l H o r a s r e l o j : 4 h o r a s s e m a n

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL ALGEBRA I

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL ALGEBRA I UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL ALGEBRA I I. DATOS DE IDENTIFICACIÓN Nombre de la materia: ALGEBRA I Código: 2008019 Grupo: 4 Carga horaria: 2 TEÓRICAS Y DOS

Más detalles

Benemérita Universidad Autónoma de Puebla

Benemérita Universidad Autónoma de Puebla Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones

Más detalles

Motivaciones históricas en la construcción de lógicas multivaluadas. Susan Haack, Filosofía de las lógicas (1978), capítulo 11

Motivaciones históricas en la construcción de lógicas multivaluadas. Susan Haack, Filosofía de las lógicas (1978), capítulo 11 Motivaciones históricas en la construcción de lógicas multivaluadas Susan Haack, Filosofía de las lógicas (1978), capítulo 11 Repaso Las lógicas multivaluadas son aquellas en donde hay más de dos valores

Más detalles

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación.

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación. Estructuras Discretas Teoremas Técnicas de demostración Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 15 Definición: teorema

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA SYLLABUS PROYECTO CURRICULAR: NOMBRE DEL DOCENTE: ESPACIO ACADÉMICO (Asignatura): LÓGICA Obligatorio ( X ) : Básico ( X ) Complementario

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

Lógica proposicional

Lógica proposicional Lógica proposicional La palabra lógica viene del griego y significa, razón, tratado o ciencia. En matemáticas es la ciencia que estudia los métodos de razonamiento proporciona reglas y técnicas para determinar

Más detalles

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. Guía de estudio Métodos de demostración Unidad A: Clase 3 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.. Inferencias y métodos de

Más detalles

CAPÍTULO 8 CAPÍTULO 8. BREVE HISTORIA.

CAPÍTULO 8 CAPÍTULO 8. BREVE HISTORIA. CAPÍTULO 8 CAPÍTULO 8. BREVE HISTORIA. Para evitar confusiones, consideraremos tres momentos de la lógica bien diferenciados: 1º el de la Lógica No-Matemática, que abarca desde Aristóteles (384 322 a.c.),

Más detalles

2. Los símbolos de la lógica proposicional.

2. Los símbolos de la lógica proposicional. Bloque I: El Saber Filosófico. Tema 4: La Lógica Formal. 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera

Más detalles

Tema 9: Cálculo Deductivo

Tema 9: Cálculo Deductivo Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 9: Cálculo Deductivo Profesor: Javier Bajo [email protected] Madrid, España 24/10/2012 Introducción a la

Más detalles

UNIDAD I: LÓGICA MATEMÁTICA

UNIDAD I: LÓGICA MATEMÁTICA UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica

Más detalles

Matemáticas Discretas Lógica

Matemáticas Discretas Lógica Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados

Más detalles

6. ARGUMENTOS LÓGICOS Y CONVINCENTES

6. ARGUMENTOS LÓGICOS Y CONVINCENTES 6. ARGUMENTOS LÓGICOS Y CONVINCENTES La principal tarea de la lógica es la de averiguar cómo la verdad de una determinada proposición está conectada con la verdad de otra. En lógica habitualmente se trabaja

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64

Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64 Lógica Proposicional IIC1253 IIC1253 Lógica Proposicional 1/64 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Francisco Zúñiga Urbina Jaime Gajardo Falcón

Francisco Zúñiga Urbina Jaime Gajardo Falcón Francisco Zúñiga Urbina Jaime Gajardo Falcón 1) Noción general de metodología jurídica 2) Métodos comunes al pensamiento científico 3) Métodos particulares de la investigación jurídica 1. Conceptos Los

Más detalles

Métodos de Análisis e Interpretación

Métodos de Análisis e Interpretación Análisis e Interpretación de Datos Aplicaciones Empresariales Métodos de Análisis e Interpretación Semana 6 Nelson José Pérez Díaz Lógica La ciencia del razonamiento, del examen, del pensamiento y la inferencia

Más detalles

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO.

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO. Página 1 de 19 GUÍA N 1 ÁREA: Docente: Matemáticas Geometría MARIA TERESA OSPINO - LAURA PACHECO C EJE TEMÁTICO DESEMPEÑO GRADO: Noveno PERIODO: Primero IH (en horas): 4 NÚMEROS REALES Reconoce y contrasta

Más detalles

Lógica Matemática. M.C. Mireya Tovar Vidal

Lógica Matemática. M.C. Mireya Tovar Vidal Lógica Matemática M.C. Mireya Tovar Vidal Contenido Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Traducir enunciados sencillos

Más detalles

Clase 5 1. Lógica proposicional. Razonamientos

Clase 5 1. Lógica proposicional. Razonamientos Clase 5 1 Lógica proposicional Razonamientos Clase 5 2 LOGICA - INTRODUCCION!OBJETIVO Uno de los fundamentales objetivos ha sido el estudio de las DEDUCCIONES, RAZONAMIENTOS O ARGUMENTOS LOGICA DEDUCTIVA

Más detalles

Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006

Clase Nº 2. Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA. Trimestre Enero - Marzo 2006 EC2175 Ingeniería Electrónica 2 Clase Nº 2 Ing. Manuel Rivas DEPARTAMENTO DE ELECTRÓNICA Trimestre Enero - Marzo 2006 Objetivos de aprendizaje Conocer las operaciones lógicas básicas: AND, OR y NOT Estudiar

Más detalles

2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es

2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es Tema 2. Introducción a la lógica 1. Introducción 2. Lógica de proposiciones 1. Definiciones 2. Sintaxis 3. Semántica Bibliografía Matemática discreta y lógica. Grassman y Tremblay. 1997. Prentice Hall.

Más detalles

Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática

Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática Demostración Automática de Teoremas Tema 2. Procesamiento del conocimiento con la Lógica Matemática Temas Introducción Sistemas de axiomas Teoría de la demostración. Sistema de Kleene Deducción natural

Más detalles

Contenido. BLOQUE I: PRELIMINARES Tema 1: INTRODUCCIÓN Lógica Grado en Ingeniería Informática. Introducción. El lenguaje natural.

Contenido. BLOQUE I: PRELIMINARES Tema 1: INTRODUCCIÓN Lógica Grado en Ingeniería Informática. Introducción. El lenguaje natural. Contenido BLOQUE I: PRELIMINARES Tema 1: INTRODUCCIÓN Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Introducción El lenguaje de la lógica Lenguaje natural, lenguaje formal y metalenguaje

Más detalles

Lógica proposicional 1. Qué es la lógica?

Lógica proposicional 1. Qué es la lógica? Lógica proposicional 1. Qué es la lógica? Juan Carlos León Universidad de Murcia Esquema del tema 1 Lógica proposicional 1. Qué es la lógica? 1.1. Argumentos y consecuencias. Verdad y validez lógica Lo

Más detalles

El razonamiento lógico se refiere al uso de entendimiento para pasar de unas proposiciones a otras partiendo de lo ya conocido o de lo que creemos

El razonamiento lógico se refiere al uso de entendimiento para pasar de unas proposiciones a otras partiendo de lo ya conocido o de lo que creemos El razonamiento lógico se refiere al uso de entendimiento para pasar de unas proposiciones a otras partiendo de lo ya conocido o de lo que creemos conocer a lo desconocido o menos conocido. TIPOS DE RAZONAMIENTO

Más detalles

EL RAZONAMIENTO SILOGÍSTICO

EL RAZONAMIENTO SILOGÍSTICO EL RAZONAMIENTO SILOGÍSTICO Sin el concepto el ojo es ciego sin la percepción el concepto es vacío Cualquier papel que encierra una palabra es el mensaje que un espíritu humano manda a otro espíritu. Jorge

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA I. DATOS GENERALES 1.1 Asignatura: MATEMÁTICA I 1.2 Código: CE103 / 01E, 02E, 03E, 12E 1.3 Condición: Obligatorio

Más detalles

PLAN ANUAL DE LÓGICA DUODÉCIMO GRADO

PLAN ANUAL DE LÓGICA DUODÉCIMO GRADO PLAN ANUAL DE LÓGICA DUODÉCIMO GRADO Área 1: Lógica formal y Argumentación Objetivos de aprendizaje: 1. Argumenta de manera ordenada, aplicando las reglas o principios del razonamiento. 2. Sigue instrucciones

Más detalles

TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO.

TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO. Lógica y razonamiento. La lógica es el estudio de los métodos que permiten establecer la validez de un razonamiento, entendiendo como tal al proceso mental que, partiendo de ciertas premisas, deriva en

Más detalles

UNIDAD III. Módulo 12 Predicamentos y predicables ESQUEMA RESUMEN INFERENCIAS INMEDIATAS

UNIDAD III. Módulo 12 Predicamentos y predicables ESQUEMA RESUMEN INFERENCIAS INMEDIATAS UNIDAD III Módulo 12 Predicamentos y predicables OBJETIVO: Al concluir el estudio de este módulo el alumno: podrá analizar la diferencia que existe entre las inferencias inmediatas y el razonamiento; identificar

Más detalles

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto

Más detalles

UNIDAD 10: LÓGICA. 1. Definiciones

UNIDAD 10: LÓGICA. 1. Definiciones 1. Definiciones UNIDAD 10: LÓGICA La lógica es una ciencia formal que estudia los tipos válidos de razonamiento. Un razonamiento es una estructura en la que a partir de ciertos datos conocidos llamados

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Tablas de Verdad: p q p q p p V V V V F V F F F V F V F F F F p q p q V V V V F V F V V F F F p q p q V V V V F F F V V F F V p q p q

Más detalles

Guía Nº 2 Lógica Simbólica

Guía Nº 2 Lógica Simbólica Guía Nº 2 Lógica Simbólica 1.Construya la tabla de verdad de las siguientes proposiciones: a) p - q, c) ( p - q ) q, e) ( p q) p - q b) ( p - q ), d) ( p q ) ( p q ), f) ( p q ) ( p q) 2. a )Si la proposición

Más detalles

FONCIEN - Fundamentos Científicos

FONCIEN - Fundamentos Científicos Unidad responsable: 840 - EUPMT - Escuela Universitaria Politécnica de Mataró Unidad que imparte: 840 - EUPMT - Escuela Universitaria Politécnica de Mataró Curso: Titulación: 2016 GRADO EN INGENIERÍA INFORMÁTICA

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA INSTITUCION EDUCATIA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS. NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO ECHA N DURACION 1 6 EBRERO

Más detalles

El sistema deductivo de Hilbert

El sistema deductivo de Hilbert El sistema deductivo de Hilbert IIC2213 IIC2213 El sistema deductivo de Hilbert 1 / 17 Completidad de resolución proposicional Qué tenemos que agregar a nuestro sistema de deducción para que sea completo?

Más detalles

PROGRAMA DE ASIGNATURA DE MATEMÁTICA PARA LA INFORMÁTICA I

PROGRAMA DE ASIGNATURA DE MATEMÁTICA PARA LA INFORMÁTICA I PROGRAMA DE ASIGNATURA DE MATEMÁTICA PARA LA INFORMÁTICA I Table of contents 1 INFORMACIÓN GENERAL...2 2 INTRODUCCIÓN... 2 3 OBJETIVOS GENERALES DE LA ASIGNATURA... 3 4 OBJETIVOS, TEMAS Y SUBTEMAS... 3

Más detalles

Programa de Lógica para la solución de problemas

Programa de Lógica para la solución de problemas Programa de Lógica para la solución de problemas Octubre del 2006 B @ UNAM Asignatura: Lógica para la solución de problemas Plan: 2006 Créditos: 10 Bachillerato: Módulo 2 Tiempo de dedicación total: 80

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

INDICE. Presentación. iii Prologo

INDICE. Presentación. iii Prologo INDICE Presentación iii Prologo ix Lógica jurídica fundamental I. Introducción. Fundamentación lógica del Pensamiento jurídico 1.1. Hacia el lenguaje de la lógica 39 1.1.1. Aproximación a la naturaleza

Más detalles

Lógica Proposicional. Cátedra de Matemática

Lógica Proposicional. Cátedra de Matemática Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un

Más detalles

DETERMINACIÓN DE UN CONJUNTO

DETERMINACIÓN DE UN CONJUNTO CONJUNTO UNIVERSAL U A Gráficamente, al conjunto universal se lo representa mediante un rectángulo. Cualquier otro conjunto A es representado por una región cerrada, dentro del rectángulo, A este tipo

Más detalles

Lógica Proposicional: Semántica

Lógica Proposicional: Semántica LÓGICA - 1º Grado en Ingeniería Informática Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional: Semántica Andrei Paun [email protected] http://web3.fi.upm.es/aulavirtual/ Despacho

Más detalles

Lógica Aristotélica (Validez)

Lógica Aristotélica (Validez) Lógica Aristotélica (Validez) (basado en notas anteriores de Fernando Zalamea) Andrés Villaveces Departamento de Matemáticas Universidad Nacional de Colombia Lógica I - Filosofía - I 2006 La pregunta Recuerde

Más detalles