Algoritmos Cuánticos
|
|
|
- Asunción López Montoya
- hace 7 años
- Vistas:
Transcripción
1 Algoritmos Cuánticos Alfonsa García, Francisco García 1 y Jesús García 1 1 Grupo de investigación en Información y Computación Cuántica (GIICC) Algoritmos cuánticos 1. Introducción 2. Primeros algoritmos cuánticos 2.1 Problema de Deutsch 2.2 Problema de Deutsch-Jozsa 2.3 Problema de Simon 3. Búsqueda no estructurada. Algoritmo de Grover 4. Transformada Cuántica de Fourier 5. Algoritmo de Shor 1
2 1. Introducción Un algoritmo es un proceso encaminado a realizar una tarea específica. Con frecuencia, las etapas de un algoritmo se pueden concretar en la evaluación de una función sobre distintos parámetros de entrada. El paralelismo cuántico permite evaluar una función simultáneamente sobre todas las posibles cadenas de n bits. El problema es que la información queda oculta en las amplitudes del estado cuántico resultante, y para acceder a ella se requiere una medición cuántica, que destruye parte de la información. Algoritmos cuánticos circuitos Un algoritmo cuántico se representa por un circuito que evoluciona de izquierda a derecha. El estado de entrada suele ser un n-qubit en estado 0> y las medidas cuánticas se hacen a la salida del circuito. Input 0> Puertas cuánticas Output u> Medidas cuánticas 2
3 2. Primeros algoritmos cuánticos 2.1 Problema de Deutsch (ver si una función booleana de una variable es constante) 2.2 Problema de Deutsch-Jozsa (ver si una función booleana de n variables es balanceada) 2.3 Problema de Simon (determinar el periodo de una función f: (Z 2 ) n (Z 2 ) n ) 2.1 Problema de Deutsch Dada una función booleana f: {0,1}{0,1}, se trata de ver si es constante (f(0)=f(1)) o no evaluándola una sola vez Recordemos que la función f se implementa con la puerta cuántica: Resolución del problema: Si al medir se obtiene 0 la función es constante Una sola evaluación 3
4 2.2. Problema de Deutsch- Jozsa Dada f: {0,1} n {0,1} se trata de ver si es constante o balanceada con el menor número de evaluaciones de f Computación clásica: Hay que evaluar f sobre la mitad más 1 de todas las posibles cadenas de n bits 2 n-1 +1 evaluaciones Para hacerlo cuánticamente, de nuevo usamos: Pero ahora es un n-qubit Si al medir el n-qubit se obtiene 0, la función es constante, si se obtiene un resultado distinto de 0 es balanceada Problema de Simon Dada :, periódica de periodo y 2 a 1, se trata de determinar T con el menor número posible de evaluaciones. Computación clásica: 2 n-1 +1 evaluaciones Algoritmo cuántico: Ganancia exponencial frente a los algoritmos clásicos 4
5 Seguimiento del algoritmo Obtenemos una ecuación lineal homogénea en Z 2, T k=0, con n incógnitas. Hay que repetir el algoritmo hasta tener un sistema de rango n-1. La solución no nula del sistema será el periodo de la función 3. Búsqueda no estructurada Problema de búsqueda no estructurada: Hallar x en un conjunto de N posibles soluciones (no ordenadas) tal que la sentencia P sea cierta. Ejemplo de búsqueda no estructurada: Encontrar en una guía telefónica el titular de un número concreto. Se puede formular como buscar el entero x, entre 0 y N-1, de modo que para una función booleana f, sea f(x)=1. Computación clásica complejidad O(N) La idea es evaluar f simultáneamente sobre los N números enteros. Completando la lista si es preciso, supondremos N=2 n y tendremos 2 n cadenas de n bits de las que sólo una verifica f(x)=1. 5
6 Algoritmo cuántico de Grover (1996) El algoritmo de Grover resuelve el problema de búsqueda no estructurada en una lista de N datos, con solución única, con O(N 1/2 ) evaluaciones. Se aprovecha el paralelismo cuántico para evaluar simultáneamente f sobre todos los posibles x de [0,N-1], construyendo, con la transformación de Walsh-Hadamard, el estado: 0 1 Después se va modificando este estado de modo que se incremente la probabilidad de que al medir se obtenga el x tal que f(x)=1 Descripción del algoritmo Paso 1: A partir de una lista de N=2 n datos (x=0..n-1), de modo que solo 1 verifica f(x)=1, se construye el estado superposición de todas las palabras de n bits: 0 W n Paso 2 (Oráculo): Cambio de signo en la amplitud de los x tales que f(x)=1 1 Se implementa por medio de: con Paso 3 (Inversión sobre el promedio): Si A es el promedio de las amplitudes, se transforma Se implementa con: 6
7 Un ejemplo: Partimos de una lista de 64 elementos de la que sólo 1 (x s ) satisface f(x s )=1. Construimos Wn 0 Tras cambiar el signo de la amplitud x s el promedio de amplitudes es: Con la inversión en el promedio la nueva amplitud de x s es: Todas las demás amplitudes quedan en Por tanto la probabilidad de obtener x s al medir es la más alta. Si repetimos el proceso 6 veces, el coeficiente de x s es y la probabilidad de que al medir se obtenga la solución es Complejidad del algoritmo de Grover Para una probabilidad de fallo<1/n número de iteraciones O Coste de implementación de N R=2 0><0 - I R es una matriz con todos sus elementos iguales a 0, salvo R 11 =2, que se puede implementar con log(n) puertas de Toffoly Coste de W n log(n) Complejidad total del algoritmo: O N log( N) 7
8 4. Transformada Cuántica de Fourier La transformada cuántica de Fourier (QFT) es una transformación unitaria sobre H n, que para un n-qubit, con 0 j < n, se define: Sobre el n-qubit 0> actúa igual de la transformación de Walsh-Hadamard 1 Q=2 n Shor (1996) introdujo un algoritmo cuántico para calcular la transformada de Fourier con O(log 2 (Q)) puertas cuánticas elementales El cálculo clásico de la transformada discreta de Fourier, de una lista de tamaño Q, requiere Q 2 operaciones o Qlog(Q) si se usa el algoritmo FFT La QFT y el periodo de una función Si f es una función entera y periódica de periodo T su QFT se anula en todos los elementos del dominio salvo en los múltiplos de la frecuencia w tal que wt=q Esta propiedad permite obtener la frecuencia, y por tanto el período, de la función f. Se aplica la QFT a f y se miden todos los qubits se obtiene wk, tal que 0 k<t y tomamos w =mcd(wk,q), que será múltiplo de w. Aplicación: El problema de factorización se puede reducir al cálculo del período de una función entera y para ello se puede usar la QFT 8
9 5. Algoritmo de Shor La dificultad computacional de resolver el problema de la factorización de enteros es la base del criptosistema RSA. El algoritmo de Shor es un algoritmo cuántico que permite factorizar un número N en tiempo O(poly(log (N))) Dado N impar y con al menos dos factores primos, el problema de encontrar un factor primo de N se puede reducir al de encontrar el orden de un entero positivo t a tal que mcd(a,n)=1. Es decir encontrar t tal que a 1modN Algoritmo para obtener un factor propio de N: 1. Elegir aleatoriamente a entre 1 y N-1 2. Si mcd(a,n) 1, devolver mcd(a,n) t 3. Determinar t, tal que a 1modN 4. Si t es impar devolver fallo 5. Si mcd( a t/2 +1,N) N, devolver mcd( a t/2 +1,N) 6. Devolver fallo Este es el paso costoso y equivale a calcular el periodo de f (k)=a k mod N Si el algoritmo no falla devuelve un factor propio de N Ejemplo Supongamos que se quiere factorizar el número N=77 1. Elegimos un número entre 0 y 76. Por ejemplo Como mcd(3,77)=1, seguimos el proceso. 3. El orden de 3, en el grupo de unidades módulo 77 es 30, porque 3 30 mod 77 =1 4. Salida: mcd( , 77)=7 El paso 3, equivale a hallar el periodo de la función f(k)=3 k mod 77, es la parte del algoritmo en la que Shor propuso usar computación cuántica 7 es un factor propio de 77 9
10 Algoritmo de Shor usando la QFT Notación: Se busca un factor propio de N. Se toma n tal que N 2 2 n <2N 2, m tal que N 2 m <2N y Q=2 n. Algoritmo: 1. Elegir aleatoriamente a entre 1 y N-1 2. Si mcd(a,n) 1, devolver mcd(a,n). 3. Determinar el período T de la función f (k)=a k mod N: (a) Inicializar el (n,m)-qubit: 0 0 (b) Aplicar la QFT, F n al primer registro. (c) Aplicar el operador U f, asociado a la función f. (d) Aplicar nuevamente F n al primer registro. (e) Obtener la medida k y calcular la fracción continua de k/q (f) Tomar como posibles valores de T los denominadores de las convergentes de la fracción continua. 4. Para cada T, hacer: (a) Si T es impar devolver fallo. (b) Si T es par y mcd( a t/2 +1,N) N, devolver mcd( a t/2 +1,N) (c) En otro caso devolver fallo Para conseguir una probabilidad de acierto independiente de T y de N es suficiente repetir el algoritmo O(loglog(N)) Ejemplo Datos: n=8, m=4, Q=2 n = 256 Supongamos que se quiere factorizar el número N=15 1. Elegimos un número aleatorio entre 1 y 14. Por ejemplo Como mcd(13,15)=1, seguimos el proceso. 3. Tomamos el (8,4)-qubit: (b) Aplicamos, F n al primer registro (c) Aplicamos U f 16 (d) Aplicamos F n al primer registro 1 256, (e) Supongamos que al medir el primer registro se obtiene k =192, consideramos la fracción continua (f) Como las convergentes son 1/1 y ¾, tomamos T=4. 4. Salida mcd( , 15)=5 10
11 Complejidad del Algoritmo de Shor 1. Aritmética básica O(log 3 (N)) 2. Elección aleatoria de un número entre 1 y N-1 O(log(N)) 3. Transformada cuántica de Fourier O(log 2 (N)) 4. Exponenciación modular cuántica U f O(log 3 (N)) 5. Medida cuántica del primer registro O(log(N)) El algoritmo de Shor es polinomial respecto al número de dígitos de N 11
Modelo de Computación Cuántica. Jesús García López de Lacalle
Modelo de Jesús García López de Lacalle Grupo de Investigación Mathematical Modeling and Biocomputing (MMBC) ETS de Ingeniería de Sistemas Informáticos Universidad Politécnica de Madrid [email protected]
CCQ - Computación y Criptografía Cuánticas
Unidad responsable: 270 - FIB - Facultad de Informática de Barcelona Unidad que imparte: 748 - FIS - Departamento de Física Curso: Titulación: 2017 GRADO EN INGENIERÍA INFORMÁTICA (Plan 2010). (Unidad
CCQ - Computación y Criptografía Cuánticas
Unidad responsable: 270 - FIB - Facultad de Informática de Barcelona Unidad que imparte: 748 - FIS - Departamento de Física Curso: Titulación: 2017 GRADO EN INGENIERÍA INFORMÁTICA (Plan 2010). (Unidad
Computación Cuántica versus MTPs
Computación Cuántica versus MTPs Juan Carlos Agudelo Agudelo Grupo de Lógica y Computación Universidad EAFIT 12 de febrero de 2010 Juan C. Agudelo (EAFIT) 12 de febrero de 2010 1 / 19 Contenido 1 Computación
Algoritmos cuánticos. Grupo de Lógica y Computación Departamento de Ciencias Básicas Universidad EAFIT, Medellín, Colombia
Algoritmos cuánticos Andrés Sicard Grupo de Lógica y Computación Departamento de Ciencias Básicas Universidad EAFIT, Medellín, Colombia VII Ciclo de conferencias de Física, Universidad EAFIT, 2004 p. 1
Introducción a la Criptografía Cuántica
Introducción a la Criptografía Cuántica Alfonsa García, Francisco García 1 y Jesús García 1 1 Grupo de investigación en Información y Computación Cuántica (GIICC) Introducción a la criptografía cuántica
La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT
1 La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT Existen diversas formas de implementar la transformada discreta de Fourier (DFT). Para estudiar algunas de
La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT
1 La transformada rápida de Fourier (FFT) y otros algoritmos para la implementación de la DFT Existen diversas formas de implementar la transformada discreta de Fourier (DFT). Para estudiar algunas de
Fases Cuánticas Geométricas. Gutiérrez Mesías, Juan Moisés.
Capitulo 5 La Computación Cuántica La computación cuántica usa fenómenos cuánticos, tal como la interferencia y el enredo, para el procesamiento de información. Feynman planteó la primera pregunta en este
Fundamentos de computación cuántica
Fundamentos de computación cuántica Andrés Sicard Ramírez Mario Elkin Vélez Ruíz Juan Fernando Ospina Giraldo Luis Fernando Moreno (Grupo de Lógica y Computación. Universidad EAFIT, Medellín) {asicard,mvelez,jospina,lmorenos}@eafit.edu.co
Algoritmo Cuántico de Búsqueda Paralelo
Marcos Barreto Add your company slogan Agenda 1 Complejidad y el Problema 3 SAT 2 Computación Cuántica 3 Algoritmo de Shenvi 4 Algoritmo de Shenvi con vecindad 5 Algoritmo de Shenvi paralelo híbrido 6
Fundamentos de lenguajes de programación cuántica
Fundamentos de lenguajes de programación cuántica Día 1: Introducción a la computación cuántica Alejandro Díaz-Caro Universidad Nacional de Quilmes 22 o Escuela de Verano de Ciencias Informáticas Río Cuarto,
Computación Cuántica Topológica PARTE 1
Introducción a la Computación Cuántica Topológica PARTE Javier García IFAE / UAB Sumario - Computación clásica - Probabilidad - Mecánica cuántica - Computación cuántica Computación Clásica Computación
Contenido. Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix. Parte I Fundamentos...
Contenido Contenidos interactivos... xiii Plataforma de contenidos interactivos... xviii Prefacio... xix Parte I Fundamentos... 1 Capítulo I Lógica, conjuntos e inducción... 2 1.1 Introducción... 4 1.2
Procesamiento Cuántico de Datos. Miguel Arizmendi, Gustavo Zabaleta. 24 de noviembre de Sitio web: www3..mdp.edu.ar/fes/procq.
Procesamiento Cuántico de Datos Miguel Arizmendi, Gustavo Zabaleta 4 de noviembre de 016 Sitio web: www3..mdp.edu.ar/fes/procq.html UN MODELO CUÁNTICO DE COMPUTACIÓN El Modelo de Circuitos Cuánticos Los
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE
LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de
05. Criptografía de clave pública
05. Criptografía de clave pública Criptografía 5º Curso de Ingeniería Informática Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla Contenido Cifrado con clave pública Ventajas
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
Nuevos Algoritmos de Factorización de Enteros para atacar RSA. Ekoparty
Nuevos Algoritmos de Factorización de Enteros para atacar RSA Ekoparty Buenos Aires, 3 de octubre de 2008 Hugo D.Scolnik Departamento de Computación Universidad de Buenos Aires Esquema de la conferencia:
Inteligencia Artificial
Algoritmos genéticos Bases En la naturaleza todos los seres vivos se enfrentan a problemas que deben resolver con éxito, como conseguir más luz solar o conseguir comida. La Computación Evolutiva interpreta
Transformada Discreta de Fourier (II)
Transformada Discreta de Fourier (II) 1 Más problemas...ahora computacionales La DFT de orden de una señal x(n) viene definida por la siguiente expresión #1 % X(k) = x(n) "e n= 0 # j"2"$ "k"n Para cada
Sistemas basados en la Teoría de Números
Criptografía de clave pública Sistemas basados en la Teoría de Números Departamento de Sistemas Informáticos y Computación DSIC - UPV http://www.dsic.upv.es p.1/20 Criptografía de clave pública Sistemas
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
QUÉ ES EN REALIDAD EL TELETRANSPORTE CUÁNTICO?
QUÉ ES EN REALIDAD EL TELETRANSPORTE CUÁNTICO? Vicente Moret Bonillo Senior Member, IEEE LIDIA-UDC 2 3 4 5 Fenómenos cuánticos 6 Efecto túnel Más intuitivo así? 7 8 9 10 HACIA UN NUEVO CONCEPTO DE BIT
RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson
RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson. El método de Newton para la resolución de una ecuación f(x)=0. Sea f(x) una función continuamente diferenciable dos veces en el intervalo
Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16
Aritmética modular AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Objetivos Al finalizar este tema tendréis que: Saber qué es Z n. Saber operar en
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )
Tópicos de Álgebra Enero 2016
Laboratorio # 1 Algebra de Matrices I.- Calcular las operaciones indicadas, dadas las siguientes matrices. 4 3 5 2 4 0 0 A = ( 2 4 1 ) B = ( 1 5 8) C = ( 4 0 6 7 6 3 1 2 2 1 ) 1 D = ( 3 2 1 5 4 ) E = (
Introducción a la información cuántica
Introducción a la información cuántica Juan José García Ripoll Instituto de Física Fundamental CSID CSI:C www.csic.es http://quinfog.iff.csic.es Brewing the best quantum information since 2005... Tres
Lección 6 - Ecuaciones cuadráticas
Ecuaciones cuadráticas Objetivos: Al terminar esta lección podrás definir lo que es una ecuación cuadrática y podrás resolver ecuaciones cuadráticas. En la lección previa aprendimos lo que es una ecuación
CUARTO DE ESO. MATEMÁTICAS A
CUARTO DE ESO. MATEMÁTICAS A UNIDAD 1 1.1. Realiza operaciones combinadas con números enteros. 1.2. Realiza operaciones con fracciones. 1.3. Realiza operaciones y simplificaciones con potencias de exponente
1. Algunas primitivas inmediatas (o casi inmediatas).
Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares
ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
Sistemas de Ecuaciones. Lineales II
Sistemas de Ecuaciones Lineales II Factorización LU: Eliminación Gaussiana Relación con la factorización LU 521230-1 - DIM Universidad de Concepción Solución de sistemas con matriz triangular Dadas L =
Resolución de sistemas de ecuaciones lineales
Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
Complejidad de los Algoritmos
Que es un Algoritmo? Complejidad de los Algoritmos Webster: cualquier método especial para resolver cierta clase de problemas. Horowitz: método preciso utilizable en una computadora para la solución de
INSTRUMENTOS DE EVALUACIÓN MATEMÁTICAS 1º E.S.O.
INSTRUMENTOS DE EVALUACIÓN MATEMÁTICAS 1º E.S.O. 1. Realización de pruebas escritas, representando un 80% de la nota final. 2. Observación del alumno en el aula: 10% de la nota final. - Atención, interés
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
Mapa Curricular: Funciones y Modelos
A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,
Mapa Curricular: Funciones y Modelos
A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
Principio de Superposición
1 Sistemas en tiempo continuo discreto Un sistema en tiempo continuo discreto e puede ver como una transformación que se aplica a una señal de entrada en tiempo continuo discreto y produce una señal de
Ecuación de segundo grado
UNEFA C.I.N.U. Matemáticas 0 Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008) Fundamentos de Matemáticas, Unidad 5 Ecuaciones e Inecuaciones,
Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul
Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulos 3 y 5 del texto) Funciones y Gráficas 1.1 Definición y notación de función. 1.2 Dominio y rango
PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.
PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +
3. Señales. Introducción y outline
3. Señales Introducción y outline Outline Señales y Sistemas Discretos: SLIT, Muestreo, análisis tiempo-frecuencia, autocorrelación, espectro, transformada Z, DTFT, DFT, FFT Filtros y Estimación: Filtros
TI 89. Cómo sobrevivir en Precálculo
TI 89 Cómo sobrevivir en Precálculo TI-89 Menús que más utilizaremos: Operaciones Numéricas Simplificar: 3 + 1 5 ( 4)2 9 3 4 Notar la diferencia entre el símbolo de resta y el signo negativo. Notar el
Complejidad computacional. Algoritmos y Estructuras de Datos I. Complejidad computacional. Notación O grande
Complejidad computacional Algoritmos y Estructuras de Datos I Segundo cuatrimestre de 2014 Departamento de Computación - FCEyN - UBA Algoritmos - clase 10 Introducción a la complejidad computacional y
TEMA 5 ANEXO II SISTEMAS DE ECUACIONES LINEALES
TEMA 5 ANEXO II SISTEMAS DE ECUACIONES LINEALES A) INTRODUCCIÓN Una ecuación puede tener dos incógnitas. Después de simplificar nos queda una ecuación del tipo ax + by = c, donde x e y son las incógnitas,
Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.
Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones
GUIA DE ESTUDIO FUNCIONES CUADRÁTICAS. Se llama FUNCION POLINOMICA DE SEGUNDO GRADO o FUNCION CUADRÁTICA a la función:
GUIA DE ESTUDIO FUNCIONES CUADRÁTICAS Se llama FUNCION POLINOMICA DE SEGUNDO GRADO o FUNCION CUADRÁTICA a la función: f: R R f(x) = ax + bx + c a 0 y a, b, c R El término ax se denomina término cuadrático,
Mecánica Cuántica y Qubits
Mecánica Cuántica y Qubits En computación cuántica los estados asociados a los qubits están dados por vectores en espacios complejos de Hilbert de dimensión finita. En particular serán sistemas compuestos
MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.
MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición
3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden
3. Lineales Homogéneas de de Segundo Orden Sabemos que la solución general de una ecuación diferencial lineal homogénea de segundo orden está dada por por lo que se tiene dos soluciones no triviales, en
INECUACIONES LINEALES
INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada
TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión
TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:
Introducción al Cálculo Simbólico a través de Maple
1 Introducción al Cálculo Simbólico a través de Maple Introducción A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos que permiten la representación
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Programa de preparación para exámenes de ubicación
GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY INSTRUCCIONES Este examen debe ser presentado antes de las inscripciones, por los alumnos de primer ingreso que provengan de preparatorias
Sistem as de ecuaciones lineales
Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a
FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES
FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización
PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:
PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa
Seguridad Informática
Seguridad Informática Fundamentos Matemáticos de la Criptografía Ramón Hermoso y Matteo Vasirani Universidad Rey Juan Carlos Índice 1 Divisibilidad 2 Artimética modular 3 Grupos 4 El problema del logaritmo
N kn N. X[ k] ( ) N N. 2.- Cálculo eficiente de la Transformada discreta de
.- Cálculo eficiente de la Transformada discreta de Fourier. La (Transformada Discreta de Fourier) de una secuencia finita de longitud es [] []: Siendo por: =e X[ k] = x[ n], k =,,..., (.) -j(π/). La Transformada
Sistema de ecuaciones Parte II
Regla de Cramer Sistema de ecuaciones Parte II La regla de Cramer sirve para resolver sistemas de ecuaciones lineales. Se aplica a sistemas que cumplan las dos condiciones siguientes: El número de ecuaciones
Tema 5 Inecuaciones y sistemas de inecuaciones
Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos
Un tercer ejemplo: verificación de primalidad
Un tercer ejemplo: verificación de primalidad Vamos a ver un algoritmo aleatorizado para verificar si un número es primo. I Este algoritmo es más eficiente que los algoritmos sin componentes aleatorias
Capítulo 8 Teoría de la Complejidad Algorítmica
Capítulo 8 Teoría de la Complejidad Algorítmica Seguridad Informática y Criptografía Ultima actualización del archivo: 01/03/06 Este archivo tiene: 31 diapositivas v 4.1 Material Docente de Libre Distribución
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
PRÁCTICA FINAL. Mª Esther Ruiz Morillas
PRÁCTICA FINAL Mª Esther Ruiz Morillas Repasamos Números x y =z y Álgebra Logaritmos Sucesiones: Aritméticas Geométricas Ecuaciones: De primer grado De segundo grado De grado superior Algebraicas Irracionales
Estrategias de pivoteo
Estrategias de pivoteo Objetivos. Resolver sistemas de ecuaciones lineales aplicando varias técnicas de pivoteo; programar estos algoritmos. Requisitos. Operaciones elementales, experiencia de resolver
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes
PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)
PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor
Arreglos. Algoritmos y Estructuras de Datos I. Arreglos en C++ Arreglos y listas
Arreglos Algoritmos y Estructuras de Datos I Primer cuatrimestre 2007 Teórica de imperativo 3 Algoritmos de búsqueda secuencias de una cantidad fija de variables del mismo tipo se declaran con un nombre,,
RESUMEN DE ALGORITMOS PROBABILÍSTICOS
RESUMEN DE ALGORITMOS PROBABILÍSTICOS En los algoritmos probabilísticos hay ciertas decisiones que se toman al azar bajo condiciones estadísticamente estables como una distribución uniforme. Normalmente
ESTRUCTURAS REPETITIVAS EN PHP
ESTRUCTURAS REPETITIVAS EN PHP Los bucles nos permiten iterar conjuntos de instrucciones, es decir repetir la ejecución de un conjunto de instrucciones mientras se cumpla una condición. Sentencia while
Sistemas de ecuaciones no lineales
Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Recursión Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 15 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema 2. Lógica
Clave Pública. Criptografía-ULL
Clave Pública Clave Pública UsuarioA Cifrado E B Mensaje cifrado C Mensaje cifrado C Descifrado D B Usuario B Clave Pública de B Clave Privada de B Mensaje original M Mensaje original M Clave Pública Clave
11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN
ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL
Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria
T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes
Álgebra intermedia. Plan de estudios (799 temas)
Álgebra intermedia Este curso cubre los temas descritos a continuación y está disponible para utilizarlo con libros electrónicos interactivos integrados. Usted puede personalizar la gama y la secuencia
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
