Variación de un funcional Funcional ( ) 1.6 Introducción al cálculo variacional 1.6. Introducción al cálculo variacional

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Variación de un funcional Funcional ( ) 1.6 Introducción al cálculo variacional 1.6. Introducción al cálculo variacional"

Transcripción

1 1.6. Introducción al cálculo variacional El cálculo variacional estudia los métodos, llamados variacionales, que permiten hallar los valores estacionarios de los funcionales. Puesto que un funcional representa el modelo matemático de un problema físico, la aplicación de los métodos variacionales es importantes en áreas del conocimiento como la física teórica, mecánica Lagrangiana, mecánica cuántica, en las ingenierías, etc. Los métodos variacionales proveen las bases matemáticas del método del método del elemento finito, el cual es una herramienta numéricapararesolverpvf. El principio variacional de un fenómeno físico contiene las ecuaciones que gobiernan el problema, mismas que se obtienen a partir de las condiciones estacionarias Variación de un funcional Definition 1 Se denomina variación de un funcional () en un punto = () al valor de la derivada del funcional respecto al parámetro para =0: (()) (1.169) = (())=0 (1.170) Funcional ( ) Sea el siguiente funcional:- () = si la función, seaproximacomo, definida como: ( ) 1 Γ (1.171) La derivada de la función, es = (1.172) = (1.173) Sustituyendo las ecs. (1.172) y (1.173) en el funcional de la ec. (1.171), se tiene: () = ( ) = ( ) 1 ( ) Γ (1.174) c GJL, UAM 44

2 La derivada del funcional, definido en la ecuación anterior, respecto a la variable, e igualando aceroes: () = 0 = = µ µ 1 Γ 1 (1.175) Si la variable 0, las variable = y = en las ecs. (1.172) y (1.173), por lo la ec. (1.175) se define como: {z 1 Γ =0 (1.176) } z Integrando por partes el término z de la ec. (1.176), considerando: se tiene z = = Sustituyendo ec. (1.178) en la ec. (1.176), = ; = (1.177) = ; = (1.178) Z 0 1 µ µ 1 Γ = 0 µ 1 = 0 (1.179) del primer término de la ec. (1.179) se obtienen las condiciones de Euler Lagrange: =0 (1.180) y del último término de la ec. (1.179) se obtienen las condiciones naturales: y las esenciales: µ =0 (1.181) 1 c GJL, UAM 45

3 Γ =0 (1.182) Funcional ( ) Sea el siguiente funcional, dependiente de, definido en el dominio R =[ 1 ],con valores 1 y 2 prescritos en algún extremo de la frontera Γ. () = ( ) 1 Γ 2 Γ (1.183) si la función, seaproximacomo, definida en la ec. (1.172), que tiene primera derivada, ec. (1.173), y segunda derivada respecto a. = (1.184) Sustituyendo las ecs. (1.172), (1.173) y en el funcional de la ec. (1.183), se tiene: () = = ( ) 1 Γ 2 Γ (1.185) ( ) 1 ( ) Γ 2 ( ) (1.186) Γ La derivada del funcional, definido en la ecuación anterior, respecto a la variable, e igualando aceroes: () = 0 = = µ µ 1 1 Γ 2 Γ 2 (1.187) Si la variable 0, las variable =, = y = en las ecs. (1.172, y1.184), por lo la ec. (1.188) se define como: {z } 1 Γ 2 Γ =0 (1.188) {z } z Integrando por partes el término z de la ec. (1.188), se tiene z = (1.189) c GJL, UAM 46

4 = Integrando por partes el término de la ec. (1.190), = Sustituyendo la ec. (1.191) en la ec. (1.190), = Sustituyendo las ecs. (1.189) y (1.192) en la ec. (1.188), (1.190) {z } 2 2 (1.191) 2 2 (1.192) µ 2 2 µ de la ec. (1.193) las condiciones de Euler-Lagrange son: 1 µ 2 =0 (1.193) y las condiciones naturales: 2 2 =0 (1.194) y las esenciales: µ =0 1 µ =0 (1.195) 2 Γ =0; Γ =0 (1.196) Extensiones a otros Funcionales Las condiciones de Euler-Lagrange para un funcional del tipo ( ) son: =0 (1.197) Las condiciones de Euler-Lagrange para un funcional con diferentes variables independientes ( ) son: c GJL, UAM 47

5 = 0 1 = 0 1 = 0 Las condiciones de Euler-Lagrange para un funcional ( ) son: Ejemplos Barra =0 (1.198) Determine las condiciones de Euler-Lagrange para tener un valor extremo el funcional de energía de una barra: Π () Z 1 " µ 1 () 2 2 b u# u = (1.199) Sustituyendo el funcional de la ec. (1.199) en las condiciones de Euler Lagrange definidas en ec. (1.180), se obtiene la siguiente ecuación: que corresponde a la ecuación de equilibrio. Sustituyendo la ec. (1.199) en la ec. (1.181), se obtiene: () = 0 (1.200) () = 0 (1.201) µ () = 0 (1.202) () Γ = 0 (1.203) La ecuación anterior indica que se cumple el equilibrio externo de la (1.16) oelvalorde () es igual a cero en los extremos. c GJL, UAM 48

6 Viga de Bernoulli Determine las condiciones de Euler-Lagrange para tener un valor extremo el funcional de energía de una viga: Π( ()) = Z = =0 " µ () () 2 () ()# () () Γ () {z } () (1.204) Sustituyendo el funcional de la ec. (1.204) en las condiciones de Euler Lagrange definidas en ec. (1.194), se obtiene: = (); =0; = 2 () 2 () () 2 =0 (1.205) que corresponde a la ecuación de equilibrio de la viga de Bernoulli. Sustituyendo la ec. (1.206) en la ec. (1.195), se obtienen las condiciones naturales: µ 2 () 2 =0 () y en la ec. (1.196) las condiciones esenciales: () Γ =0; µ 2 () 2 =0 (1.206) () () {z } () Γ =0 (1.207) c GJL, UAM 49

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1.

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1. 1.1.7. Solución de ecuaciones por integración directa Barra sección constante Determine la función, (), que satisface el PVF del elemento barra de definido en la ec. (1.14). Se considerando que la fuerza

Más detalles

Planteamiento del problema elástico lineal

Planteamiento del problema elástico lineal Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma

Más detalles

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos

1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos 1.1.. Las ecuaciones diferenciales como modelos matemáticos Los modelos matemáticos surgen en todos los campos de la ciencia. Aunque la relación entre modelos y fenómenos físicos en otras ciencias no es

Más detalles

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo.

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo. 1.11 Ecuaciones del movimiento 1.11. Ecuaciones del movimiento La descripción más elemental del movimiento del Medio Continuo puede llevarse a cabo mediante funciones matemáticas que describan la posición

Más detalles

1.4.1. Residuos pesados

1.4.1. Residuos pesados 1.4. Métodos de aproximación de ED 1.4.1. Residuos pesados El método de los residuos pesados es un método general y poderoso para obtener soluciones aproximadas de ecuaciones diferenciales ordinarias (EDO)

Más detalles

Vibración y Dinámica Estructural

Vibración y Dinámica Estructural Capítulo 4 Vibración y Dinámica Estructural 4.. Ecuaciones Básicas Considere de medio continuo se tiene un cuerpo tridimensional, cuyo comportamiento del material es elástico lineal con deformaciones pequeñas,

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA Programa de Asignatura INGENIERIA CIVIL, TOPOGRAFICA Y GEODESICA División ESTRUCTURAS Departamento Fecha de aprobación * Consejo Técnico de

Más detalles

Postulados de Cauchy

Postulados de Cauchy 1.4. Tracción 1.4.1. Postulados de Cauchy Consideremos un medio continuo sobre el que actúan las correspondientes fuerzas de cuerpo ysuperficiales (ver Fig. 1.14). Consideremos también una partícula P

Más detalles

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA XIV CONVENCIÓN DE INVESTIGACIÓN MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO

EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO EJEMPLOS DE APLICACIÓN DE LA INTEGRACIÓN APROXIMADA DE LAS ECUACIONES DIFERENCIALES DE EQUILIBRIO 1. Objetivo El objetivo de esta aplicación es ilustrar cómo se pueden integrar las ecuaciones diferenciales

Más detalles

Introducción a la Optimización Matemática

Introducción a la Optimización Matemática Introducción a la Optimización Matemática Modelos de Optimización Tienen como propósito seleccionar la mejor decisión de un número de posibles alternativas, sin tener que enumerar completamente todas ellas.

Más detalles

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales. Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Capítulo 6. Teoría del péndulo. 6.1 Péndulo Simple (Lagrange)

Capítulo 6. Teoría del péndulo. 6.1 Péndulo Simple (Lagrange) Capítulo 6 Teoría del péndulo Para comparar con la descripción matemática de la configuración del sistema de cristal líquido colestérico que se encuentra bajo la acción de un campo electrostático uniforme,

Más detalles

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

Energía debida al esfuerzo cortante. J. T. Celigüeta

Energía debida al esfuerzo cortante. J. T. Celigüeta Energía debida al esfuerzo cortante J. T. Celigüeta Energía debida al esfuerzo cortante Tensión y deformación de cortante: Energía acumulada: τ QA τ QA = γ = = Ib G GIb b Q * QA QA Q A A Ucort = τγdv =

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

MECÁNICA DE FLUIDOS CURSO (1) TEMA 5 INSTALACIONES HIDRÁULICAS

MECÁNICA DE FLUIDOS CURSO (1) TEMA 5 INSTALACIONES HIDRÁULICAS MECÁNICA DE FLUIDOS CURSO 007-008 (1) TEMA 5 INSTALACIONES HIDRÁULICAS MECÁNICA DE FLUIDOS CURSO 007-008 () INDICE TEMA 5 5 INSTALACIONES HIDRÁULICAS 5.1 Generalidades 5.1.1 Definición y Modelado de una

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

Mecánica Aplicada. Dinámica

Mecánica Aplicada. Dinámica Mecánica Aplicada Dinámica PROYECTO EDITORIAL SÍNTESIS INGENIERÍA Áreas de Publicación INGENIERÍA INDUSTRIAL COORDINADORA: Alicia Larena Mecánica Aplicada Dinámica Armando Bilbao Enrique Amezua Óscar Altuzarra

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

MÉTODO DE LOS ELEMENTOS FINITOS APLICADOS A LA SOLUCIÓN DEPROBLEMASDELAINGENIERÍAESTRUCTURAL. Gelacio Juárez

MÉTODO DE LOS ELEMENTOS FINITOS APLICADOS A LA SOLUCIÓN DEPROBLEMASDELAINGENIERÍAESTRUCTURAL. Gelacio Juárez MÉTODO DE LOS ELEMENTOS FINITOS APLICADOS A LA SOLUCIÓN DEPROBLEMASDELAINGENIERÍAESTRUCTURAL Gelacio Juárez Abril 2012 Índice general 1. Introducción 5 1.1. Introducción... 5 1.1.1. AplicacióndelMEFenIngeniería...

Más detalles

Marzo TRANSFERENCIA DE ENERGÍA GISPUD

Marzo TRANSFERENCIA DE ENERGÍA GISPUD Marzo 2012 http:///wpmu/gispud/ 1.7 TRANSFERENCIA DE ENERGÍA Ejercicio 7. Transferencia de energía. Tomando como referencia el ejercicio 1.2 de la grafica de energía y potencia, calcular la energía transferida

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

Estructura electrónica molecular

Estructura electrónica molecular Estructura electrónica molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 4 de noviembre de 2016 Índice 1. Aproximación de Born-Oppenheimer 1 2. Ion

Más detalles

CAPÍTULO 1. Ecuaciones de Movimiento del Sistema

CAPÍTULO 1. Ecuaciones de Movimiento del Sistema CAPÍTULO 1 Ecuaciones de Movimiento del Sistema El sistema que se construyó y cuyo análisis es del presente capítulo tiene las siguientes constricciones: 1. El carro solo se puede desplazar en la dirección

Más detalles

CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 3.1 OBJETIVOS Representar mediante ecuaciones matemáticas y gráficas el movimiento de los fluidos. Aplicar las ecuaciones fundamentales de líneas de

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui TEMA II.9 Ecuación de Bernoulli Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

Interpretación del documento "A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS"

Interpretación del documento A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS Celeste Pelayes Bryant Barrientos Fisicoquímica III Interpretación del documento "A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS" Primero abordaremos el tema con un poco de mecánica

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

TEMA 1 Técnicas básicas del análisis de los flujos

TEMA 1 Técnicas básicas del análisis de los flujos TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

La Ecuación de Schrödinger

La Ecuación de Schrödinger La Ecuación de Schrödinger Dr. Héctor René VEGA CARRILLO Notas del curso de Física Moderna Unidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Buzón electrónico: fermineutron@yahoo.com

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

producción de energía en las estrellas interiores estelares

producción de energía en las estrellas interiores estelares producción de energía en las estrellas interiores estelares porqué brillan las estrellas? la energía emitida por las estrellas tiene su origen en reacciones termonucleares que tienen lugar en su interior

Más detalles

DESARROLLO DE LAS UNIDADES DIDÁCTICAS DE LA ASIGNATURA.

DESARROLLO DE LAS UNIDADES DIDÁCTICAS DE LA ASIGNATURA. DESARROLLO DE LAS UNIDADES DIDÁCTICAS DE LA ASIGNATURA. UNIDAD : CÁLCULO INTEGRAL. OBJETIVO DE LA UNIDAD.- Aplicar las reglas del cálculo integral a problemas relacionados con la Integración Indefinida

Más detalles

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES: Al finalizar el curso el estudiante estará en capacidad de: MATERIA: Ecuaciones Diferenciales CÓDIGO: 08278 REQUISITOS: Cálculo en Varias Variables (08275) PROGRAMAS: Ingeniería Industrial, Ingeniería Telemática, Química PERIODO ACADÉMICO: 2016-2 INTENSIDAD SEMANAL:

Más detalles

Diseño óptimo de estructuras. p. 1/30. mecánicas bajo incertidumbre en las cargas

Diseño óptimo de estructuras. p. 1/30. mecánicas bajo incertidumbre en las cargas Diseño óptimo de estructuras mecánicas bajo incertidumbre en las cargas Felipe Alvarez y Miguel Carrasco II Encuentro Núcleo Científico Milenio Sistemas Complejos de Ingeniería Universidad de Chile 15-16

Más detalles

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV

Deflexión DE vigas. Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Universidad de Oriente Núcleo de Bolívar Unidad de Estudios Básicos Área de Matemáticas Asignatura: Matemáticas IV Deflexión DE vigas Profesor: Cristian Castillo Realizado por: Barrios, Yasnahir Campos,

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS ARMONICAS 1.6 DEFINICIONES Elemento lineal: es aquel elemento de redes eléctricas cuyo valor permanece constante independientemente del valor de la corriente que circula por él o del voltaje que se le

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Estática y Dinámica Analítica

Estática y Dinámica Analítica Estática y Dinámica Analítica p. 1/25 Estática y Dinámica Analítica Mecánica II Temas 6 y 7 Manuel Ruiz Delgado Escuela Técnica Superior de Ingenieros Aeronáuticos Universidad Politécnica de Madrid Mecánica

Más detalles

Contenido. 4. Dinámica Lagrangiana y Hamiltoniana. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38

Contenido. 4. Dinámica Lagrangiana y Hamiltoniana. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38 Contenido 4. Dinámica Lagrangiana y Hamiltoniana 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38 Contenido: Tema 04 4. Dinámica Lagrangiana y Hamiltoniana 4.1 Coordenadas

Más detalles

Algebra vectorial y matricial

Algebra vectorial y matricial Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: SEMESTRE: 5 (QUINTO) MODALIDAD

Más detalles

MÉTODOS NUMÉRICOS DE LA

MÉTODOS NUMÉRICOS DE LA SEMINARIOS DE MODELACIÓN COMPUTACIONAL MÉTODOS NUMÉRICOS DE LA MODELACIÓN COMPUTACIONAL MARTÍN N DÍAZD, IGEOF-UNAM, MEXICO 1 Contenido Etapas de la Modelación Computacional Métodos Numéricos Método de

Más detalles

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS 1 PRACTICA # 1 PROPIEDADE FIICA DE LO FLUIDO 1.1 DENIDAD Es una propiedad intensiva que se define como la masa (m) por unidad de volumen (V), y es denotada con la letra "ρ", donde: masa de la sustancia

Más detalles

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005 Soluciones de los ejercicios del examen de Primer curso de Ingeniería Informática - Febrero de 25 Ejercicio. A Dados los puntos A, y 2,2, calcula el camino más corto para ir de A a pasando por un punto

Más detalles

PROGRAMA DE ASIGNATURA

PROGRAMA DE ASIGNATURA UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍAS PROGRAMA DE ASIGNATURA Nombre de la asignatura: Código de la asignatura: 02305 Área de formación: Área de la asignatura: Ubicación asignatura: (semestre/ año)

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Fundamentos de Espectroscopía Prof. Jesús Hernández Trujillo Fac. Química, UNAM

Fundamentos de Espectroscopía Prof. Jesús Hernández Trujillo Fac. Química, UNAM Fundamentos de Espectroscopía Prof. Jesús Hernández Trujillo Fac. Química, UNAM Se utiliza el potencial de Morse para describir la interacción entre los átomos en una molécula diatómica. Las gráficas que

Más detalles

1 EL OSCILADOR ARMONICO

1 EL OSCILADOR ARMONICO 1 EL OSCILADOR ARMONICO 1.1 Autofunciones y Autovalores El potencial del oscilador armónico en una dimensión corresponde a la siguiente expresión matemática: V = 1 kx (1) donde k es la constante de la

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES

ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES ECUACIONES DIFERENCIALES INTRODUCCIÓN A LAS ECUACIONES EN DERIVADAS PARCIALES Objetivo: El alumno conocerá las ecuaciones en derivadas parciales y aplicará el método de separación de variables en su resolución.

Más detalles

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère c Rafael R. Boix y Francisco Medina 1 Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère Consideremos un conductor que ocupa un volumen τ. Sea r el vector de posición de

Más detalles

Curso de Elemento Finito con el software ALGOR

Curso de Elemento Finito con el software ALGOR Curso de Elemento Finito con el software ALGOR Facultad de Ingeniería, UNAM www.algor.com M. en I. Alejandro Farah Instituto de Astronomía, UNAM www.astroscu.unam.mx/~farah Contenido general: - La teoría

Más detalles

22. Ecuaciones de onda relativistas: Klein-Gordon

22. Ecuaciones de onda relativistas: Klein-Gordon Mecánica Cuántica Avanzada Carlos Pena 22-1 22. Ecuaciones de onda relativistas: Klein-Gordon [Sch 5.1-2 Ecuaciones de onda relativistas En el momento actual tenemos dos formalismos cualitativamente diferentes,

Más detalles

SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E

SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E SOLUCION LINEAL DE LA ECUACIÓN DE ONDAS P R O P A G A C I Ó N D E L O L E A J E T E O R Í A D E A I R Y TEMARIO INTRODUCCION CONSIDERACIONES MODELAMIENTO DE LA ECUACIÓN RESOLUCIÓN CONCLUSIÓN INTRODUCCION

Más detalles

Euler y la mínima acción

Euler y la mínima acción Euler y la mínima acción TRICENTENARIO DEL NACIMIENTO DE LEONHARD EULER Diego Restrepo 1 1 Instituto de Física Universidad de Antioquia Abril 23,2007 GFIF Group (UdeA) e u Le r y S min Tricentenario del

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales Tema. Transformaciones Lineales TEMA: TRANSFORMACIÓN LINEAL, NÚCLEO Y RECORRIDO Problema : Sean P el espacio vectorial real de los polinomios de grado menor o igual a dos con coeficientes reales y la transformación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

Problemas de Geometría Analítica del Espacio

Problemas de Geometría Analítica del Espacio 1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

Raíz cuadrada. Superficies de Riemann

Raíz cuadrada. Superficies de Riemann Raíz cuadrada Superficies de Riemann Aplicación: Circuito RLC (a) (b) Aplicación: Circuito RLC Para el circuito (a): De la ley de Ohm con Aplicación: Circuito RLC Es más conveniente utilizar un voltaje

Más detalles

Ejercicios de Rectas y planos.

Ejercicios de Rectas y planos. Matemáticas 2ºBach CNyT. Ejercicios Rectas, planos. Pág 1/9 Ejercicios de Rectas y planos. 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A(1, 0, 0) y B(0, 1, 0). Las coordenadas

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

CÓDIGO ASIGNATURA: PRE-REQUISITO: MATEMÁTICA III SEMESTRE: VIII UNIDADES DE CRÉDITO: CUATRO (4) ELABORADO POR: LIC.

CÓDIGO ASIGNATURA: PRE-REQUISITO: MATEMÁTICA III SEMESTRE: VIII UNIDADES DE CRÉDITO: CUATRO (4) ELABORADO POR: LIC. COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: MATEMÁTICA IV CÓDIGO ASIGNATURA: 2215-7 PRE-REQUISITO: MATEMÁTICA III SEMESTRE: VIII UNIDADES DE CRÉDITO: CUATRO (4) ELABORADO

Más detalles

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES

MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES MATEMÁTICAS (Grado en Química) PRÁCTICA 8 FUNCIONES DE VARIAS VARIABLES 1.- GRÁFICOS TRIDIMENSIONALES ü 1.1.- CÓMO DIBUJAR FUNCIONES EN TRES DIMENSIONES El comando que se necesita para dibujar funciones

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

04 - Elementos de finitos de flexión de vigas. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 04 - Elementos de finitos de flexión de vigas Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Viga de Euler-Bernoulli Viga de Timoshenko Problema

Más detalles

Ondas estacionarias en una cuerda tensa

Ondas estacionarias en una cuerda tensa FS-00 Física General II UNAH Objetivos Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Ondas estacionarias en una cuerda tensa Actualizada y corregida por Fis. Ricardo

Más detalles

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María

Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María 1 Mecánica Clásica - II Semestre 2014 Programa de Doctorado en Física Pontificia Universidad Católica de Valparaíso Universidad Técnica Federico Santa María Problema 1. Una barra rígida (de altura despreciable)

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

MÉTODOS MATEMÁTICOS Y TÉCNICAS COMPUTACIONALES

MÉTODOS MATEMÁTICOS Y TÉCNICAS COMPUTACIONALES MÉTODOS MATEMÁTICOS Y TÉCNICAS COMPUTACIONALES 4º Ingeniero Industrial Departamento de Lenguajes y Ciencias de la Computación http://www.lcc.uma.es/~cmgl/mmtc0708/mm0708.htm PROFESORES Dra. Carmen Mª García

Más detalles

Los pasos que se dan son:

Los pasos que se dan son: Hasta ahora hemos admitido que podemos trabajar con la red de cores de nuestro sólido usando una aproximación clásica lo que nos ha permitido determinar los «modos normales de vibración» en el sentido

Más detalles

SILABO I. DATOS GENERALES

SILABO I. DATOS GENERALES SILABO I. DATOS GENERALES 1. Nombre de la Asignatura : Aplicada 2. Carácter : Obligatorio 3. Carrera Profesional : Ing. Mecánica y Eléctrica 4. Código : IMO505 5. Semestre Académico : 2014 II 6. Ciclo

Más detalles

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales parabólicas Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

MÉTODO DE VARIACIÓN DE PARÁMETROS

MÉTODO DE VARIACIÓN DE PARÁMETROS MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la

Más detalles