Operaciones con conjuntos
|
|
|
- Rafael Venegas Cáceres
- hace 7 años
- Vistas:
Transcripción
1 Operaciones con conjuntos Lucho, un experto parrillero fríe una hamburguesa en 10 minutos, lo que equivale a freír cada cara de la hamburguesa en 5 minutos, él tiene una parrilla donde caben dos hamburguesas simultáneamente. uál es el mínimo tiempo que necesita para freír tres hamburguesas? nión o reunión de conjuntos ( ) Dados dos conjuntos "" y "", se llama unión de estos, a otro conjunto formado por todos los elementos que pertenecen a, a o a ambos. x / x ó x Gráficamente ( ), sería: y no disjuntos y disjuntos Intersección de conjuntos ( ) Dados dos conjuntos "" y "", se llama intersección de estos, a otro conjunto formado por todos los elementos que pertenecen a y a, es decir los elementos comunes. = {x/x x } Gráficamente ( ), sería: Diferencia de conjuntos (-) y no disjuntos y disjuntos = No hay intersección Dados dos conjuntos "" y "", se llama conjunto diferencia y se denota por ( - ) a aquel conjunto formado por todos los elementos que pertenecen a "" y que no pertenecen a "". = {x/x x }
2 Gráficamente ( - ), sería: Diferencia simétrica de conjuntos ( ) y no disjuntos y disjuntos - = Se denomina así al conjunto que resulta de unir los conjuntos ( - ) y ( - ). ( ) ( ) ( ) ( ) Gráficamente ( ), sería: y no disjuntos y disjuntos omplemento de un conjunto Dado un conjunto "", el conjunto complemento de "" es aquel conjunto formado por todos los elementos que pertenecen al universo pero no pertenecen al conjunto "". Gráficamente ', sería: ' x / x y x Observación En las operaciones unión, intersección y diferencia simétrica, se cumple la propiedad conmutativa, es decir: En la diferencia no se cumple, es decir:
3 Problemas para la clase loque I 1. Qué operación representa cada una de las regiones sombreadas? a) b) c) 2. Si: V = {v IN / v es primo; v < 18} y W = {w IN / w es impar; w < 12}, hallar por extensión los siguientes conjuntos: i) V W ii) V W iii) V - W iv) W - V v) W - 3. Recuerda que el cardinal de un conjunto "" está dado por su número de elementos, y se le denota por n(). Entonces, si: P = {x IN / x es un número primo; 10 < x < 50} y Q = {7; 13; 19; 25; 31; 37; 49}, halla: n(p Q). 4. Dado el siguiente diagrama: d) 6. La gráfica corresponde a: 7. Dados: = {1; 2; 4; 5} = {2; 4; 6; 8} Si: y =. Determinar cuáles de las regiones numeradas son vacías. 5. Designando: : el conjunto de todos los nacidos en el Perú. : el conjunto de todos los nacidos en la selva amazónica peruana. : el conjunto de todos los nacidos en Iquitos. El diagrama de Venn que relaciona correctamente los tres conjuntos es: Hallar el cardinal de: 8. Dados los conjuntos: [ - ( - )] ( ) = {x/x IN ; 5 < x < 15} = {x/x IN ; 3 < x < 10} uántos subconjuntos tiene:? 9. Dados los conjuntos: = {1; 2; 5; 8; 10} = {2; 3; 6; 8} = {x/x, x < 7} Hallar el cardinal de: ( )
4 10.Si: = {a, {a}, } Hallar: n[p() ] loque II 1. Qué operación representa cada una de las regiones sombreadas? 3. Si: = {x / "x" tiene más de 6 letras} = { x / "x" es un nombre de mujer} = {x / "x" es un nombre de flor} uál de los siguientes elementos no pertenece a (' )? a) Margarita b) Rosa c) Eva d) Natalia e) Elena 4. Dados los conjuntos: {x IN / x 3 8} {x IN / x 2 3x 2 0} {x IN / x K 2; K 5; K IN} Entonces - ( ), es: a) {0; 3; 4} b) {1; 2} c) {3; 4} d) {0; 3} e) {-2; -1} 5. Dados los conjuntos: 2. Si las regiones sombreadas representan a tres conjuntos: P Q R = {a 2 + 1; b; a - c} = {-3; a 2 ; 5} = {x IN / b - a < x < a + c} Donde, a IN, b IN y = Entonces afirmamos: I. El número cardinal de "" es 4. II. = {4; 5} III. - = {a} El gráfico que corresponde a la operación (P - R) [Q - (R P)], es: Son ciertas: a) I y II b) I y III c) II y III d) Todas e) Sólo I 6. Sean los conjuntos: a) b) = {x ZZ / x = (-1) n ; n IN} = {y Z / y 2 = (y - 3) 2-3} x Z/ 3 x 3 2x 3 c) d) 2 Entonces, es verdadera: a) = b) = e) c) = d) = e) -
5 7. Dados: R = {x / "x" es divisor positivo de 6} S = {x / "x" es divisor positivo de 12} T = {x 2 / "x" es divisor positivo de 18} Hallar: (R S) - T loque III 1. Simplificar: [( - ) ( - )] a) {2; 4, 6} b) {36; 81} c) {1; 3; 4} d) {2; 3; 6} e) {1; 3; 6} 8. uántas de las siguientes expresiones le corresponde a) b) c) al diagrama? d) - e) - 2. Qué representa la región sombreada? I. ( ) ( ) a) 0 b) 1 c) 2 d) 3 e) 4 a) ( - ) ( - ) b) - ( ) II. (' ) ( ) c) ( - ) - ( - ) d) ( - ) III. ( )' ( ) e) Más de una es verdadera. IV. ( ) 9. Si: = {2; 3; 4} y, cuántos elementos tiene ""? 3. Para el diagrama mostrado en la figura, indicar qué operaciones le corresponden. a) 0 b) 1 c) 2 d) 3 e) Más de 3 10.Sabiendo que todos son conjuntos de números enteros positivos. = {x / x < 11} = {x / x 2-9x + 20 = 0} = {x / 2x - 1 < 7} Hallar: n[ ( - )] I. ( - ) - II. ( )' III. ( ) - a) Sólo I b) Sólo II c) Sólo III d) I y II e) I y III a) 2 b) 3 c) 4 d) 5 e) 1
6 4. Dados los conjuntos: 2; 3; 5 4; 2; 5 2; 3; 4; 5 Determine la validez (Verdadero o Falso) de las siguientes proposiciones: 5. Si: = {x IN / 2x - 1 x 2 } = {k IN; / k 3} Halla: n[( ) - ( )] a) 1 b) 2 c) 3 d) 4 e) 5 6. Si: X = {letras de la palabra "tiburón"} I.... ( ) = {vocales} II.... ( ) Hallar: = ( - X)' (X - )
7
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se
Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto.
TEORÍ DE CONJUNTOS. Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. Ejemplos: Los libros de una biblioteca. Los alumnos de una escuela.
OPERACIONES ENTRE CONJUNTOS
OPERCIONES ENTRE CONJUNTOS I. INTRODUCCIÓN GEORGE F.L.P Cantor (1845-1918) Fue el primero en hallar una respuesta acertada a los problemas que surgían del estudio de los conjuntos infinitos. Nació en Rusia
TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.
TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos
CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.
CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer
UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN
UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y
CONJUNTO Y TIPOS DE CONJUNTOS
CONJUNTO Y TIPOS DE CONJUNTOS Ejemplos 1. Determine cuáles de los siguientes conjuntos corresponden a conjuntos vacíos. a) El conjunto de los números naturales mayores que 3 y menores que 6. b) El conjunto
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos
Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:
Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma
NOCIÓN DE CONJUNTOS.
W = 10+2 15+2 6 +2 10 a+b 2 =a 2 +2ab+b 2 NOCIÓN DE CONJUNTOS. Un conjunto es toda agrupación o colección de objetos (personas, animales, cosas, etc.) determinados por una propiedad común. Los conjuntos
CONJUNTOS UNIDAD II. a A. En caso I.1 CONCEPTOS BÁSICOS DE CONJUNTOS
CONJUNTOS UNIDAD II I.1 CONCEPTOS BÁSICOS DE CONJUNTOS Un conjunto es la agrupación en un todo de objetos bien definidos y diferenciables entre si, que se llaman elementos del mismo. Los conjuntos se denotan
Conjuntos I. 1. Concepto. 4. Relación de pertenencia ( ) 2. Notación. 5. Conjuntos especiales. 3. Determinación de conjuntos
Conjuntos I 1. Concepto El término CONJUNTO es aceptado en Matemáticas como un "CONCEPTO PRIMITIVO", es decir, se acepta sin definición. Intuitivamente, un CONJUNTO es una colección o agrupación de objetos
Matemática para el ingreso
Universidad Nacional del Litoral Secretaría Académica Dirección de Articulación, Ingreso y Permanencia Año 2015 Matemática para el ingreso ISBN en trámite Unidad 0. Conjuntos Elena Fernández de Carrera
TEORÍA DE CONJUNTOS.
TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.
UNIDAD V TEORÍA DE CONJUNTOS. ISC. Claudia García Pérez
UNIDAD V TEORÍA DE CONJUNTOS ISC. Claudia García Pérez http://www.uaeh.edu.mx/virtual 1 PRESENTACIÓN La teoría de conjuntos es una parte de las matemáticas, también, es la teoría matemática dónde fundamentar
UNIDAD I CONJUNTOS DE NÚMEROS
NIDD I ONJNTOS DE NÚMEROS occo-sayago. ONJNTOS INTRODIÓN El lenguaje que usamos a diario contiene muchas palabras para designar una colección de objetos; encontraremos en nuestra carrera que en botánica
Conjuntos - Otra Forma Para Contar
Universidad de Puerto Rico Recinto Universitario de Mayagüez AFAMaC-Matemáticas Cesar A. Barreto - Gabriel D. Uribe Septiembre 5 de 2010 Definiciones y Notación Definición Un conjunto es una colección
Profesor: Rubén Alva Cabrera
Profesor: Rubén lva Cabrera INDICE INTRODUCCIÓN RELCION DE PERTENENCI DETERMINCION DE CONJUNTOS DIGRMS DE VENN CONJUNTOS ESPECILES RELCIONES ENTRE CONJUNTOS CONJUNTOS NUMÉRICOS UNION DE CONJUNTOS INTERSECCIÓN
Relaciones binarias I
Relaciones binarias I Dos hombres juegan un partido de tenis al mejor de cinco sets, cuando terminan el partido ambos han ganado tres sets. Cómo puede ser esto? Par ordenado A. Diagrama sagital o de flechas:
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia
MATEMÁTICA UNIDAD N 1: CONJUNTOS 1 AÑO
MTEMÁTI NIDD N 1: ONJNTOS 1 ÑO onjunto Elemento Pertenencia Eisten conceptos-términos que por ser muy primitivos se aceptan sin definir. En la teoría de conjuntos los términos primitivos son: ONJNTO, ELEMENTO,
Lic. Carolina Galaviz Inzunza
Matemáticas Discreta Lic. Carolina Galaviz Inzunza 1.1 Concepto de conjunto Un conjunto es una agrupación, clase o colección de objetos denominados elementos del conjuntos. Elemento Un conjunto se puede
CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie.
RESUMEN DE MATEMATICAS I PARTE I CONJUNTOS CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. A= {números pares} B= { banda de rock} ELEMENTO: Son las ideas u objetos cualesquiera
Algunos ejemplos de conjuntos pueden ser los siguientes:
1. CONJUNTOS Y PRODUCTO CRTESINO. OBJETIVOS: 1) Establecer los conceptos básicos y las distintas notaciones para conjuntos. 2) Descripción de conjuntos en distintas formas: Lista, expresión verbal, expresión
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO
EXPERIMENTO ALEATORIO, EPAIO MUETRAL Y UEO Experimento aleatorio: Es una acción o proceso que puede tener distintos resultados posibles, y cuyo resultado no se conoce hasta que no se lleva a cabo. Ejemplos:
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 2015 Lic. Manuel
En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.
nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas
ELEMENTOS DE LA TEORÍA DE CONJUNTOS
ELEMENTOS DE LA TEORÍA DE CONJUNTOS 1 CONJUNTO EJEMPLOS NOTACIÓN NOTACIÓN TABULAR O POR EXTENSIÓN DE UN CONJUNTO Cuando se define el conjunto por la efectiva enumeración de sus elementos separándolos por
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 45 Parte I 2/ 45 Definición intuitiva de conjunto Definición Un conjunto
Conjuntos. () April 4, / 32
Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En
UNIDAD 1 CONJUNTOS. Prof. Patricia Roballo MATEMÁTICA 5º Año Página 1
UNIDAD 1 CONJUNTOS Conceptos primitivos: conjunto, elemento y la relación pertenecer. Conjuntos bien determinados. Igualdad de conjuntos. Relación de inclusión. Diagramas de Venn. Operaciones entre conjuntos:
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.
TEMA 3 Elementos de la teoría de los conjuntos. *
TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto
S = {lunes, martes, miércoles, jueves, viernes, sábado, domingo
CONJUNTOS Se entiende por conjunto un grupo de entes con una o más características comunes. Los conjuntos están formados por elementos; de esta forma, un conjunto estará bien definido si es posible conocer
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1
Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 TEORÍA DE CONJUNTOS CONOCIMIENTOS BÁSICOS Cuando decimos: "un elemento
CONJUNTOS Y SISTEMAS NUMÉRICOS
1. CONJUNTOS. 1.1 Conceptos básicos Medir y contar fueron las primeras actividades matemáticas del hombre y ambas nos conducen a los números. Haciendo marcas, medían el tiempo y el conteo de bienes que
SISTEMA DE NUMEROS REALES
SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto
Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.
Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora
mi la sol fa si Un conjunto está bien definido si se puede establecer sin dudar si un elemento pertenece o no al conjunto.
CONJUNTOS LENGUJE SIMÓLICO Cada día, en nuestra conversación, por la televisión, en la lectura de por ejemplo un diario, o en el trabajo está presente la idea de conjunto. En matemática utilizaremos la
MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
2 de marzo de 2009 Parte I Conjuntos Definición intuitiva de conjunto Definición Un conjunto es una colección de objetos. Ejemplos A = {a, e, i, o, u} B = {blanco, gris, negro} C = {2, 4, 6, 8, 9} D =
Ejercicios Tema 1. Profesora: Carmen López Esteban. Curso: 1ª Magisterio. Esp. Educación Infantil. Grupo: A.
Profesora: Carmen López Esteban Curso: 1ª Magisterio. Esp. Educación Infantil Grupo: A. Ejercicios de CONJUNTOS Ejercicio 1: 1.1) A = {x/x es país fronterizo con Perú} El conjunto esta por... 1.2) B =
1. Por extensión o forma constructiva. Se declara individualmente todos los elementos del conjunto. Ejemplo: A = {a, b, c, d} A = {2, 4, 6, 8}
ENCUENTRO # 1 Relación de pertenencia y sub- TEMA: Cálculo Aritmético: Dominios numéricos. conjunto. Operaciones con conjuntos. Conjuntos Concepto 1. Es la reunión, agrupación o colección de objetos o
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Tablas de Verdad: p q p q p p V V V V F V F F F V F V F F F F p q p q V V V V F V F V V F F F p q p q V V V V F F F V V F F V p q p q
A = { 1, 2, 3, 4 } B = { álgebra, geometría, cálculo }
TEORI DE CONJNTOS CONJNTOS Concepto y notación de conjunto Consideremos un conjunto como una colección de objetos: lápices, árboles, puntos, etc. Los componentes individuales de un conjunto son sus elementos.
Matemáticas aliadas a la salud MATE3035
Matemáticas aliadas a la salud MATE3035 TEMA: Introducción a la teoría de conjuntos Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Profa. Yuitza T. Humarán Martínez Adaptado por Profa.
personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12
Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo
MATEMÁTICAS CONJUNTOS (OPERACIONES)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS CONJUNTOS (OPERACIONES) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 10 / 02 / 15 TALLER: 1-3 Desempeño: * Realiza operaciones
TRABAJO PRÁCTICO Nº 1
TRABAJO PRÁCTICO Nº CONJUNTOS. NÚMEROS REALES Objetivos: Adquirir el concepto de conjunto. Operar adecuadamente con los conjuntos. Aprehender el concepto de función. Identificar números naturales, enteros,
Conjuntos Un conjunto es una colección de objetos. A cada uno de esos objetos se llama elemento del conjunto.
1 TEORÍA DE CONJUNTOS: IDEAS BÁSICAS Conjuntos Un conjunto es una colección de objetos. A cada uno de esos objetos se llama elemento del conjunto. Un conjunto puede darse enumerando todos y cada uno de
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos
COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA
COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS
UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL GUÍA PRÁCTICA DE CONJUNTOS Y RELACIONES BINARIAS 1. Sean los conjuntos A = {x
INSTITUTO SUPERIOR PEDAGÓGICO LOS RÍOS PROYECTO DE LA UNIDAD INVESTIGACIÓN EJERCICIOS DE PRIMEL NIVEL MATEMÁTICO
INSTITUTO SUPERIOR PEDAGÓGICO LOS RÍOS PROYECTO DE LA UNIDAD INVESTIGACIÓN Nombre: Curso: EJERCICIOS DE PRIMEL NIVEL MATEMÁTICO Realice los ejercicios y seleccione la respuesta correcta encerrada en un
CONJUNTOS Y RELACIONES BINARIAS
UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una
Guía de conjuntos. 1ero A y B La importancia del lenguaje.
Guía de conjuntos. 1ero A y B La importancia del lenguaje. El lenguaje nos permite salir de nosotros mismos y comunicarnos con el mundo; a veces un gesto nos transmite un pensamiento o un sentimiento.
CONJUNTOS TEORIA BASICA DE CONJUNTOS
Repasamos CONJUNTOS TEORIA BASICA DE CONJUNTOS Cualquier colección de objetos o individuos se denomina conjunto. El termino conjunto no tiene una definición matemática, sino que es un concepto primitivo.
Propiedades del producto cartesiano Producto cartesiano. 64 Aritmética Und. 1 Teoría de Conjuntos
La forma de construir todos los pares ordenados posibles es escribiendo la 1ra componente, digamos «h» del conjunto con cada uno de los elementos del conjunto, luego la 2da componente «t» = {(h; ), (h;
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales GEOMETRÍA ANALÍTICA 1. Define e identifica los tipos de conjuntos y las operaciones entre ellos. 2. Emplea de manera sistemática conceptos algebraicos, trigonométricos
Matemática I C.F.E. I.N.E.T. Profesorado de Informática Conjuntos
Conjuntos Conceptos primitivos: CONJUNTO, ELEMENTO, PERTENECE. Pertenecer- Elemento Sea el conjunto de los ríos del Uruguay. El Río Negro es un río del Uruguay. Entonces, este río es un elemento del conjunto
Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4
Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 3. Teoría de
CONCEPTOS BÁSICOS SOBRE TEORÍA DE CONJUNTOS
Teorìa de conjuntos CONCEPTOS BÁSICOS SOBRE TEORÍA DE CONJUNTOS 2.1 DEFINICIONES: 2.1.1 Conjunto: Término básico no definido. Concepto intuitivo: Lista, colección o clase de objetos, bien definidos. Notación:
Estudie la información destacando los conceptos básicos, notaciones y formas existentes para la determinación de conjuntos.
CTIVIDD N 01 OJETIVO N 01 Determinar y representar conjuntos. Estudie la información destacando los conceptos básicos, notaciones y formas existentes para la determinación de conjuntos. sí como en la Geometría
Presentación. DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Iniciación al Cálculo. Operaciones con intervalos y puntos en el plano Pedro Vicente Esteban Duarte
DEPRTMENTO DE CIENCIS MTEMÁTICS Iniciación al Cálculo Operaciones con intervalos y puntos en el plano Presentación Los intervalos son conjuntos de números reales que se puedenrepresentar gráficamente sobre
Probabilidad y Estadística Descripción de Datos
Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 19 Contenido 1 Teoria de
Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática
Contenido BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Nociones de teoría de conjuntos
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
Guía de Ejercicios Conjuntos
I.- Ejercitación ásica y General Guía de Ejercicios onjuntos 1.- Si de un conjunto se pueden obtener 16 subconjuntos, entonces por cuántos elementos está formado el conjunto 2.- Dados los conjuntos : =
CAPÍTULO II TEORÍA DE CONJUNTOS
TEORÍ DE ONJUNTOS 25 PÍTULO II TEORÍ DE ONJUNTOS 2.2 INTRODUIÓN Denotaremos los conjuntos con letras mayúsculas y sus elementos con letras minúsculas, si un elemento p pertenece a un conjunto escribiremos
Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar
Conjuntos. Relaciones. Aplicaciones
Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B
Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos
Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos
Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces.
Clase-02 Continuación Números Naturales: Múltiplos: Si n IN ; múltiplo de un número n es todo número natural que contiene a n un número entero de veces. Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene
TEMA N 1 LÓGICA Y CONJUNTOS
TEMA N 1 LÓGICA Y CONJUNTOS DEFINICIÓN Y NOTACIÓN DE CONJUNTOS OBJETIVOS Comprenderás, o repasarás, la idea intuitiva de conjunto. Definirás conjuntos por enumeración y por comprensión, así como su forma
Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:
2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,
Pregunta 1 Es correcta esta definición? Por qué?
TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta
TEORÍA DE CONJUNTOS I.- NOTACIÓN DE CONJUNTO II.- RELACIÓN DE PERTENENCIA ( )
TEORÍ DE CONJUNTOS Podemos entender por conjunto a la agrupación, asociación, colección, reunión, unión de integrantes homogéneos y heterogéneos, los cuales pueden ser naturaleza real o imaginaria. En
Prof.Juan Cabral - UTU Maldonado. Tablas de pertenencia
Tablas de pertenencia TABLAS DE PERTENENCIA Una técnica para probar igualdades entre conjuntos es la tabla de pertenencia. Se observa que para los conjuntos A y B U, un elemento x U cumple exactamente
TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.
TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos
{ } Listado de elementos del conjunto
CONJUNTOS Qué es un conjunto? Un conjunto es un grupo no ordenado de elementos que comparte una o más características. Nomenclatura en los conjuntos Los conjuntos siempre se nombran con letras mayúsculas,
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
CONJUNTO. Intuitivamente un conjunto es una colección de elementos bien definidos
CONJUNTO Intuitivamente un conjunto es una colección de elementos bien definidos Notación de Conjunto Los nombres de los conjuntos se enuncian con letras mayúsculas y sus elementos con letra minúscula.
Unidad II. Conjuntos. 2.1 Características de los conjuntos.
Unidad II Conjuntos 2.1 Características de los conjuntos. Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
1 Conjuntos y propiedades de los números naturales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #1: martes, 31 de mayo de 2016. 1 Conjuntos y propiedades de los números
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS.
TEMA 11 ÍNDICE CONCEPTOS BÁSICOS DE LA TEORÍA DE CONJUNTOS. ESTRUCTURAS ALGEBRAICAS. 1. INTRODUCCIÓN 2. CONJUNTOS 3. SUBCONJUNTOS 4. OPERACIONES 4.1 UNIÓN 4.2 INTERSECCIÓN 4.3 COMPLEMENTO 4.4 DIFERENCIA
Conjuntos, Relaciones Binarias y Funciones
II UNIDAD Conjuntos, Relaciones Binarias y Funciones Ingeniero Julio Núñez Cheng 1 ESQUEMA VISUAL DE LA UNIDAD DIDÁCTICA Conjuntos Concepto Determinación de conjuntos Tipos de conjuntos Operaciones con
TEORIA DE CONJUNTOS. Profesor: JOHN JAIRO HERRERA
Conceptos históricos TEORIA DE CONJUNTOS Profesor: JOHN JAIRO HERRERA En el último cuarto del siglo XIX se vivió un episodio apasionante de la historia de las matemáticas que las ligaría desde entonces
Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }
La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas
Conjuntos Numéricos I
Conjuntos Numéricos I En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización
