PIEZAS SOMETIDAS A FLEXIÓN
|
|
|
- Susana Romero Arroyo
- hace 7 años
- Vistas:
Transcripción
1 PIEZAS SOETIDAS A FEXIÓN PROBEA 6 En la figura se representa una viga continua e os vanos e 5m y 4m respectivamente con su extremo izquiero empotrao y su extremo erecho apoyao. Tenieno en cuenta que las cargas que eberá e soportar la viga son una carga uniforme en toa su longitu g 10N/m y un momento puntual antihorario e 100Nm aplicao en el extremo erecho, ambas cargas e carácter permanente, aemás e una carga puntual centraa en el primer vano e carácter variable Q 150N, se pie inicar si un perfil IPE0 en acero S55 sería suficiente para las siguientes situaciones e arriostramientos transversales sobre la viga: 1º) No hay más puntos e arriostramientos que las secciones e apoyo y empotramiento. º) Se incluye un punto e arriostramiento aicional en la sección central el primer vano. En caso e que el perfil propuesto no fuera suficiente inicar que tipo e meia se poría aoptar. Otros atos: En el EU e paneo lateral tómense la expresión simplificaa el CTE para eterminar el. Coeficientes el CTE: G 1,5; Q 1,5; 0 1,05; 1 1,05 159N 17,7N 189Nm 10,7N 17Nm 16Nm 15Nm - 1 -
2 PIEZAS SOETIDAS A FEXIÓN SOUCIÓN 1º) Esfuerzos sobre la pieza En primer lugar hay que obtener las acciones poneraas tenieno en cuenta su origen. g Q g Q G Q 10N / m 1,5 1,5N / m G 100Nm 1,5 15Nm 150N 1,5 5N A continuación se obtienen los iagramas e esfuerzos cortantes y momentos flectores. En la figura se inican los valores máximos y otros valores significativos. º) EU e agotamiento resistente Se calculará el esfuerzo cortante resistente e la sección para ver si es preciso tener en cuenta la interacción flector+cortante. El perfil ao IPE0 presenta un área e cortante A v 0,81cm. ( f / ) y 55N / mm V Avz 081mm 601,4N >> V max 159N 1,05 0 El cortante máximo rona el 5% e V por lo que resulta espreciable. Esto significa que la comprobación el EU por agotamiento resistente se puee llevar a cabo tenieno en cuenta sólo el momento flector presente en la sección e máxima solicitación. Al tratarse e una sección e clase 1, la resistencia e cálculo a flexión e la sección ( c, ) se puee tomar como el momento resistente plástico e cálculo e la sección bruta ao por: Wpl f y 80400mm 55N / mm c. pl. 71,9Nm > 1,05 0 Esto confirma que el perfil IPE0 es aceptable ee el punto e vista e agotamiento resistente. º) EU por paneo lateral El momento resistente al paneo lateral ( b. ) e la viga se obtiene a partir e la resistencia plástica e la sección multiplicaa por el coeficiente e reucción por paneo lateral χ. b. W pl f y β w sieno β w 1 por tratarse e sección e Clase 1 1 b. 71, 9Nm χ epene e que representa la esbeltez aimensional efinia como pl /. cr, - -
3 PIEZAS SOETIDAS A FEXIÓN El CTE amite que el momento crítico e paneo lateral se puea obtener a partir e la ecuación: + cr v w v que representa la resistencia por torsión uniforme se puee obtener a partir e: v π C1 E I z G I t A la vista el iagrama e momentos y tenieno en cuenta que en la situación inicial no hay ningún arriostramiento intermeio el coeficiente C 1 más aecuao parece el corresponiente a una viga biempotraa con carga puntual centraa (C 1 1,565) y para una longitu 5m. De moo que v π v C1 E I z G It 190, 75Nm Por su parte w que representa la resistencia por torsión no uniforme se porá obtener a partir e w W π E el, y C 1 i W el,y óulo resistente elástico según el eje fuerte 71,1 cm i f,z Raio e giro, con respecto al eje ébil, e la zona comprimia (ala +tercio el alma). one i A f I 1 + A 4, 5 w, c mm I f,z omento e inercia el ala comprimia reucia respecto el eje ébil 9576mm 4 A f Área el ala comprimia 160mm 11,5mm 1840mm A w,c Área e la parte comprimia el alma t 71mm 7,5mm w 1016mm Por tanto la componente w y el momento crítico valrán: π E w Wel, y C1 i 167, 1Nm cr v + w 5, 6Nm - -
4 PIEZAS SOETIDAS A FEXIÓN A partir el momento crítico se tiene la esbeltez normalizaa 1,04 El coeficiente χ se obtiene e la curva e paneo b sabieno que α 0,4: φ α ( 0.) + 1,18 ; χ φ + 1 [ φ ] 0.5 0,57 Por último el momento e agotamiento por paneo lateral resulta: b. 71,9Nm 0,57 71,9 155Nm < Por tanto el perfil propuesto sería insuficiente frente al paneo lateral. En el caso e introucir un arriostramiento transversal en la sección e aplicación e la carga puntual se a la circunstancia e tener que analizar a paneo lateral os tramos: *Tramo 1 corresponiente a los,5m e longitu entre el empotramiento y la sección central el vano. Tenieno en cuenta que hay una inversión e momentos ee -189Nm hasta +16Nm parece aecuao tomar un coeficiente e momentos C 1,7. Esto conuce a unos momentos: v 665, 48Nm ; w 1166, Nm ; + 14, Nm cr v w 7 a esbeltez, el coeficiente e reucción y el momento e agotamiento por paneo valen aquí: 0,45 ; χ 0, 91; b. 71,9Nm 0,91 71,9 46,9Nm > o que inica que no habria problemas con el perfil propuesto. *Tramo corresponiente a los 4m e longitu corresponientes al seguno vano en one no existe ningún arriostramiento intermeio. De nuevo hay una inversión e momentos ee -17Nm hasta +15Nm por lo que parece aecuao tomar un coeficiente e momentos C 1,75. os momentos ebios a la torsión uniforme y no uniforme y el corresponiente momento crítico valen: v 418, 97Nm ; w 458, 9Nm ; + 61, Nm cr v w 4 a esbeltez, el coeficiente e reucción y el momento e agotamiento por paneo son ahora: - 4 -
5 PIEZAS SOETIDAS A FEXIÓN 0,66 ; χ 0, 80 ; b. 71,9Nm 0,8 71,9 18,9Nm > 15Nm De nuevo este resultao emuestra que el perfil IPE0 propuesto sería válio
Dimensionado de vigas de acero solicitadas a flexión.
Dimensionado de vigas de acero solicitadas a flexión. Apellidos nombre Arianna Guardiola Víllora ([email protected]) Departamento Centro ecánica del edio Continuo Teoría de Estructuras Escuela Técnica
Ejemplo: Uso del perfil IPE como correa simplemente apoyada
Ref. Documento SX01a-ES-EU Hoja 1 de 10 Eurocódigo Ref Hecho por Mladen Lukic Fecha Ene 006 Revisado por Alain Bureau Fecha Ene 006 Ejemplo: Uso del perfil IPE como correa simplemente Este ejemplo proporciona
PIEZAS SOMETIDAS A FLEXIÓN
PIEZAS SOETIDAS A FLEXIÓN PROBLEA Nº Seleccionar en acero S55 una sección adecuada para la viga en ménsula que se muestra en la igura, siguiendo las indicaciones del EC. La pieza deberá ser capaz de soportar
Cálculo elástico y cálculo plástico de vigas de acero solicitadas a flexión.
Cálculo elástico y cálculo plástico e vigas e acero solicitaas a flexión. pellios, nombre rianna Guariola Víllora ([email protected]) Departamento Centro ecánica el eio Continuo y Teoría e Estructuras
Estructuras de acero Pandeo lateral de vigas
Estructuras de acero Pandeo lateral de vigas. oncepto. Al someter una chapa delgada a flexión recta en el plano de maor rigidez, antes de colapsar en la dirección de carga lo hace en la transversal por
MEMORIA ESTRUCTURAS METÁLICAS
EORIA ESTRUCTURAS ETÁLICAS Javier Sansó Suárez Ana Sánchez Gonzálvez Ingeniería tec. Industrial ecánica DESCRIPCIÓN amos a realizar el cálculo de una estructura metálica de 913 m2 de las siguientes dimensiones:
N brd = χ A f yd. siendo:
Documento Básico - C E R O a) debidos al peso propio de las barras de longitudes inferiores a 6 m; b) debidos al viento en las barras de vigas trianguladas; c) debidos a la excentricidad en las barras
CÓDIGO TÉCNICO de la EDIFICACIÓN DB SE-A Seguridad Estructural: Acero
CÓDIGO TÉCNICO de la EDIFICACIÓN MÉTODOS de CÁLCULO Tensiones Admisibles σ σ h adm = σ γ s Estados Límites Efectos de 1 er Orden Efectos de 2 o Orden NBE MV-102 NBE MV-103 NBE MV-104 NBE MV-105 NBE MV-106
CAPÍTULO IX: LAS VIGAS-PILAR 9.1. INTRODUCCIÓN
CAPÍTULO IX: LAS 9.. ITRODUCCIÓ Las vigas-pilar se definen como piezas sometidas a compresión flexión combinadas. En principio, todos los elementos de las estructuras de edificación son en realidad vigaspilar,
Ejercicio N 5. Estructuras Metálicas Facultad de Ingeniería. Estructuras de Acero Liviano Curso 2002
Ejercicio N 5. Verificar la aptitud de las correas de un sistema de cubiertas que se ajusta al siguiente esquema. Las correas se confeccionaron con perfiles C 00x50x5x.0mm de chapa plegada en calidad IRAM-IAS
Tema 5 : FLEXIÓN: TENSIONES
Tema 5 : FLEXIÓN: TENSIONES σ MAX (COMPRESIÓN) G n n σ MAX (TRACCIÓN) Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.Zamora (U.SAL.) 008 5.1.Representar los diagramas de fueras cortantes de momentos
Flexión Compuesta. Flexión Esviada.
RESISTENCIA DE MATERIALES. ESTRUCTURAS BOLETÍN DE PROBLEMAS Tema 6 Flexión Compuesta. Flexión Esviada. Problema 1 Un elemento resistente está formado por tres chapas soldadas, resultando la sección indicada
PROBLEMAS DE RESISTENCIA DE MATERIALES MÓDULO 5: FLEXIÓN DE VIGAS CURSO
PROBEMAS DE RESISTENCIA DE MATERIAES MÓDUO 5: FEXIÓN DE VIGAS CURSO 016-17 5.1( ).- Halle, en MPa, la tensión normal máxima de compresión en la viga cuya sección y diagrama de momentos flectores se muestran
CAPÍTULO 1. INTRODUCCIÓN A LA ESTRUCTURA METÁLICA. EL ACERO ESTRUCTURAL. CARGAS.
INDICE. ACERO ESTRUCTURAL. Gil-Hernández. CAPÍTULO 1. INTRODUCCIÓN A LA ESTRUCTURA METÁLICA. EL ACERO ESTRUCTURAL. CARGAS. 1.1 INTRODUCCIÓN 1 1.2 VENTAJAS DE LA ESTRUCTURA DE ACERO 1 1.3 LA ESTRUCTURA
Proyecto estructural de la nueva estación Foc-Cisell para la línea 2 del metro de Barcelona Pág. 1. Resumen
Proecto estructural de la nueva estación Foc-Cisell para la línea del metro de Barcelona Pág. Resumen En este anexo, se trata de dimensionar los puntales que permiten mantener en equilibrio la pantalla.
ESTRUCTURAS METALICAS MEMORIA RAIMUNDO VEGA CARREÑO
ESTRUCTURAS METALICAS MEMORIA RAIMUNDO VEGA CARREÑO ESTRUCTURAS METÁLICAS 1. Geometría. Tenemos una nave industrial de 41 metros de largo por 20 metros de ancho. En este caso hemos optado debido al diseño,
Estructuras de acero: Problemas Vigas
Estructuras de acero: Problemas Vigas Dimensionar con un perfil IPE una viga biapoada de 5 m de luz que soporta una sobrecarga de 0 kn/m uniformemente repartida. El acero es S75. Solución: Se supone un
CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo
CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades
Ejemplo: Columna continua en un edificio de varias plantas utilizando secciones H o RHS
Documento Ref SX00a-ES-EU Hoja de 8 Eurocódigo Ref E 993-- Hecho por Matthias Oppe Fecha Junio 005 Revisado por Christian Müller Fecha Junio 005 Ejemplo: Columna continua en un edificio de varias plantas
Sistema Estructural de Masa Activa
Sistema Estructural de Masa Activa DEFINICIÓN DE SISTEMAS ESTRUCTURALES Son sistemas compuestos de uno o varios elementos, dispuestos de tal forma, que tanto la estructura total como cada uno de sus componentes,
Capitulo 6 Diseño a Flexión. Ingeniería en Construcción-UV
Capitulo 6 Diseño a Flexión 1 Ingeniería en Construcción-UV 02/07/2013 1.- Las Solicitaciones. Capítulo IV: Diseño a Flexión Si una viga recta se somete a q y P. P q A L B 02/07/2013 Ingeniería en Construcción-UV
MEMORIA DESCRIPTIVA DE CÁLCULO. ESTRUCTURA.
4..4 CALCULO DEL FORJADO BAJO CUBIERTA Del edificio en estudio con la disposición estructural desarrollada en proyecto, como se indica a continuación; se pretende resolver su estructura metálica como un
5.7. ANEJO DE CÁLCULO DE ESTRUCTURA METÁLICA DE ESCALERA
PROYECTO DE REFORMA, REDISTRIBUCIÓN INTERIOR Y RENOVACIÓN DE INSTALACIONES EN PLANTA ALTA Y LOCAL EN PLANTA BAJA DE LA SEDE DE LA DELEGACIÓN TERRITORIAL SITUADA EN PLAZA SAN JUAN DE LA CRUZ MÁLAGA 5.7.
60 o 60 o. RESISTENCIA DE MATERIALES II CURSO EXAMEN DE JUNIO 30/5/ h 15 min
RESISTEI DE MTERIES II URSO 1-1 EXME DE JUIO /5/1 1 h 15 min echa de publicación de la preacta: /6/1 echa y hora de la revisión del examen: 1/6/1 a las 9: 1. Un perfil IPE de m de longitud, empotrado en
CAPÍTULO VII: PIEZAS A COMPRESIÓN (PILARES) 7.1. INTRODUCCIÓN
CAPÍTULO VII: ) 7.1. ITRODUCCIÓ Aunque en la práctica la mayoría de los pilares están sometidos a flexión a la vez que a compresión, es conveniente considerar la compresión como un caso básico. El término
ESTRUCTURAS METALICAS. Capítulo III. Compresión Axial 05/04/2016 INGENIERÍA EN CONSTRUCCION- U.VALPO 128
ESTRUCTURAS METALICAS Capítulo III Compresión Axial INGENIERÍA EN CONSTRUCCION- U.VALPO 18 Compresión Axial Casos más comunes de miembros que trabajan a compresión. Columnas. Cuerdas superiores de armaduras.
Estructuras de acero: Problemas Cercha
Estructuras de acero: roblemas Cercha Se pretende dimensionar las barras de la cercha de una nave situada en Albacete, de 8 m de luz, 5 m de altura de pilares, con un 0% de pendiente de cubierta. La separación
SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS
SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS LONGITUDINALMENTE SECCIÓN TRANSFORMADA DE ALAS RIGIDIZADAS LONGITUDINALMENTE Abolladura LOCAL del panel comprimido con rigidización longitudinal De acuerdo con
Cálculo de celosías planas de nudos articulados con el método de Ritter
álculo e celosías planas e nuos articulaos con el métoo e Ritter pellios, Nombre Departamento entro Pérez García, gustín ([email protected]) Guariola Víllora, rianna ([email protected]) Mecánica el Meio ontinuo
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real A 2 A 1
Si la sección de un perfil metálico es la que aparece en la figura, suponiendo que la chapa que une los círculos es de espesor e inercia despreciables, determina la relación entre las secciones A 1 y A
APLI CACI ÓN CI RSOC EL V I GAS ARM ADAS DE ALM A ESBELTA. Funda m e nt os Est a dos lím it e s de Flex ión y Cor t e
APLI CACI ÓN CI RSOC 3 0 1 -EL V I GAS ARM ADAS DE ALM A ESBELTA Funda m e nt os Est a dos lím it e s de Flex ión y Cor t e ***** UTN - FRM 1 VIGAS ARMADAS DE ALMA ESBELTA - h/tw > λr APLICACIÓN CIRSOC
400 kn. A 1 = 20 cm 2. A 2 = 10 cm kn
Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDD DE JÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación
Viga carril de puente grúa. Sección Doble Te de simple simetría. Aplicación Capítulos A, F, K y Apéndices B, F y K.
119 EJEMPLO N 17 Viga carril de puente grúa. Sección Dole Te de simple simetría. Aplicación Capítulos A, F, K Apéndices B, F K. Enunciado: Dimensionar una viga carril para puente grúa con sección armada
Dr. Bernardo Gómez González
EJEMPLO DEL CÁLCULO DE LOS ESFUERZOS PERMISIBLES POR COMPRESIÓN AXIAL Y POR FLEXIÓN ALREDEDOR DEL EJE DE MAYOR MOMENTO DE INERCIA DE LA SECCIÓN TRANSVERSAL DISEÑO ESTRUCTURAL UNIVERSIDAD TECNOLÓGICA DE
Práctico 10: Desplazamientos en vigas isostáticas
Práctico 10: Desplazamientos en vigas isostáticas Ejercicio 1: Una columna telescópica de tres tramos está empotrada en la base y sometida a una carga de 5kN (compresión) en su etremo superior. a longitud
Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.)
Tema 6: FLEXÓN: DEFORONES + Problemas resueltos Prof.: Jaime Santo Domingo Santillana P.S.-Zamora (U.SL.) - 008 6..-La viga de la figura es una PE-60 está sometida a la carga concentrada indicada de 0
Análisis del par de torsión de rotación
El par de torsión de rotación que se requiere para convertir el movimiento de rotación del husillo de bolas en movimiento recto se obtiene con la siguiente ecuación (44). [Durante el movimiento uniforme]
C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE
COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los
Datos: a = 1 2m q = 800 kg/m E = kg/cm 2. ************************************************************************
.- En la viga de la figura: a) Determinar las reacciones. b) Dimensionar la sección de la viga con perfil IPN, de forma ue la flecha en el extremo del voladizo no exceda de 5 mm. c) Hallar la flecha máxima
Estructuras de acero: Problemas Correas
Estructuras de acero: Problemas Correas Se pretenden calcular las correas de una nave situada en Albacete, de 18 m de lu, 5 m de altura de pilares, con un % de pendiente de cubierta. La separación de los
ESTABILIDAD II A (6402)
1 ESTABILIDAD II A (6402) GUIA DE TRABAJOS PRÁCTICOS COMPLEMENTARIOS DE SOLICITACIÓN POR TORSIÓN, FLEXIÓN, FLEXIÓN VARIABLE Y COMPUESTA Y CÁLCULO DE DESPLAZAMIENTOS POR TTV.: Por Ing. H.Eduardo Rofrano
CÁLCULOS EN ACERO Y FÁBRICA
CÁLCULOS EN ACERO Y FÁBRICA Con la entrada del Código Técnico la edificación sufrió un cambio en todos sus niveles, proyecto, construcción y mantenimiento, obteniendo por tanto, todo un conjunto de variaciones
PROYECTO DE FORJADOS RETICULARES
DEPARTAMENTO DE ESTRUCTURAS DE EDIFICACIÓN DOCUMENTO EE4 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE MADRID 1 / 5 UNIVERSIDAD POLITÉCNICA DE MADRID PROYECTO DE ESTRUCTURAS DE HORMIGÓN 08 de Febrero de
bir=bpcrbowl=`loq^kqb
OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bir=bpcrbowl=`loq^kqb iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página
Prueba experimental. Difracción de luz en un hilo.
Prueba experimental. Difracción e luz en un hilo. Introucción; objetivo. El año 214 ha sio eclarao Año Internacional e la Cristalografía por las Naciones Unias, para conmemorar el centenario el escubrimiento
afpb l=ab=sfd^p iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos
OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos afpb l=ab=sfd^p iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página 1 l_gbqfslp
A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1
1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está
Tema 7: FLEXIÓN: HIPERESTATICIDAD. Problemas resueltos
Tema 7: FLEXIÓN: HIPERESTTIIDD Problemas resueltos Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 7.1.-En la viga de la figura calcular las reacciones en los apoyos M M R R m 1 m Ecuaciones
UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)
PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio
Tema6 : Abolladura en elementos delgados. Estructuras Metálicas. Grado en Ingeniería de Obras Públicas
Tema6 : Estructuras Metálicas Grado en Ingeniería de Obras Públicas 1 1. Concepto de abolladura Definición: fenómeno de inestabilidad por el cual una chapa esbelta sometida a tensiones normales en su plano
Fundamentos de la mecánica cuántica
Funamentos e la mecánica cuántica Antonio M. Márquez Departamento e Química Física Universia e Sevilla Curso 216-217 Problema 1 Las líneas observaas en el espectro e emisión el irógeno atómico vienen aas
CAPÍTULO F. VIGAS Y OTRAS BARRAS EN FLEXIÓN
CAPÍTUO F. VIGAS Y OTRAS BARRAS N FXIÓN ste Capítulo es aplicale a arras prismáticas, con secciones compactas no compactas, sujetas a flexión corte. as arras formadas por un solo perfil ángulo (de ángulo
Escuela Técnica Superior de Ingenieros Agrónomos de Albacete. ELEMENTOSdeCONSTRUCCION ELEMENTOSdeCONSTRUCCION ELEMENTOSdeCONSTRUCCION
Escuela Técnica Superior de Ingenieros Agrónomos de Albacete Luis López García Jesús Antonio López Perales Escuela Técnica Superior de Ingenieros Agrónomos de Albacete Luis López García dr. ingeniero agrónomo
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 10.- SOLUCIONES CONSTRUCTIVAS EN CONSTRUCCIONES METALICAS Esta unidad de trabajo la vamos a desarrollar desde un punto de vista
XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica
XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo
Uniones Atornilladas. Problema resuelto
Se pretende empalmar dos chapas de acero S 355 de 20 mm de espesor mediante sendos cubrejuntas de 12 mm de espesor unidos con 8 tornillos ordinarios. Se pide: 1. Propuesta de tipos de tornillos y acero
ÍNDEX ANEXO III CÁLCULO DE LAS VIGAS CARRIL
ÍNDEX ANEXO III CÁLCULO DE LAS VIGAS CARRIL Índex ANEXO III CÁLCULO DE LAS VIGAS CARRIL... 1 Capítol 1: CÁLCULO DE LAS VIGAS CARRIL.... 3 1.1. Reacciones en bogies del lado izquierdo.... 3 1.2. Reacciones
FILPALCOS ESTRUCTURA PORTANTE CUBIERTA 15 METROS CON AREAS DE SERVICIO
PETICIONARIO TÉCNICO ESTRUCTURA PORTANTE CUBIERTA 15 METROS CON AREAS AUTOR ASOCIACIÓN DE INVESTIGACIÓN METALÚRGICA DEL NOROESTE Área de Ingeniería TÉCNICO ESTRUCTURA INDICE 1.- ANTECEDENTES y OBJETO...2
Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m
Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación
5. Dimensiones para tuberías
5. Dimensiones para tuberías De acuero a la normativa ISO, la esignación el material (por ejemplo, PE 100) se relaciona con el nivel e Resistencia Mínima Requeria, MRS (Minimum Require Strength) que se
Ejemplo: Estabilidad al desplazamiento lateral
Documento Ref SX008a-ES-EU Hoja 1 de 10 Desipción: Este ejemplo contempla el diseño por inestabilidad global de estructuras o estabilidad ante desplazamiento lateral. La estructura considerada es un pórtico
ZAPATAS MEDIANERAS. Sin viga de fundación. Con viga de fundación áerea. Con viga de fundación enlazada
ZAPATAS MEDIANERAS Sin viga de fundación Con viga de fundación áerea Con viga de fundación enlazada ANALISIS ESTRUCTURAL DE ZAPATAS MEDIANERAS Por CARLOS MAURICIO AGUIRRE GALLEGO ALEJANDRO DARIO AMARIS
ruedas para rieles Microdureza (HDV) 600 0,5
rueas para rieles Rueas para Rieles Las rueas para rieles e MIGUEL ABA S. A. han sio iseñaas para iferentes usos y aplicaciones e la inustria. Vienen a solucionar y facilitar tanto el iseño, como la provisión
K
Universia e Navarra Naarroako Unibertsitatea Escuela Superior e Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA: TECNOLOGÍAS DE FABRICACIÓN CURSO KURTSOA: 4º Tiempo: 1 hora, 30 minutos P_JUN_09
Viga continua de 5 tramos: Armado Hormigón
Nivel iniciación - Ejemplo 7 Viga continua de 5 tramos: Armado Hormigón Se procede a calcular el armado de la viga continua de hormigón definida en el ejemplo 5, y a obtener el plano de despiece de esas
Tema 1. Acciones en la Edificación según el nuevo CTE (2 horas)
Asignatura: CONSTRUCCIONES AGRÍCOLAS Centro: Escuela Politécnica Superior Estudios: Ingeniero Agrónomo Curso Académico: 2010/11 Curso: 4 o Cuatrimestre: 1C Carácter: Troncal Créditos de Teoría: 3 Créditos
PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS
PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS 1. El dibujo de la figura muestra una combinación de pluma de brazo con un tensor que soporta una carga de 6kN. Ambas piezas están hechas de
Clasificar en base al Eurocódigo 3 Parte 1-1, las secciones transversales propuestas:
PROBLEMA Nº Clasiicar en base al Eurocóigo Pare -, las secciones ransversales propuesas: º) Peril IPE00 someio a lexión simple, a lexión compuesa o a compresión simple y para los res ipos e acero: S5,
TEMA 4: PROBLEMAS RESUELTOS DE DEFORMACIÓN ANGULAR
Problemas eformación ngular T : PROLS RSULTOS ORÓN NGULR.. plicando el método de la deformación angular obtener el diagrama de momentos flectores y dibujar aproximadamente la deformada de la estructura
Difracción producida por un cabello Fundamento
Difracción proucia por un cabello Funamento Cuano la luz láser se hace inciir sobre un cabello humano, la imagen e ifracción que se obtiene es similar a la que prouce una oble renija (fig.1). Existe una
Seminario 12: Condensadores.
Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema
ESOL ÍNDICE GENERAL. DISEÑO Y CÁLCULO DE UNIONES EN ESTRUCTURAS DE CESOL ACERO
ESOL CESOL ÍNDICE GENERAL. DISEÑO Y CÁLCULO DE UNIONES EN ESTRUCTURAS DE ACERO DISEÑO Y CÁLCULO DE UNIONES EN ESTRUCTURAS DE ACERO En la elaboración de este texto han colaborado: D. Luis Miguel Ramos Prieto
Solución: (esfuerzos en KN) 200 kn. 400 kn. 300 kn. 100 kn. 5 m A C. 2 x 5m = 10 m. 1 cm 1,2 cm 1 cm
Problema 1. n la celosía de la figura, calcular los esfuerzos en todas las barras y reacciones en los apoyos, debido a la actuación simultánea de todas las acciones indicadas (cargas exteriores y asientos
Leonardo Da Vinci (Siglo XV)
UN POCO DE HISTORIA Leonardo Da Vinci (Siglo XV) Los 6 puentes de Leonardo Leonardo Da Vinci (Siglo XV) El método para doblar vigas de madera para darles forma de arco sin romper sus fibras Galileo (Siglo
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real
Calcular el soporte extremo de la nave, la placa de anclaje, si es necesario, las cartelas, del supuesto recogido en la figura, sabiendo que: La altura del pilar es de 5 m. La separación entre pilares
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre MECÁNICA.
PRUEBAS DE ACCESO A LA UNIVERSIDAD DE BACHILLERATO LOGSE (PLAN 2002) Septiembre 2005. MECÁNICA. C1) Determina la resultante del sistema de fuerzas coplanarias mostrado en la figura inferior izquierda.
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
FERNANDO SARRÍA ESTRUCTURAS, S.L. PLAZA MAYOR BAJO SARRIGUREN (NAVARRA)
REF.: 00.007 vna FORJADO DE PRELOSAS PRETENSADAS DE VIGUETAS NAVARRAS, S.L. Altxutxate, Polígono Industrial de Areta 60 HUARTE-PAMPLONA (NAVARRA) FICHAS DE CARACTERÍSTICAS TÉCNICAS FERNANDO SARRÍA ESTRUCTURAS,
RESISTENCIA DE MATERIALES
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE
HORMIGÓN II TEMA: GUÍA DE ESTUDIO SOBRE VIGAS MIXTAS VIGAS MIXTAS 2- MATERIALES EMPLEADOS EN LA CONSTRUCCIÓN DE VIGAS MIXTAS
VIGAS MIXTAS El tema se refiere a vigas formadas por perfiles metálicos donde la losa de hormigón armado colabora para absorber los esfuerzos de compresión. Este tipo de vigas tiene la ventaja de colocar
Reglamentación Título F.4 ESTRUCTURAS DE ACERO CON PERFILES DE LÁMINA FORMADA EN FRÍO
Reglamentación Título F.4 ESTRUCTURAS DE ACERO CON PERFILES DE LÁMINA FORMADA EN FRÍO ESTRUCTURAS DE ACERO CON PERFILES DE LÁMINA FORMADA EN FRÍO Para la NSR-98 F.6.1 Generalidades F.6.2 Elementos F.6.3
Introducción a las Estructuras
Introducción a las Estructuras Capítulo doce: Ejemplo 10 Ejemplo diez. Se pide: Calcular las solicitaciones y dimensionar todos los elementos que componen el entrepiso de madera que se muestra en la planta
1. Hallar por el método de Cross los diagramas de momento flector y de esfuerzo
1. allar por el método de ross los diagramas de momento flector y de esfuerzo cortante, así como las reacciones de la estructura de la figura, empleando el método de superposición en las barras cargadas.
Vigas (dimensionamiento por flexión)
Vigas (dimensionamiento por flexión) 1. Predimensionamiento por control de flechas 1.1. Esbelteces límites Según Reglamento CIRSOC 201 capítulo 9 tabla 9.5.a): Luego: Luz de cálculo (medida desde el borde
Introducción a las Estructuras
Introducción a las Estructuras Capítulo once: Dimensionado UNO 1. Introducción. 1.1. Para el control de las elásticas. En este capítulo presentamos la metodología a seguir para establecer las dimensiones
4. Refuerzo a cortante
4. Refuerzo a cortante La adhesión del Sistema MBrace en elementos tales como vigas, permite el incremento de su resistencia a cortante, al aportar cuantía resistente a tracción en las almas y tirantes
Ejercicios ejemplo clases 2.1 a 2.2 Pág 1 de 6
Ejercicios ejemplo clases 2.1 a 2.2 Pág 1 e 6 Tema 2 HIDRÁULICA DE ACUÍFEROS 1- En una sección e un acuífero aluvial, formao por gravas y arenas limpias, se sabe que su anchura es e unos 2000 m, su espesor
ELEMENTOS CON CHAPA CONFORMADA EN FRÍO. Secciones Tubulares. Secciones Abiertas
EN FRÍO Secciones Tubulares Secciones Abiertas 1 Los elementos de chapa conformada en frío se utilizan ampliamente en estructuras y construcciones sometidas a esfuerzos ligeros o moderados. Se aplican
2.4 La regla de la cadena
0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa
; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV
Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa
Diseño de uniones en estructura metálica Máster en Ingeniería Agronómica.
Tema 4. Uniones soldadas. Máster en Ingeniería Agronómica. Escuela de Ingenieros Agrónomos (Ciudad Real). Universidad de Castilla La Mancha. 1. 2. 3. 4. 5. 6. Diseño Indice de Introducción. Tipos de soldaduras.
Elementos comprimidos - Columnas
Elementos comprimidos - Columnas Columnas simples: Barras prismáticas formadas por perfiles laminados o secciones armadas donde todos los elementos están conectados en forma continua. Secciones compactas
CURSO DE ESTRUCTURAS METALICAS Y CONEXIONES.
TEMARIO: 1.- ESFUERZOS ACTUANTES. 1.1 DETERMINACIÓN DE INERCIAS TOTALES. 1.2 DETERMINACIÓN DE CENTROIDES. 1.3 DETERMINACIÓN DEL MODULO DE SECCIÓN ELÁSTICO Y PLÁSTICO DE SECCIONES CUADRADAS Y SECCIONES
