x+(a-1)y+z=-1 (a-1)y+2z=-2 x+(a 2-5a+5)z=-a+4 2 a 2-5a a+5 ~2 1 0 ~ 4 1 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "x+(a-1)y+z=-1 (a-1)y+2z=-2 x+(a 2-5a+5)z=-a+4 2 a 2-5a a+5 ~2 1 0 ~ 4 1 0"

Transcripción

1 JUNIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: Aplicamos el método de Gauss: a- a- - a -5a+5 - -a+4 ~ x+(a-)y+z- (a-)y+z- x+(a -5a+5)z-a+4 a- a- -a+ a- a a -5a+6 a - a -5a+4 - -a+5 ~ a- a- 5± 5-4 5± a a ( PUNTOS) - a -5a+6 - -a+ Estudiamos los distintos casos: º) Si a, el sistema es incompatible: - - ~ º) Si a, el sistema es incompatible: - - º) Si a, el sistema es compatible indeterminado y la solución depende de un parámetro: - - x+y+z- y+z- x--y-z-++z-z+z y--z x+α y--α zα 4º) En los demás casos el sistema es compatible determinado: x+(a-)y+z- (a-)y+z- (a-)(a-)z-(a-) z -(a-) (a-)(a-) z - a- (a-)y--z - + a- -a+4+ a- -a+6 y (a-)(a-) x--(a-)y-z-+ a-6 a- + a- -a++a-6+ a- a- x a- ªf-ªf. ªf+ªf. Como no se puede dividir por cero, tenemos que calcular los valores del parámetro que anulan los coeficientes de las incógnitas que despejaremos luego (caso 4º). 4 ªf-ªf. --

2 JUNIO DE 7. PROBLEMA A. Dados el punto P(,-,) y las rectas r y s, halla la ecuación general de un plano π que sea paralelo a ambas rectas y tal que la distancia de P a π sea : r x-y-z+ x- s x-y-4z+6 y z+ ( PUNTOS) Como la recta r está en el plano x-y-z+, el vector (,-,-) es perpendicular a r. Como la recta r también está en el plano x-y-4z+6, el vector (,-,-4) es perpendicular a r. Por tanto, un vector direccional de dicha recta es: i u j - - k - i +j +k -4 Por otro lado, un vector direccional de la recta s es v (,,). Como el plano π es paralelo a ambas rectas, un vector característico de dicho plano es: i w j k i -j -k Por tanto, π x-y-z+d. Por último, como la distancia del punto P(,-,) al plano π es : d(p,π) -(-)- +D +D 6 +D D-6 D D-9 π x-y-z+ π x-y-z-9 Otra forma de obtener un vector direccional de la recta r es calculando sus ecuaciones paramétricas, esto es, resolviendo el sistema que forman los dos planos que la determinan. --

3 JUNIO DE 7. PROBLEMA A. Calcula los siguientes límites: lím ( x + x +x+- x -5x+7) y lím x + [cos(πx)+x ] /ln x ( PUNTOS) PRIMER LÍMITE: lím x + lím x + lím x + ( x +x+- x -5x+7) ( x +x+- x -5x+7) ( x +x++ x -5x+7) x +x++ x -5x+7 x +x+-x +5x-7 x +x++ x -5x+7 lím x + 8x-6 x +x++ x -5x+7 4 lím x + x (8-6/x) x ( +/x+/x + -5/x+7/x ) lím x + 8-6/x +/x+/x + -5/x+7/x SEGUNDO LÍMITE: lím x [cos(πx)+x ] ln x 5 e lím x ln x [cos(πx)+x -] e lím x cos(πx)+ x - ln x 6 e lím x -π sen(πx)+ x ln /x e -π sen(π )+ ln / e -π + ln e ln 7 e ln Multiplicamos y dividimos por la expresión conjugada. Operamos el numerador. Simplificamos el numerador. 4 Sacamos x factor común en el numerador y en el denominador. 5 Ya que sale la indeterminación. 6 Como sale la indeterminación /, aplicamos L'Hôpital. 7 Por las propiedades de los logaritmos. 8 Por la definición de logaritmo. --

4 JUNIO DE 7. PROBLEMA A4. Demuestra que la función f(x)sen πx x +x tiene un máximo relativo en el intervalo (,). Menciona los resultados teóricos empleados y justifica su uso. ( PUNTOS) º) Como la condición necesaria de extremo relativo es que la derivada valga cero, se considera la función: π f'(x) cos πx πx x +x + sen x+ x +x Estudiamos el signo de x +xx(x+): Por tanto, Dom(f)(-,-] [,+ ) y Dom(f')(-,-) (,+ ). º) Como la función f' satisface las condiciones del teorema de Bolzano, existe α en (,) tal que f'(α). En efecto: ª) f'() f'()<: π f'() + >. π 7 f'() <. ª) f' es continua en [,]: [,] Dom(f') Dom(f). Si a [,]: lím x a f'(x)lím x a π cos πa π cos πx O -7 4 πx x +x + sen x+ x +x πa a +a + sen a+ a +a f'(a) º) Ahora bien, como f es continua en α, por ser derivable en dicho punto, y f' es positiva a la izquierda y negativa a la derecha de α, entonces, por el criterio de la variación del signo de la primera derivada, f tiene en dicho punto un máximo relativo. f' α -4-

5 JUNIO DE 7. PROBLEMA B. Calcula los valores del parámetro t para los que la siguiente matriz no es regular: A -t t+ -t+ -t+ ( puntos) -t- Calculamos el determinante de la matriz A: -t A t+ -t- -t+ -t+ (t+) (-t+) -t+ -t+ -t+ -t- -(-t-) -t+ -t+ -t+ -t+ -(t+)(t-) (-t+-)t(t+)(t-) Para que la matriz A no sea regular su determinante debe ser cero: A t(t+)(t-) t, t-, t ªf+ªf. Desarrollamos el determinante por los elementos de la segunda columna. -5-

6 JUNIO DE 7. PROBLEMA B. Encuentra la ecuación continua de la recta que pasa por el punto P(-4,,) y corta a las rectas r x+y+z- x+y- y x+ r - y+ z+ ( PUNTOS) Sean X e Y los puntos de corte de la recta buscada con r y r, respectivamente: X r x+y+z- x+y- P(-4,,) Y π x+ r - y+ z+ x--α y-+α z-+α El punto P y la recta r determinan el plano π. Como este plano pertenece al haz de planos de arista la recta r, tiene por ecuación: π a(x+y+z-)+b(x+y-) Como el punto P(-4,,) está en el plano π, satisface su ecuación: a(-8+6+-)+b(-4+4-) -a-b b-a Por tanto: a(x+y+z-)-a (x+y-) a(x+y+z--x-y+) π x+y+z+ Como el punto Y está en la recta r : Y(--α,-+α,-+α) Como el punto Y está en el plano π, satisface su ecuación: --α-+α-+α+ 4α-4 4α4 α Y(-,,) [PY x+4 ](,-,) XY y- - z Otras formas de hacer este ejercicio pueden verse, por ejemplo, en el problema B del examen de selectividad de junio de 7. Otra forma de obtener la ecuación de este plano consiste en hallar un punto y un vector direccional de la recta r. Como a, podemos dividir los dos miembros por a. (Si a fuese, entonces b también valdría, ya que b-a; pero a y b no pueden ser simultáneamente nulos.) -6-

7 JUNIO DE 7. PROBLEMA B. Encuentra los extremos absolutos de la función f(x)(x -) e -x+ en el intervalo [-,4]. Menciona los resultados teóricos empleados y justifica su uso. ( Puntos) º) Estudiamos la continuidad de la función en el intervalo: f'(x)x e -x+ -(x -) e -x+ e -x+ (x-x +) Dom(f')Dom(f)R f es continua en R f es continua en [-,4] Por el teorema de Weierstrass la función f alcanza en dicho intervalo sus extremos absolutos. Éstos se encuentran en los extremos del intervalo o entre sus extremos relativos. º) Calculamos los valores de f en los extremos del intervalo: f(-)(4-) e 4 e 4 f(4)(6-) e - /e º) Hallamos los extremos relativos de la función en el intervalo: Como la condición necesaria de extremo relativo es que la derivada valga cero: f'(x) e -x+ (x-x +) x -x- x Estudiamos el signo de f' en el intervalo: ± 4+ ±4 x- x Como f es continua en x- y x, por el criterio de la variación del signo de la derivada primera f tiene un mínimo relativo en el punto x-, que vale yf(-)- e, y un máximo relativo en el punto x, que vale yf()6 e - 6/e. 4º) Conclusión: La función f tiene en x- un máximo absoluto que vale ye 4 ; y en x- un mínimo absoluto que vale y- e : x f(x) - e 4-54, e - -4,7 6/e-,7 4 /e -,759-7-

8 JUNIO DE 7. PROBLEMA B4. Encuentra los dos puntos en que se cortan las gráficas de las funciones f(x)cos g(x) x 4 -. Calcula el área de la región del plano encerrada entre ambas gráficas. ( Puntos) πx 4 y º) Resolvemos el sistema que forman las funciones que limitan por arriba y por abajo el recinto cuya área queremos hallar: πx ycos 4 y x 4 - cos πx 4 x 4 - x- x º) Averiguamos entre - y qué función está por encima y qué función está por debajo: x f(x) g(x) - º) Calculamos el área: A - πx cos 4 - x 4 + dx 4 π sen πx 4 - x +x 4 π π (-)+ 8-4 π π π π π - g(x)x /4- - O f(x)cos(πx/4) Esta ecuación se resuelve a ojo. Si se repara en que la función integrando es una función par, puede calcularse la integral entre y, y multiplicar el resultado por. La integral del primer sumando es casi inmediata de tipo seno y las integrales de los otros dos son inmediatas de tipo potencial. -8-

ax+y-z=2 2ax+(a 2 +1)y+(a-1)z=a+5 ax+a 2 y+(a-2)z=a+5 a+5 ~1 a 0 a=0 a 2-1=0 a 2 =1 a=±1 a+1

ax+y-z=2 2ax+(a 2 +1)y+(a-1)z=a+5 ax+a 2 y+(a-2)z=a+5 a+5 ~1 a 0 a=0 a 2-1=0 a 2 =1 a=±1 a+1 EXTRAORDINARIO DE 5. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: Aplicamos el método de Gauss: ~ a a

Más detalles

y+3z=1 (a 2 -a-2)x-y-3z=-1 (a 2 -a-2)x+(a 2-2a)z=2-a -3 a 2-2a -1 3 a 2-2a 1 2-a ~ a ~3 0 a=2, a=-1 a 2-2a=0 a(a-2)=0 a=0, a=2 z=1 y=1-3z

y+3z=1 (a 2 -a-2)x-y-3z=-1 (a 2 -a-2)x+(a 2-2a)z=2-a -3 a 2-2a -1 3 a 2-2a 1 2-a ~ a ~3 0 a=2, a=-1 a 2-2a=0 a(a-2)=0 a=0, a=2 z=1 y=1-3z EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: Aplicamos el método de Gauss: ~ a -a-

Más detalles

-1± 1+8-1±3. a=-2, a=1 a 2 +2a=0 a(a+2)=0 a=0, a=-2 a 2 -a=0 a(a-1)=0 a=0, a= x=-1 z=1 x=1/2. z=1. 3a z= a(a-1) z= 3.

-1± 1+8-1±3. a=-2, a=1 a 2 +2a=0 a(a+2)=0 a=0, a=-2 a 2 -a=0 a(a-1)=0 a=0, a= x=-1 z=1 x=1/2. z=1. 3a z= a(a-1) z= 3. JUNIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: (a +a-)x-ay+az- (a +a-)x+a y+(a+)z (a +a-)x-ay+a

Más detalles

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: ~ Aplicamos el método de Gauss: a +a

Más detalles

2 2 2 a a 2. a a=0 a(a+1)=0 a=0, a=-1. x=-y-2 z=-1

2 2 2 a a 2. a a=0 a(a+1)=0 a=0, a=-1. x=-y-2 z=-1 JUNIO DE 3. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: ax+(a +a)y+z axy+z ax+yza (3 PUNTOS) Aplicamos

Más detalles

a-2. -a º) Si a= 2, el sistema es compatible indeterminado y la solución depende de un parámetro: 4. 2 =-2y z=1.

a-2. -a º) Si a= 2, el sistema es compatible indeterminado y la solución depende de un parámetro: 4. 2 =-2y z=1. EXTRAORDINARIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+y+z x+(a +)y+3z3 x(a +)y+(a3)z 3

Más detalles

2a+1. a+2. a+2 ~2 0 a 2 +a=0 a(a+1) a=0, a=-1 a+2=0 a=-2 -a-1=0 a=-1. a ~ z= a+1 -(a+1) =-1 z=-1 (a+2)y=1-z=2

2a+1. a+2. a+2 ~2 0 a 2 +a=0 a(a+1) a=0, a=-1 a+2=0 a=-2 -a-1=0 a=-1. a ~ z= a+1 -(a+1) =-1 z=-1 (a+2)y=1-z=2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: (a +a)x+(a+)y+az (a +a)x+(3a+3)y+(a+)z

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x- az - x+()y+ (-a)z x+()y+(a +)za+ (3 PUNTOS)

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 29. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+ y- az -x+ay+ az2a+ x+ y+(a 3-2a)z a- (3

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: y+a za+4 a-y+(a+)z a-y+az (3 PUNTOS) Aplicamos

Más detalles

SEPTIEMBRE DE PROBLEMA A1.

SEPTIEMBRE DE PROBLEMA A1. SEPTIEMBRE DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+ y+ az= ax+(3a-)y+(+a )z= x+ y+(a -a)z=a-

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 8. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: - y- z +(a -a-)y - +(a -a-)y+(a-)z-a (3 PUNTOS)

Más detalles

2) (1,2p) Halla las ecuaciones de las asíntotas de la función: f(x)= x-1

2) (1,2p) Halla las ecuaciones de las asíntotas de la función: f(x)= x-1 CURSO 2009-200 0 de marzo de 200. π ) (,3p) Dada la función f(x)=x cos( 2 x)+2x, prueba que existe α en (,2) tal que f'(α)=0. Menciona los resultados teóricos que utilices. 2) (,2p) Halla las ecuaciones

Más detalles

a-3 a-1 a-1 a+3 1 a 2-3 a-3=0 a=3 a-1=0 a=1 a+2=0 a=-2 x=2/5-2α/5-3y+z=1-5x=2+2z z=α -5x-2z= z= (a+2)(a-2) a+2

a-3 a-1 a-1 a+3 1 a 2-3 a-3=0 a=3 a-1=0 a=1 a+2=0 a=-2 x=2/5-2α/5-3y+z=1-5x=2+2z z=α -5x-2z= z= (a+2)(a-2) a+2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: (a-)x-z (a-)x+(a-)y-z (a-)x+(a-)y+(a+)za

Más detalles

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0:

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0: CURSO 22-23. 23 de mayo de 23. ) Calcula los límites de la siguiente función en y + : 3+sen f() 2) Estudia la continuidad y derivabilidad de la siguiente función en : 3) Deriva y simplifica: f() e / +e

Más detalles

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto:

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto: CURSO 2-22. 24 de mayo de 2. ) Calcula: sen lím cos - 2) Halla a y b para que la siguiente función sea continua y derivable en =. Calcula la ecuación de la recta tangente en dicho punto: f()= a 2 +b+b

Más detalles

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente.

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente. CURSO 4-5. Septiembre de 5. ) De la siguiente función f, se pide: a) Dominio. b) Derivada. c) Continuidad y discontinuidades. + f()= ln ) De la función del problema anterior, se pide. a) Asíntotas verticales.

Más detalles

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx CURSO -. 5 de mayo de. ) (,p) Calcula: ln x lím x (+senx) sen x ) (,3p) Halla m y n para que sea derivable la función: f(x) x -5x+m si x -x +nx si x> 3) (,3p) Deriva y simplifica la función: 4) (,p) Halla:

Más detalles

1) (1,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x 2-2x tiene en +.

1) (1,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x 2-2x tiene en +. CURSO 7-8. Septiembre de 8. ) (,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x -x tiene en +. ) (,p) Calcula: -cos(x-) x ln x 3) (,p) La

Más detalles

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1

2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1 CURSO 28-29. Primera parte. 2 de mayo de 29. ) (p) Calcula el siguiente límite: lím x (x e/x ) 2) (p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades de la función: f(x)= x- 3) (p)

Más detalles

x-1-1 x+2-2 lím 2) (1p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: f(x)= ln(1+x) si -1<x 0 k si x=0

x-1-1 x+2-2 lím 2) (1p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: f(x)= ln(1+x) si -1<x 0 k si x=0 CURSO 2-2. Septiembre de 2. ) (,5p) Calcula: x 2 x-- x+2-2 2) (p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: sen(2x) f(x) ln(+x) si -

Más detalles

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1 CURSO 2009-200 6 de diciembre de 2009. ) (,6p) Estudia la continuidad y clasifica las discontinuidades de la función: x - x- 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función: 3) (2p)

Más detalles

lím 3) (1,6p) Deriva la siguiente función y simplifica el resultado: 1 1+ x

lím 3) (1,6p) Deriva la siguiente función y simplifica el resultado: 1 1+ x CURSO 278 7 de marzo de 28. ) (,6p) Halla k para que se verifique: - ( 2 +k+)=4 2) (,8p) Dada la ecuación 2-=ln : a) Prueba que tiene solución. b) Prueba que tiene solo una solución. c) Hállala con un

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014 Opción A Ejercicio 1 opción A, modelo Junio Incidencias 014 Sea f la función definida por f(x) = 1 + ln(x) para x > 0 (ln denota el logaritmo x neperiano). (a) [1 75 puntos] Determina el punto de la gráfica

Más detalles

Ejercicio 1 del modelo 5 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 5 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 5 de la opción A de sobrantes de 2002 2'5 puntos Calcula una primitiva de la función f definida por f(x) = (2x 2 +10x)/(x 2 +2x - 3) para x 1 y x -3. Como f(x) = (2x 2 +10x)/(x 2

Más detalles

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 2 de la opción A de sobrantes de 2001 Sea f: R R la función dada por f(x) = 8 x 2. (a) [1 punto] Esboza la gráfica y halla los extremos relativos de f (dónde se alcanzan y cuáles

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

Ejercicio 2 opción A, modelo 5 Septiembre 2010

Ejercicio 2 opción A, modelo 5 Septiembre 2010 Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 02

Preparando Selectividad Solución Selectividad - Modelo 02 página 1/17 Preparando Selectividad Solución Selectividad - Modelo 0 Modelo 0. Opción A. Ejercicio 1 a) [0,5 puntos] Enuncia el teorema de Bolzano. b) [0,5 puntos] Enuncia el teorema de Rolle. c) [0,5

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x.

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x. CURSO 00-0 6 de noviembre de 00. ) (p) Define función derivada. ) (p) Demuestra que la derivada de yln es y'/. 3) (p) Enuncia el criterio de la derivada segunda para el estudio de la curvatura y los puntos

Más detalles

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz. 21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.

PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas. PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 01 Reserva (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 6 Septiembre 01 ['5 puntos] De entre todos los triángulos rectángulos

Más detalles

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Septiembre 206) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dada la función f(x) = (6 x)e x/3, se pide: a) ( punto). Determinar su dominio, asíntotas y cortes

Más detalles

Ejercicio nº 1 de la opción A del modelo 1 de Solución

Ejercicio nº 1 de la opción A del modelo 1 de Solución Ejercicio nº 1 de la opción A del modelo 1 de 2001 Se quiere dividir la región encerrada entre la parábola y = x 2 y la recta y = 1 en dos regiones de igual área mediante la recta y = a. Halla el valor

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2007 Sea f : R R la función definida por f(x) = (x - 3)e x. [1 punto] Calcula los extremos relativos de f (puntos donde se obtienen y valores que se alcanzan).

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto

Más detalles

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2 IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Grupo Opción A A El sistema es cuadrado, por lo que podemos calcular

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2004 Sea f : R R la función definida por f(x) = 2 x. x. (a) [0 75 puntos] Esboza la gráfica de f. (b) [1 punto] Estudia la derivabilidad de f en x = 0. (c) [0

Más detalles

IES Fco Ayala de Granada ( Modelo 6) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 6) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo 6 de 01 a 1+ si x 1 x- ['5 puntos] Se considera la función derivable f : R R definida por

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ARAGÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz. Algebra Opción A a) Las matrices correspondientes son: A m m m m m m A* El determinante

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto)

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado. Bachillerato L. O. G. S. E. Instrucciones: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios deben

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

Matemáticas II. Curso Exámenes

Matemáticas II. Curso Exámenes Matemáticas II. Curso 009-00. Exámenes. Matrices y determinantes Ejercicio. Calcular el rango de la matriz A = 0 4 5 5 rango A = rango 0 4 5 5 poniendo ceros en la 3 a columna = rango 0 0 Puesto que F

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa 1 Junio 018 a) Enuncia el teorema de Bolzano y justifica razonadamente que la gráfica de la función f(x) = x 15 + x + 1 corta al eje OX al menos una vez en el intervalo [-1,1]. b) Calcula razonadamente

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos) Isaac Musat Hervás 22 de mayo de 2013 Capítulo 5 Año 2004 5.1. Modelo 2004 - Opción A Problema 5.1.1 2 puntos) a) 1 punto) Calcular

Más detalles

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

10.1. Modelo Opción A

10.1. Modelo Opción A 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π : x + y z =, la recta: r : x 3 = y 1 = z 5 4 y el punto P (, 3, ), perteneciente al plano π, se pide: 1. (0,5 puntos) Determinar

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

Índice: Criterio de la variación del signo de la derivada primera. Condición necesaria de extremo relativo. Problemas.

Índice: Criterio de la variación del signo de la derivada primera. Condición necesaria de extremo relativo. Problemas. DERIVADAS LECCIÓN 6 Índice: Criterio de la variación del signo de la derivada primera. Condición necesaria de etremo relativo. Problemas..- Criterio de la variación del signo de la derivada primera Si

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque.

MATEMÁTICAS. El alumno deberá responder únicamente a una de las cuestiones de cada bloque. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 203 OBSERVACIONES: FASE ESPECÍFICA MATEMÁTICAS El alumno deberá responder únicamente a una

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo del 996. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 996-997. Opción A Modelo Ejercicio opción A sobrantes 996 La capacidad

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

Ejercicio n º 1 de la opción A de septiembre de Solución

Ejercicio n º 1 de la opción A de septiembre de Solución Ejercicio n º 1 de la opción A de septiembre de 2006 Sea f : R R la función definida por f(x) = x 2 - x. (a) [0 75 puntos] Estudia la derivabilidad de f. (b) [1 punto] Determina los intervalos de crecimiento

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

Opción A Ejercicio 1 opción A, modelo 3 Junio Colisiones 2014

Opción A Ejercicio 1 opción A, modelo 3 Junio Colisiones 2014 IES Fco Ayala de Granada Junio de 04 (Colisiones Modelo 3) Soluciones GermánJesús Rubio Luna Opción A Ejercicio opción A, modelo 3 Junio Colisiones 04 a [ 5 puntos] Sabiendo que lim es finito, calcula

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º. ( Resuélvelo por el método de Gauss )

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º. ( Resuélvelo por el método de Gauss ) EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º 1) a) Un especulador adquiere tres objetos de arte por un precio de 20 monedas de oro. Vendiéndolas espera obtener unas ganancias del 20 %, del

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

2 + 5i. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar.

2 + 5i. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar. 1.- Números complejos: a) Realizad la operación: 3 + ı 2 + 5i Proporcionad el resultado en forma binómica. b) Hallar todas las raíces de raíz cúbica de -27. Dar el resultado en binómica y polar. a) Poner

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica

Más detalles

, calcula a R para f(x) cumpla las hipótesis del Teorema de

, calcula a R para f(x) cumpla las hipótesis del Teorema de Bárbara Cánovas Conesa 67 70 Reserva. 06 a) Enuncia el teorema de Bolzano. sen πx + xe x si x b) Dada la función f(x) = a(x ), calcula a R para f(x) cumpla las hipótesis del Teorema de si x > x+ Bolzano

Más detalles

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1 Ejercicio Considerando la recta R que pasa por los puntos A = (; 0; ) y B = (2; ; 5) y el punto P = (2; ; ), hallar la ecuación implícita del plano π que es perpendicular a la recta R y contiene al punto

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión.

Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. DERIVADAS LECCIÓN 21 Índice: Criterio de la variación del signo de la derivada segunda. Criterio de la derivada primera. Condición necesaria de punto de inflexión. Problemas. 1.- Criterio de la variación

Más detalles

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos)

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos) PROPUESTA A 1A. a) Calcula los valores de los parámetros a, b R para que la función { sea continua y derivable en x = 0. (1 5 puntos) b) Para los valores encontrados, calcula la ecuación de la recta tangente

Más detalles

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A Corrección examen PAU. Junio 6. OPCIÓN A a) Si x { }, vemos que la función está perfectamente definida y por tanto es continua, x { } Así pues, el único problema que podría existir es en x =. Para que

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 06

Preparando Selectividad Solución Selectividad - Modelo 06 página 1/11 Preparando Selectividad Solución Selectividad - Modelo 06 Modelo 06. Opción A. Ejercicio 1 a) Realiza un dibujo aproximado de la gráfica de la función f (x)= { 4 x+12 si x 1 x 2 4 x+3 si x>

Más detalles

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Sobrantes del 05 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, modelo del 05 [ 5 puntos] Sea f : R R la función dada por f(x) = ax 3 + bx + cx + d Halla

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.

1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos. 28 de noviembre de 2008. 1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 2) (1p) Enuncia el teorema de Rolle. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.

Más detalles

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio específico de 010 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Junio Específico 010 [ 5 puntos] La hipotenusa de un triángulo rectángulo mide

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

1. Examen de matrices y determinantes

1. Examen de matrices y determinantes 1 EXAMEN DE MATRICES Y DETERMINANTES 1 1. Examen de matrices y determinantes Ejercicio 1. Halla todas las matrices X no nulas de la forma [ ] a 1 X = 0 b tales que X = X. Puesto que: X = [ ] [ ] a 1 a

Más detalles