3.3. CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.3. CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO"

Transcripción

1 3.3. CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO * Si dispones de un sistema de patículas A y B, de masas 4m y 3m, situadas en los puntos (,0) y (0,). A se mueve con velocidad v i, mientas que B, lo hace con v j. La cantidad de movimiento del cento de masas del sistema: ES INDEPENDIENTE DE LAS POSICIONES DE LAS PARTÍCULAS b) ES 0 c) TIENE POR MÓDULO 5mv d) ES UN VECTOR p = 7mv i Si dos patículas mateiales A y B, de masas 4m y m se mueven espectivamente con velocidades de módulo constante v y 4v, pasando po el oigen hacia la pate negativa de los ejes Y y X(ve la figu, el vecto que mejo epesenta la cantidad de movimiento del sistema, de todos los dados seá el: A b) B c) C d) D e) NINGUNO DE LOS DADOS Sobe una mesa sin ozamiento, dispones de dos caitos de masas m y 4m, unidos po un esote de masa despeciable, que compimes y sueltas. Si el más pequeño sale con una velocidad v, el mayo lo haá con ota v x que seá: 5/4 DE LA DEL CENTRO DE MASAS DEL SISTEMA v b) 4 c) 4/5 DE LA VELOCIDAD DEL CENTRO DE MASAS d) LA MISMA VELOCIDAD QUE EL DE MENOR MASA * La patícula A, tiene un vecto de posición A = ( t + ) i mientas que el de B, de igual masa, es B = ( 4t + ) j. Ambas foman un sistema del que puedes deci que : SU CENTRO DE MASAS SE MUEVE CON MOVIMIENTO UNIFORME b) SU CENTRO DE MASAS ESTÁ INICIALMENTE EN EL PUNTO (,) c) LA CANTIDAD DE MOVIMIENTO DEL CENTRO DE MASAS ES p CM = m( i + j) kg. ms d) LA VELOCIDAD DEL CENTRO DE MASAS RESPECTO A LA DE LA PARTÍCULA B, ES vcm / B = i + j ms e) LA VELOCIDAD DE A RESPECTO A SU CENTRO DE MASAS ES v = i j ms. A / CM

2 Un cuepo de masa M posee una velocidad u i ms. Si se divide, po acción de fuezas intenas, en dos masas, una de las cuales de masa m, posee una velocidad v j ms, la ota debeá tene una velocidad cuyo módulo es: mu [( mv) + ( Mu) ] [( mv) + ( Mu) ] b) c) M m d) mv + Mu e) ( mv) + ( Mu) M m ( ) * A pincipios del siglo XIX, la pasión de muchos científicos ea subi en globo, sin embago cuando se llenaban de hidógeno, el esultado más de una vez teminó en desaste al combinase explosivamente con el oxígeno del aie. Ahoa bien, aunque el cento de masas del sistema antes de poducise el accidente, se desplazaba hacia aiba, y pese a que el fenómeno se oiginaba po causas intenas teminaon con sus huesos en tiea. Lo explicaías diciendo que: EL CENTRO DE MASAS NO CONSERVÓ SU CANTIDAD DE MOVIMIENTO b) HAN VARIADO LAS FUERZAS EXTERNAS DURANTE LA EXPLOSIÓN c) DEBIDO A LA EXPLOSIÓN EL SISTEMA PESA MÁS d) AUNQUE EL SISTEMA PESE MENOS, LAS FUERZAS DE EMPUJE SON DESPRECIABLES Sobe una mesa sin ozamiento se disponen dos cuepos A y B, de masas espectivas m y m, enganchados en un esote compimido, de masa despeciable y sujetas po un hilo, que los mantiene compimiendo al esote, como se obseva. Se quema el hilo, y B ecoe 40cm, en s. Según esto podás deci que: EN ESE TIEMPO, A RECORRERÁ 80 cm. b) EL CENTRO DE MASAS DEL SISTEMA NO SE MUEVE c) LA VELOCIDAD DE A RESPECTO A B ES DE 0,6 i ms d) LA TENSIÓN DEL HILO ES kx/, SIENDO k LA CONSTANTE ELÁSTICA DEL RESORTE, Y x SU LONGITUD COMPRIMIDA Dos pequeños caitos de masas uno doble que el oto se encuentan en eposo sobe una mesa hoizontal y compimidos ente sí mediante un muelle de masa despeciable. Si en un deteminado momento se suelta el muelle los caitos se desplazan sobe la mesa. Teniendo en cuenta que el coeficiente de ozamiento ente la mesa y los caitos es el mismo, se puede afima sobe las distancias que ecoen los caitos hasta paase que: SON IGUALES b) ES DOBLE LA DEL CARRITO DE MAYOR MASA c) ES DOBLE LA DEL CARRITO DE MENOR MASA d) ES CUATRO VECES MAYOR LA DEL CARRITO DE MENOR MASA.

3 Un cohete lanzado veticalmente explosiona al llega a su máxima altua H, en el plano Z=H, faccionándose en dos pates apoximadamente iguales. Si uno de los fagmentos sale despedido con una velocidad vi, el vecto que mejo epesenta la velocidad del segundo fagmento seá de todos los dados el: A b) B c) C d) D SOL: Si se lanza veticalmente, en el punto de máxima altua v=0, po lo tanto v CM = 0. m. v m. vi = m. v = 0, v = v i ms que coesponde a vecto B. + CM Una bomba colocada en los bajos de un vehículo explosiona po contol emoto, sepaándose en tes fagmentos, A, B y C, siendo la masa de A doble que la de B. Si la situación del vehículo se centa en un sistema de coodenadas otonomales XY (plano z=0), y la velocidad de los fagmentos, A y B, tienen el mismo módulo y espectivos sentidos positivos de los ejes X e Y, como indica la figua. El fagmento C, de la misma masa que A, saldá con una velocidad y la flecha que mejo indica el sentido de ésta, es de todas las dadas, la: 1 b) c) 3 d) Una bomba con una velocidad v 0, explosiona en dos fagmentos de masas uno tiple del oto. Si el de meno masa después de la explosión sale despedido con una velocidad 5v 0, el oto fagmento: LO HARÁ CON UNA VELOCIDAD TRES VECES MENOR b) RETROCEDERÁ CON UNA VELOCIDAD DE MÓDULO IGUAL AL QUE TENÍA INICIALMENTE LA BOMBA c) TENDRÁ UNA VELOCIDAD -1,6v 0 d) SALDRÁ CON UNA VELOCIDAD -v Un poyectil es lanzado oblicuamente con velocidad inicial v, fomando un ángulo α con la hoizontal. En el punto más alto de la tayectoia, explosiona desintegándose en dos fagmentos iguales. Si uno de ellos cae al suelo en la vetical del luga de la explosión y a una distancia d del punto de lanzamiento, el oto lo haá: 3 d b) d d c) d) A UNA DISTANCIA QUE DEPENDE DEL ÁNGULO Se lanza un poyectil con una velocidad inicial 0 v y un ángulo de inclinación β, cuando éste se encuenta en lo más alto de su tayectoia se divide en dos fagmentos iguales, uno cae veticalmente con una velocidad u y el oto foma un ángulo α con la diección hoizontal cuya tangente vale: u/v 0 b) u cos β /v 0 c) ucosβ /v 0 d) u/ v o cos β

4 Un fusil de masa 5 kg dispaa hoizontalmente una bala de 50 g con una velocidad inicial de 600 m/s, como consecuencia del dispao, el fusil etocede con una velocidad, expesada en m/s, de b) 3 c) 4 d) 5 e) Una ganada estalla en tes pedazos iguales, uno se diige al note con velocidad de 00 m/s, el oto hacia el oeste con velocidad de 300 m/s po tanto el tece pedazo tiene una velocidad, expesada en m/s de: 0 b) 315 c) 360 d) 40 y se diige ENTRE EL NORTE Y EL ESTE FORMANDO UN ÁNGULO DE 45 b) ENTRE EL ESTE Y EL SUR FORMANDO CON EL ESTE UN ÁNGULO DE 33,7 c) ENTRE EL SUR Y EL OESTE FORMANDO UN ÁNGULO DE 43 CON EL OESTE d) EN LA DIRECCIÓN ESTE Un tablón de masa M desliza, pácticamente sin ozamiento, sobe una pista de hielo con una velocidad vi ms, una pesona de masa m salta sobe el tablón y lo hace con una velocidad u que es pependicula a v y en el plano de la pista, el conjunto del tablón y pesona poseen una velocidad cuyo módulo es: mu [( mv) + ( M u) ] [( M v) + ( mu) ] b) c) ( ) mv + M u d) e) NADA DE LO DICHO Sobe una pista helada se desliza sin ozamiento una plancha de masa M, con velocidad v, cuando llega a tu altua, saltas sobe ella, con tu masa m, sin modifica el sentido de la macha de la plancha. La elación ente la enegía cinética de la plancha antes y después de alojate sobe ella seá: 1 b) (M/M+m)² c) 1+m/M d)(1+m/m)² Un hombe de masa m se encuenta sobe una baca de masa M situada en un lago de aguas tanquilas. El hombe ealiza un desplazamiento h con elación a la baca. Si la esistencia del agua es despeciable, la baca especto de la oilla se desplaza en: m h m b) h M c) h m d) h M m

5 Un hombe de 60 kg y un niño de 30 kg se encuentan en los extemos de una baca de m de longitud y 130 kg y en eposo. El ozamiento de la baca con el agua se considea despeciable. El hombe y el niño intecambian sus posiciones y a consecuencia de ello la baca se desplaza especto de la oilla una longitud de:,9 m b),3 m c) 1,9 m d) 0,83 m e) 0,7 m : * Una lancha tiene una masa 3M y una longitud L. La lancha se encuenta en eposo y pependicula a la oilla de un lago. Sobe ella y en el extemo más alejado de la oilla está situado un hombe de masa M. El hombe se desplaza desde un extemo al oto de la lancha invitiendo un segundo de tiempo. Se puede afima que: EL HOMBRE SE ACERCÓ A LA ORILLA DESPLAZÁNDOSE 3L/4 m b) EL HOMBRE SE ACERCÓ DE LA ORILLA DESPLAZÁNDOSE L/4 m c) LA VELOCIDAD DEL HOMBRE RESPECTO A LA DE LA LANCHA FUE L/ m/s d) LA VELOCIDAD DEL HOMBRE RESPECTO A LA DE LA LANCHA FUE L m/s e) LA LANCHA SE ALEJÓ DE LA ORILLA CON UNA VELOCIDAD DE L/4 m/s f) LA LANCHA SE ALEJÓ DE LA ORILLA CON UNA VELOCIDAD DE L/ m/s * En una aventua en la defoestada amazonia, cieta tibu local, deja a un aqueólogo aventueo abandonado a su suete atado sobe un tonco de longitud L (apoximadamente de unos 5m), flotando en el emanso de un ío infestado de piañas, a una distancia L de la oilla y pependicula a ésta. Consigue mantene todavía su látigo de longitud L, en su máximo alagamiento. Su c.d.m, se encuenta a 7L/4 de la oilla, y su masa es la cuata pate de la del tonco. Su máximo salto en estas cicunstancias es de L/. Una vez desatado, piensas que las soluciones válidas paa salvase seán: REMAR CON SUS MANOS CON GRAVE RIESGO DE PERDERLAS b) LLEGAR AL EXTREMO DEL TRONCO Y PEGAR UN BUEN SALTO PARA INTENTAR ALCANZAR LA ORILLA CON EL RIESGO DE CAER AL AGUA c) SITUARSE EN EL CENTRO DE MASAS DEL SISTEMA Y ARROJAR EL LÁTIGO HACIA EL CENTRO DEL RIO d) ALCANZAR EL EXTREMO DEL TRONCO MAS PRÓXIMO A LA ORILLA Y LANZAR EL LÁTIGO PARA AGARRAR LAS RAMAS. e) CAMINAR SOBRE EL TRONCO ALEJÁNDOSE DE LA ORILLA

PROBLEMAS DE DINÁMICA

PROBLEMAS DE DINÁMICA PROBLEMAS DE DINÁMICA 1- Detemina el módulo y diección de la esultante de los siguientes sistemas de fuezas: a) F 1 = 3i + 2j ; F 2 = i + 4j ; F 3 = i 5j ; b) F 1 = 3i + 2j ; F 2 = i 4j ; F 3 = 2i c) F

Más detalles

3.2. MOVIMIENTO DEL CENTRO DE MASAS

3.2. MOVIMIENTO DEL CENTRO DE MASAS .. MOVIMIENTO DEL CENTRO DE MASAS..1. Si dos cuepos de masas iguales se mueven en una tayectoia ectilínea peo en sentidos opuestos con velocidades de igual módulo v, la velocidad del cento de masas del

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDAD DE ALCALÁ PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (Mayoes 5 años) Cuso 009-010 MATERIA: FÍSICA INSTRUCCIONES GENERALES Y VALORACIÓN La pueba consta de dos pates: La pimea pate consiste en

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

6ª GUIA DE EJERCICIOS. 2º SEMESTRE 2010 MOMENTUM LINEAL CHOQUES Y COLISIONES

6ª GUIA DE EJERCICIOS. 2º SEMESTRE 2010 MOMENTUM LINEAL CHOQUES Y COLISIONES UNIVERSIDD DE CHILE - FCULTD DE CIENCIS - DEPRTMENTO DE FISIC ª GUI DE EJERCICIOS. 2º SEMESTRE 200 MOMENTUM LINEL CHOQUES Y COLISIONES.- Dos bloques de masas M y 3M se colocan sobe una supeficie hoizontal

Más detalles

PROBLEMAS CAMPO GRAVITATORIO

PROBLEMAS CAMPO GRAVITATORIO PROBLEMAS CAMPO GRAVITATORIO 1. a) Desde la supeficie de la Tiea se lanza veticalmente hacia aiba un objeto con una velocidad v. Si se despecia el ozamiento, calcule el valo de v necesaio paa que el objeto

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Cuata pate: Movimiento planetaio. Satélites A) Ecuaciones del movimiento Suponemos que uno de los cuepos, de masa M mucho mayo que m, se encuenta en eposo en el oigen de coodenadas

Más detalles

3.3. CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO (continuación)

3.3. CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO (continuación) 3.3. CONSERVACIÓN DE LA CANTIDAD DE OVIIENTO (continación) 3.3.22. Un aión ela con na elocidad de cceo a 800 km/ y a 5000m de alta sobe el selo. Unos teoistas an intodcido na bomba en el aión qe pede explosionase

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa:

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa: LECCION 7: DINAMICA DEL PUNTO 7.. Fueza. Leyes de Newton. Masa. 7.. Cantidad de movimiento. Impulso mecánico. 7.3. Momento cinético. Teoema del momento cinético. 7.4. Ligaduas. Fuezas de enlace. 7.5. Ecuación

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

[ ] ( ) ( ) ( ) ( ) ( ) ) RELACIÓN DE PROBLEMAS Nº2 DINÁMICA DE LA PARTÍCULA. r r r r r. r r. r r r

[ ] ( ) ( ) ( ) ( ) ( ) ) RELACIÓN DE PROBLEMAS Nº2 DINÁMICA DE LA PARTÍCULA. r r r r r. r r. r r r RELACIÓN DE PROBLEMAS Nº DINÁMICA DE LA PARTÍCULA Poblema : En la figua se epesenta un balón que se ha lanzado en paábola hacia una canasta. Despeciando la esistencia con el aie, indica cuál es el diagama

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Ejercicios de Gravitación

Ejercicios de Gravitación jecicios de Gavitación Seway.5: Calcule la magnitud y diección del campo gavitacional en un punto P sobe la bisectiz pependicula de la ecta que une dos cuepos de igual masa sepaados po una distancia a,

Más detalles

3º. Una partícula describe una trayectoria cuya ecuación en el SI viene dada por

3º. Una partícula describe una trayectoria cuya ecuación en el SI viene dada por EJERCICIOS DE CINEMÁTICA. 1º BACHILLERATO. 1º. La fómula que da la posición de una patícula que se mueve en tayectoia ecta, escita en sistema intenacional es x = 7t -t +t -1. Calcula: a) ecuación de la

Más detalles

α = 180º+18º=198º (3r cuadrante)

α = 180º+18º=198º (3r cuadrante) 1- Dados los puntos del plano XY: P 1 (,3), P (-4,1), P 3 (1,-3). Detemina: a) el vecto de posición y su módulo paa cada uno; b) el vecto desplazamiento paa un móvil que se desplaza de P 1 a P y paa oto

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

r r r FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2007 IMPORTANTE: DEBE FUNDAMENTAR TODAS SUS RESPUESTAS: Formulario:

r r r FÍSICA 110 CERTAMEN # 3 FORMA R 6 de diciembre 2007 IMPORTANTE: DEBE FUNDAMENTAR TODAS SUS RESPUESTAS: Formulario: FÍSICA 11 CERTAMEN # 3 FORMA R 6 de diciembe 7 AP. PATERNO AP. MATERNO NOMBRE ROL USM - PARALELO EL CERTAMEN CONSTA DE 1 PÁGINAS CON PREGUNTAS EN TOTAL. TIEMPO: 1 MINUTOS IMPORTANTE: DEBE FUNDAMENTAR TODAS

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla Situaciones 1: Dada una caga eléctica puntual, detemine el campo eléctico en algún punto dado. E = k q 2 u 1.- Una caga puntual positiva, situada en el punto P, cea un campo eléctico E v en el punto, epesentado

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

CONTROL 1ªEVAL 2ºBACH

CONTROL 1ªEVAL 2ºBACH ISRUIOES Y RIERIOS GEERLES DE LIFIIÓ La pueba consta de una opción, ue incluye cuato peguntas. Se podá hace uso de calculadoa científica no pogamable. LIFIIÓ: ada pegunta debidamente justificada y azonada

Más detalles

Ejemplos 1. Cinemática de una Partícula

Ejemplos 1. Cinemática de una Partícula Ejemplos 1. inemática de una atícula 1.1. Divesos Sistemas oodenadas 1.1.* La velocidad peiféica de los dientes de una hoja de siea cicula (diámeto 50mm) es de 45m/s cuando se apaga el moto y, la velocidad

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

L Momento angular de una partícula de masa m

L Momento angular de una partícula de masa m Campo gavitatoio Momento de un vecto con especto a un punto: M El momento del vecto con especto al punto O se define como el poducto vectoial M = O Es un vecto pependicula al plano fomado po los vectoes

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

MOVIMIENTO DE LA PELOTA

MOVIMIENTO DE LA PELOTA MOVIMIENTO DE LA PELOTA Un niño golpea una pelota de 5 gamos de manea que, sale despedida con una elocidad de 12 m/s desde una altua de 1 5 m sobe el suelo. Se pide : a) Fueza o fuezas que actúan sobe

Más detalles

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la Nombe y apellidos: Puntuación: 1. Pimeo vetical, luego hoizontal Un muelle, de masa despeciable, se defoma 20 cm cuando se le cuelga un cuepo de 1,0 kg de masa (figua 1). A continuación, se coloca sin

Más detalles

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r Física paa Ciencias e Ingenieía 18.1 18.1 Leyes de Keple Supongamos que se ha lanzado un satélite atificial de masa m, sometido al campo gavitatoio teeste, de tal manea que su enegía mecánica sea negativa.

Más detalles

Cinemática Cuerpos en caída libre PRIMERA PARTE

Cinemática Cuerpos en caída libre PRIMERA PARTE CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS FACULTAD DE INGENIERIA RESPUESTAS DEL PIRATA Cinemática Cuepos en caída libe PRIMERA PARTE ) Las gotas de lluvia caen desde una nube situada a 700 m sobe la supeficie

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

2 Campo gravitatorio. Actividades del interior de la unidad

2 Campo gravitatorio. Actividades del interior de la unidad Campo gavitatoio Actividades del inteio de la unidad. Enumea las cuato inteacciones fundamentales de la natualeza. Las inteacciones fundamentales son cuato: gavitatoia, electomagnética, nuclea fuete y

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

TAREA DE DINAMICA Equilibrio traslacional Serway Cap. 5 Ejemplo 5.4 (Estática) 2. H Cap. 6 P24. reposo reposo Equilibrio traslacional y rotacional

TAREA DE DINAMICA Equilibrio traslacional Serway Cap. 5 Ejemplo 5.4 (Estática) 2. H Cap. 6 P24. reposo reposo Equilibrio traslacional y rotacional TAEA DE DINAMICA Equilibio taslacional. Seway Cap. 5 Ejemplo 5.4 (Estática) En la figua se muesta un semáfoo de 98 N de peso que cuelga de tes cables los cuales se ompen si la tensión en ellos excede 00N.

Más detalles

Objetivos: Después de completar este módulo deberá:

Objetivos: Después de completar este módulo deberá: Objetivos: Después de completa este módulo debeá: Compende y aplica los conceptos de enegía potencial eléctica, potencial eléctico y difeencia de potencial eléctico. Calcula el tabajo equeido paa move

Más detalles

Física y Química 1ºBto. Profesor Félix Muñoz

Física y Química 1ºBto. Profesor Félix Muñoz 1. Tes cagas de + 3 µc, µc y + 1 µc se encuentan en el vacío situadas espectivamente en los puntos A (- 3,0), O (0, 0) y B (3, 0). Halla el potencial eléctico en el punto P (0, ). Las longitudes están

Más detalles

Soluciones de la Tarea #6 de Física I

Soluciones de la Tarea #6 de Física I Soluciones de la Taea #6 de Física I Tomás Rocha Rinza 4 de octube de 006 1. Puesto que la tayectoia del satélite alededo de la Tiea es cicula, entonces ocue en un plano. Si se considea a la Tiea fija

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el

Modelo Pregunta 3A. El campo electrostático creado por una carga puntual q, situada en el Modelo 2014. Pegunta 3A. El campo electostático ceado po una caga puntual q, situada en el 9 1 oigen de coodenadas, viene dado po la expesión: E = u 2 N C, donde se expesa en m y u es un vecto unitaio

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso. C U R S O: FÍSICA MENCIÓN MATERIAL: FM- 09 ESTÁTICA En esta unidad analizaemos el equilibio de un cuepo gande, que no puede considease como una patícula. Además, vamos a considea dicho cuepo como un cuepo

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

Potencial gravitomagnético producido por una esfera en rotación

Potencial gravitomagnético producido por una esfera en rotación 5 Potencial gavitomagnético poducido po una esfea en otación 1.5 Cálculo del potencial gavitomagnético poducido en el exteio de un cuepo esféico en otación Obtenidos los fundamentos de la teoía gavitoelectomagnética,

Más detalles

EQUIPO DOCENTE DE FÍSICA DPTO. MECÁNICA ETSII - UNED

EQUIPO DOCENTE DE FÍSICA DPTO. MECÁNICA ETSII - UNED Cuso 000-00 Pimea Pueba Pesonal ª SEMANA Febeo 00.- Una patícula, obligada a desplazase a lo lago de una línea ecta y con una elocidad inicial de módulo o, se e fenada po la atacción de una fueza de módulo

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

Fig. 1 Esquema para el cálculo de B

Fig. 1 Esquema para el cálculo de B P1- CAMPO DE UN AAMRE (EY DE OT-SAVART). Considee una poción de un alambe ecto de longitud po el que cicula una coiente constante. (a) Calcule la inducción magnética paa puntos sobe el plano que divide

Más detalles

Práctica N 6: momento lineal y angular

Práctica N 6: momento lineal y angular M & T Cátedra Pablo Balenzuela 1er. cuat. 2018 Práctica N 6: momento lineal y angular Parte I: momento lineal 1 Una pelota de 1.35kg rebota contra una pared a 12m/s y al hacerlo conserva el módulo de la

Más detalles

Potencial eléctrico. Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University

Potencial eléctrico. Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University Potencial eléctico Pesentación PowePoint de Paul E. Tippens, Pofeso de Física Southen Polytechnic State Univesity 2007 Objetivos: Después de completa este módulo debeá: Compende y aplica los conceptos

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Infomática Cicuitos de Coiente Continua -Caga eléctica. Ley de Coulomb. Campo eléctico. -Potencial eléctico. Conductoes en euilibio electostático. Agustín Álvaez

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso. C U R S O: FÍSICA COMÚN MATERIAL: FC-08 ESTÁTICA En esta unidad analizaemos el equilibio de un cuepo gande, que no puede considease como una patícula. Además, vamos a considea dicho cuepo como un cuepo

Más detalles

NAVARRA/ SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO. 3) Explicar cualitativamente el fenómeno de la polarización de la luz (2,5 puntos)

NAVARRA/ SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO. 3) Explicar cualitativamente el fenómeno de la polarización de la luz (2,5 puntos) NAVARRA/ SEPTIEMBRE. LOGSE / FÍSICA / EXAMEN COMPLETO OPCIÓN A ) Dos cochos ue flotan en la supeficie del agua de un estanue son alcanzados po una onda ue se poduce en dicha supeficie, tal ue los sucesivos

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08 Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08 Nombre: Elige en cada bloque una de las dos opciones. DEPARTAMENTO DE FÍSICA E QUÍMICA Repaso del 1º timeste: ondas y gavitación 11/01/08 Nombe: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN y M.A.S. Elige un poblema: puntuación 3 puntos

Más detalles

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto:

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto: Campo eléctico Hemos visto hasta ahoa un tipo de inteacción, la gavitatoia, siendo siempe una fueza atactiva. En la mateia, además de esta, nos encontamos con: inteacción eléctica, inteacción débil,...

Más detalles

Aeronaves y Vehículos Espaciales. Valor total: 2.5 puntos.

Aeronaves y Vehículos Espaciales. Valor total: 2.5 puntos. Aeonaves y Vehículos Espaciales Duación: 50 minutos Ingenieos Aeonáuticos N o DNI Cuso 07/08 Escuela Supeio de Ingenieos e Apellido 2 do Apellido 04/09/08 Univesidad de Sevilla Nombe Poblema II Valo total:

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

Colección de ejercicios. EP1

Colección de ejercicios. EP1 Colección de ejecicios. EP Equilibio tanslacional. ET. En la figua se muesta un semáfoo de N de peso que cuelga de tes cables, C, C, C3, donde C,C se ompen si la tensión en ellos excede 00N. Pemaneceá

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

SOLUCIONES FCA JUN 09 OPCIÓN A

SOLUCIONES FCA JUN 09 OPCIÓN A SOLUCIONES FCA JUN 09 OCIÓN A 1. a) Es la velocidad mínima que hay que comunicale a un cuepo situado en la supeficie del planeta paa que abandone de manea definitiva el campo gavitatoio. El cuepo que se

Más detalles

Problemas de movimiento rectilíneo

Problemas de movimiento rectilíneo Poblemas de movimiento ectilíneo 1.- Te dicen que la ecuación de un movimiento es la siguiente: x 0 - t. a) Podías deci si la tayectoia es ectilínea o cuvilínea? b) Cuál es la velocidad de ese movimiento,

Más detalles

Electrostática. Solución µc

Electrostática. Solución µc ísica y uímica TM 8 º de achilleato lectostática.- l fota una vailla de plástico con un tozo de lana se han intecambiado ente ambos un total de billones de electones. ué caga habán aduiido? 0 5.- Un tozo

Más detalles

Segunda ley de Newton

Segunda ley de Newton Segunda ley de Newton Fundamento La segunda ley de la mecánica de Newton se expesa matemáticamente. F = ext m a El sumatoio se efiee a las fuezas exteioes. En la páctica, dento de las fuezas exteioes que

Más detalles

Problema 1. Un cuerpo rígido gira alrededor de un eje fijo de ecuaciones x = y = z, con una

Problema 1. Un cuerpo rígido gira alrededor de un eje fijo de ecuaciones x = y = z, con una Fundamento y Teoía Fíica ETS quitectua 1 INEMÁTI DEL SÓLIDO RÍGIDO Poblema 1 Un cuepo ígido gia alededo de un eje fijo de ecuacione x = y = z, con una ad ad velocidad angula ω = y una aceleación angula

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt EOEA DE CONSEVACIÓN DE OENO ANGUA: El momento angula se define como: p CASE 4.- EYES DE CONSEVACIÓN eniendo en cuenta que p es el momento lineal (masa po el vecto velocidad) la expesión anteio nos queda:

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE

CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE OJETOS QUE CAEN LIBREMENTE En ausencia de esistencia de aie, todos los objetos que se dejan cae ceca de la supeicie de la tiea

Más detalles

Desarrolle la "Opción A" o la "Opción B" OPCIÓN A

Desarrolle la Opción A o la Opción B OPCIÓN A Se valoaá el uso de vocabulaio y la notación científica. Los eoes otogáficos, el desoden, la falta de limpieza en la pesentación y la mala edacción, podán supone una disminución hasta de un punto en la

Más detalles

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos

Más detalles

GUÍA DE PROBLEMAS N 3: TRABAJO Y ENERGÍA

GUÍA DE PROBLEMAS N 3: TRABAJO Y ENERGÍA GUÍA DE PROBLEMAS N 3: Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas que actúan sobre el cuerpo o sistema de cuerpos en estudio, la identificación

Más detalles

FUERZAS GRAVITATORIAS ACTIVIDADES DE REFUERZO. 52 FÍSICA Y QUÍMICA 4. o ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

FUERZAS GRAVITATORIAS ACTIVIDADES DE REFUERZO. 52 FÍSICA Y QUÍMICA 4. o ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. DE REFUERZO. Qué nombe ecibe el modelo cosmológico popuesto po Ptolomeo? En qué consiste?. Señala, de ente las opciones siguientes, quién fue el científico que popuso la ley que apaece a continuación:

Más detalles

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Rotaciones Leyes de Newton. III Jaime Feliciano Henández Univesidad Autónoma Metopolitana - Iztapalapa México, D. F. 15 de agosto de 2012 INTRODUCCIÓN. La pimea Ley de Newton explica qué le sucede

Más detalles

Movimiento en dos dimensiones

Movimiento en dos dimensiones Movimiento en dos dimensiones Nivelatoio de Física ESPOL Ing. José David Jiménez Continuación Contenido: Movimiento cicula Movimiento cicula Existen muchos ejemplos de movimiento cicula: Discos de música

Más detalles

mv G 0 mv G mv G r GM Mm Mm Mm E E E E E Mm Mm Mm Mm 1 1 G E G E G G GMm

mv G 0 mv G mv G r GM Mm Mm Mm E E E E E Mm Mm Mm Mm 1 1 G E G E G G GMm FÓRMULAS Y DDUCCIONS QU HAY QU SABR VLOCIDAD D SCAP: (velocidad mínima con la que hay que lanza un objeto desde la supeficie de un planeta paa que escape a su atacción gavitatoia) M1 M c1 p1 0 1 Mm 1 Mm

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1.- Halla la velocidad con que peneta un electón pependiculamente en un campo magnético de 5 x 10-6 T, si descibe una tayectoia cicula de 40 cm. Sol.: 3,5 x 10 5 m/s. 2.- Un

Más detalles

Bolilla 3: Leyes de Newton de Movimiento. 1

Bolilla 3: Leyes de Newton de Movimiento.  1 Bolilla 3: Leyes de Newton de Movimiento http://galia.fc.uaslp.mx/~medellin/applets/tio/tio.htm 1 Bolilla 3: Leyes de Newton de Movimiento Las tes Leyes de Newton de movimiento pemiten pedeci el movimiento

Más detalles